

Table of contents

	General
	About GraphDB

	Architecture & components
	Architecture
	RDF4J

	The Sail API

	Components
	Engine

	Connectors

	Workbench

	GraphDB Free
	Comparison of GraphDB Free and GraphDB SE

	Connectors

	Workbench

	Quick start guide
	Run GraphDB as a stand-alone server
	Running GraphDB
	Options

	Configuring GraphDB
	Paths and network settings

	Java virtual machine settings

	Stopping the database

	Set up your license

	Create a repository

	Load your data
	Load data through the GraphDB Workbench

	Load data through SPARQL or RDF4J API

	Load data through the GraphDB LoadRDF tool

	Explore your data and class relationships
	Class hierarchy

	Domain-Range graph

	Class relationships

	Query your data
	Query data through the Workbench

	Query data programmatically

	Additional resources

	Installation
	Requirements
	Minimum

	Recommended

	Licensing

	Deployment scenarios

	Running GraphDB
	Run GraphDB as a desktop installation
	On Windows

	On Mac OS

	On Linux

	Configuring GraphDB

	Stopping GraphDB

	Run GraphDB as a stand-alone server
	Running GraphDB

	Configuring GraphDB

	Stopping the database

	Configuring GraphDB
	Directories
	GraphDB Home

	Checking the configured directories

	Configuration
	Config properties

	Configuring logging

	Best practices
	Step by step guide

	Migrating GraphDB configurations from v6 to v7
	Procedure

	Converting a repository created with GraphDB v6 to v7

	Distribution package

	Using Maven artifacts
	Public Maven repository

	Distribution

	GraphDB JAR file for embedding the database or plugin development

	Administration
	Administration tasks

	Administration tools
	Workbench

	JMX interface
	Configuring the JMX endpoint

	Sizing guidelines
	Entry-level deployment

	Mid-range deployment

	Enterprise deployment

	Disk space requirements
	GraphDB disk space requirements per statement

	GraphDB disk space requirements for loading a dataset

	Creating locations
	Active location

	Inactive location

	Connect to a remote location

	Configure a data location

	Creating a repository
	Create a repository
	Using the Workbench

	Using the RDF4J console

	Manage repositories
	Select a repository

	Make it a default repository

	Edit a repository

	Configuring a repository
	Plan a repository configuration

	Configure a repository through the GraphDB Workbench

	Edit a repository

	Configure a repository programmatically

	Configuration parameters

	Configure GraphDB memory
	Configure Java heap memory

	Single global page cache

	Configure Entity pool memory

	Sample memory configuration

	Reconfigure a repository
	Using the Workbench

	In the SYSTEM repository

	Global overrides

	Rename a repository
	Using the workbench

	Editing of the SYSTEM repository

	Access rights and security
	Managing users’ access
	User roles

	Login and default credentials

	Free access

	Backing up and recovering a repository
	Backing up a repository

	Restoring a repository

	Query monitoring and termination
	Query monitoring and termination using the workbench

	Query monitoring and termination using the JMX interface
	Query monitoring

	Terminating a query

	Terminating a transaction

	Automatically prevent long running queries

	Troubleshooting
	Database health checks
	Possible values for health checks and their meaning

	Default health checks for the different GraphDB editions

	Running the health checks

	System metrics monitoring
	Page cache metrics

	Entity pool metrics

	Diagnosing and reporting critical errors
	Logs

	Report script

	Storage tool
	Options

	Supported commands

	Examples

	Usage
	Loading data
	Loading data using the workbench
	Import settings

	Importing local files

	Importing server files

	Importing remote content

	Paste and import

	Import data with an INSERT query

	Loading data using OntoRefine
	OntoRefine - overview and features

	Example Data

	Upload data in OntoRefine

	Viewing tabular data as RDF

	RDFising data

	Importing data in GraphDB

	Additional Resources

	Loading data using the LoadRDF tool
	Command Line Options

	Procedure

	A GraphDB Repository Configuration Sample

	Tuning LoadRDF

	Exploring data
	Class hierarchy
	Explore your data - different actions

	Domain-range graph

	Class relationships

	Viewing and editing resources
	View and add a resource

	Edit a resource

	Querying Data

	Exporting data
	Exporting a repository

	Exporting individual graphs

	Exporting query results

	Exporting resources

	Using the Workbench REST API
	Security management

	Location management

	Repository management

	Data import

	Saved queries

	Using GraphDB with the RDF4J API
	RDF4J API
	Accessing a local repository

	Accessing a remote repository

	SPARQL endpoint

	Graph Store HTTP Protocol

	Additional indexing
	Autocomplete index
	Autocomplete in the SPARQL editor

	Autocomplete in the View resource

	GeoSPARQL support
	What is GeoSPARQL

	Usage

	GraphDB connectors
	Lucene GraphDB connector
	Overview and features

	Usage

	Setup and maintenance

	Working with data

	List of creation parameters

	Datatype mapping

	Advanced filtering and fine tuning

	Overview of connector predicates

	Caveats

	Upgrading from previous versions

	GraphDB dev guide
	Reasoning
	Logical formalism

	Rule format and semantics

	The ruleset file

	Rulesets

	Inference

	How TO’s

	Storage
	What is GraphDB’s persistence strategy

	GraphDB’s indexing options

	Full-text search
	RDF search

	Plugins
	Plugin API

	RDF rank

	Geo-spatial extensions

	Notifications
	What are GraphDB local notifications

	What are GraphDB remote notifications

	Query behaviour
	What are named graphs

	How to manage explicit and implicit statements

	How to query explicit and implicit statements

	How to specify the dataset programmatically

	How to access internal identifiers for entities

	How to use RDF4J ‘direct hierarchy’ vocabulary

	Other special GraphDB query behaviour

	Retain BIND position special graph

	Performance optimisations
	Data loading & query optimisations

	Explain Plan

	Inference optimisations

	Experimental features
	SPARQL-MM support
	Usage examples

	Provenance plugin
	When to use the Provenance plugin

	Predicates

	Enabling the plugin

	Using the plugin - examples

	Nested repositories
	What are nested repositories

	Inference, indexing and queries

	Configuration

	Initialisation and shut down

	LVM-based backup and replication
	Prerequisites

	How it works

	Some further notes

	References
	Introduction to the Semantic Web
	Resource Description Framework (RDF)
	Uniform Resource Identifiers (URIs)

	Statements: Subject-Predicate-Object Triples

	Properties

	Named graphs

	RDF Schema (RDFS)
	Describing classes

	Describing properties

	Sharing vocabularies

	Dublin Core Metadata Initiative

	Ontologies and knowledge bases
	Classification of ontologies

	Knowledge bases

	Logic and inference
	Logic programming

	Predicate logic

	Description logic

	The Web Ontology Language (OWL) and its dialects
	OWL DLP

	OWL Horst

	OWL2 RL

	OWL Lite

	OWL DL

	Query languages
	RQL, RDQL

	SPARQL

	SeRQL

	Reasoning strategies
	Total materialisation

	Semantic repositories

	GraphDB feature comparison

	Repository configuration template - how it works

	Ontology mapping with owl:sameAs property

	Workbench User Interface
	Workbench Functionalities Descriptions

	Workbench configuration properties

	SPARQL compliance
	SPARQL 1.1 Protocol for RDF

	SPARQL 1.1 Query

	SPARQL 1.1 Update
	Modification operations on the RDF triples:

	Operations for managing graphs:

	SPARQL 1.1 Federation

	SPARQL 1.1 Graph Store HTTP Protocol
	URL patterns for this new functionality are provided at:

	Methods supported by these resources and their effects:

	Request headers:

	Supported parameters for requests on indirectly referenced named graphs:

	OWL compliance

	Glossary

	Release notes
	GraphDB 8.0.6
	Component versions

	GraphDB Engine
	Bug fixes

	GraphDB Workbench
	Bug fixes

	GraphDB 8.0.5
	Component versions

	GraphDB Engine
	Bug fixes

	GraphDB Workbench
	Bug fixes

	GraphDB Connectors
	Bug fixes

	GraphDB 8.0.4
	Component versions

	GraphDB Engine
	Bug fixes

	GraphDB 8.0.3
	Component versions

	GraphDB Engine
	Bug fixes

	GraphDB Workbench
	Bug fixes

	GraphDB 8.0.2
	Component versions

	GraphDB Engine
	Features and improvements

	Bug fixes

	GraphDB Workbench
	Bug fixes

	GraphDB Connectors
	Bug fixes

	GraphDB 8.0.1
	Component versions

	GraphDB Engine
	Bug fixes

	GraphDB Workbench
	Bug fixes

	GraphDB 8.0
	Component versions

	GraphDB Engine
	Features and improvements

	Bug fixes

	GraphDB Workbench
	Features and improvements

	Bug fixes

	GraphDB Connectors
	Features and improvements

	Bug fixes

	FAQ

	Support

General

Hint

This documentation is written to be used by technical people.
Whether you are a database engineer or system designer evaluating
how this database fits to your system, or you are a developer who
has already integrated it and actively employs its power - this is
the complete reference. It is also useful for system administrators
who need to support and maintain a GraphDB-based system.

Note

The GraphDB documentation presumes that the reader is familiar
with databases. The required minimum of Semantic Web concepts
and related information is provided in the
Introduction to the Semantic Web section in
References.

Ontotext GraphDB is a highly-efficient and robust graph database with
RDF [http://www.w3.org/TR/rdf-concepts/] and SPARQL support. This documentation is a comprehensive guide, which explains every feature of GraphDB as well as topics such as setting up a repository, loading and working with data, tuning its performance, scaling, etc.

Credits and licensing

GraphDB uses RDF4J [http://rdf4j.org/about/] as a library,
taking advantage of its APIs for storage and querying, as well as the
support for a wide variety of query languages (e.g., SPARQL and SeRQL)
and RDF syntaxes (e.g., RDF/XML, N3, Turtle).

The development of GraphDB is partly supported by SEKT [http://www.sekt-project.com/], TAO, TripCom [http://www.tripcom.org/], LarKC [http://www.larkc.org/], and other FP6 [http://cordis.europa.eu/fp6/] and FP7 [http://cordis.europa.eu/fp7/] European research projects [http://ontotext.com/knowledge-hub/].

Full licensing information is available in the license files located in the /doc folder of the distribution package.

Helpful hints

Throughout the documentation there are a number of helpful pieces of
information that can give you additional information, warn you or save
you time and unnecessary effort. Here is what to pay attention to:

Hint

Hint badges give additional information you may find useful.

Tip

Tips badges are handy pieces of information.

Note

Notes are comments or references that may save you time and
unnecessary effort.

Warning

Warnings are pieces of advice that turn your attention to things you
should be cautious about.

About GraphDB

GraphDB is a family of highly-efficient, robust and scalable RDF databases. It streamlines the load and use of linked data cloud [http://linkeddata.org/] datasets as well as your own resources. For an easy use and compatibility with the industry standards, GraphDB implements the RDF4J [http://rdf4j.org/about/] framework interfaces, the W3C SPARQL Protocol specification [https://www.w3.org/TR/sparql11-overview/] and supports all RDF serialisation formats. The database is the preferred choice of both small independent developers and big enterprise organisations, because of its community and commercial support, excellent enterprise features, such as cluster support and integration with external high-performance search applications - Lucene, SOLR and Elasticsearch.

GraphDB is one of the few triple stores that can perform semantic inferencing
at scale allowing users to derive new semantic facts from existing
facts. It handles massive loads, queries and inferencing in real time.

Ontotext offers three editions of GraphDB: Free, Standard and Enterprise.

	GraphDB Free [http://ontotext.com/products/graphdb/editions/#free_edition] - commercial, file-based, sameAs & query optimisations, scales to 10’s of billions of RDF statements on a single server with a limit of two concurrent queries;

	GraphDB Standard Edition (SE) [http://ontotext.com/products/graphdb/editions/#strandard_edition] - commercial, file-based, sameAs &
query optimisations, scales to 10’s of billions of RDF statements on
a single server and an unlimited number of concurrent queries.
GraphDB SE is also available on-demand in the AWS Cloud, on a pay-per-use
basis - see GraphDB Cloud [https://aws.amazon.com/marketplace/pp/B00OM7VXGW/ref=srh_res_product_title?ie=UTF8&sr=0-2&qid=1444305397921]

	GraphDB Enterprise Edition (EE) [http://ontotext.com/products/graphdb/editions/#enterprise_edition] - a high-availability cluster
with worker and master database implementation for resilience and
high performance parallel query-answering.

For more about the differences between the editions, see
GraphDB feature comparison section.

Architecture & components

What’s in this document?

	Architecture
	RDF4J

	The Sail API

	Components
	Engine

	Connectors

	Workbench

Architecture

GraphDB is packaged as a Storage and Inference Layer (SAIL) for
RDF4J and makes extensive use of the
features and infrastructure of RDF4J, especially the RDF model, RDF
parsers and query engines.

Inference is performed by the Reasoner (TRREE Engine),
where the explicit and inferred statements are stored in
highly-optimised data structures that are kept in-memory for query
evaluation and further inference. The inferred closure is updated
through inference at the end of each transaction that modifies the
repository.

GraphDB implements the The Sail API interface so
that it can be integrated with the rest of the RDF4J framework, e.g.,
the query engines and the web UI. A user application can be designed to
use GraphDB directly through the RDF4J SAIL API or via the higher-level
functional interfaces. When a GraphDB repository is exposed using the
RDF4J HTTP Server, users can manage the repository through the embedded
Workbench, or the RDF4J Workbench, or other tools
integrated with RDF4J.

[image: _images/GraphDB_High-level_architecture.png]
GraphDB High-level Architecture

RDF4J

The RDF4J framework [http://rdf4j.org/about/] is a framework for
storing, querying and reasoning with RDF data. It is implemented in Java
by Aduna as an open source project and includes various storage
back-ends (memory, file, database), query languages, reasoners and
client-server protocols.

There are essentially two ways to use RDF4J:

	as a standalone server;

	embedded in an application as a Java library.

RDF4J supports the W3C SPARQL query language. It also supports the most popular RDF file formats and query result formats.

RDF4J offers a JBDC-like user API, streamlined system APIs and a RESTful HTTP interface. Various extensions are available or are being developed by third parties.

RDF4J Architecture

The following is a schematic representation of RDF4J’s architecture and a brief overview of the main components.

[image: _images/sesame_architecture.png]

The RDF4J architecture

The RDF4J framework is a loosely coupled set of components, where
alternative implementations can be easily exchanged. RDF4J comes with a
variety of Storage And Inference Layer (SAIL) implementations that a
user can select for the desired behaviour (in memory storage,
file-system, relational database, etc). GraphDB is a plugin SAIL
component for the RDF4J framework.

Applications will normally communicate with RDF4J through the Repository API. This provides a high enough level of abstraction so that the details of particular underlying components remain hidden, i.e., different components can be swapped without requiring modification of the application.

The Repository API has several implementations, one of which uses HTTP to communicate with a remote repository that exposes the Repository API via HTTP.

The Sail API

The Sail
API [http://rdf4j.org/javadoc/2.0/org/eclipse/rdf4j/sail/Sail.html]
is a set of Java interfaces that support RDF storing, retrieving,
deleting and inferencing. It is used for abstracting from the actual storage
mechanism, e.g., an implementation can use relational databases, file
systems, in-memory storage, etc. Its main characteristics are:

	flexibility and freedom for optimisations so that huge amounts of data
can be handled efficiently on enterprise-level machines;

	extendability to other RDF-based languages;

	stacking of SAILs;

	concurrency control for any type of repository.

Components

Engine

Query optimiser

The query optimiser attempts to determine the most efficient way to execute a given query by considering the possible query plans. Once queries are submitted and parsed, they are then passed to the query optimiser where optimisation occurs. GraphDB allows hints for guiding the query optimiser.

Reasoner (TRREE Engine)

GraphDB is implemented on top of the TRREE engine. TRREE stands for
‘Triple Reasoning and Rule Entailment Engine’. The TRREE performs
reasoning based on forward-chaining of entailment rules over RDF triple
patterns with variables. TRREE’s reasoning strategy is total
materialisation, although various optimisations are used. Further
details of the rule language can be found in the Reasoning
section.

Storage

GraphDB stores all of its data in files in the configured
storage directory, usually called ‘storage’. It consists of two main indices on statements POS and PSO, two context indices PSCO and POCS, literal index and page cache.

Entity Pool

The Entity Pool is a key component of the GraphDB storage layer. It
converts entities (URIs, Blank nodes and Literals) to internal IDs (32-
or 40-bit integers). It supports
transactional behaviour, which improves space usage and cluster
behaviour.

Connectors

The Connectors provide extremely fast keyword and faceted
(aggregation) searches that are typically implemented by an external
component or service, but have the additional benefit of staying
automatically up-to-date with the GraphDB repository data.
GraphDB comes with the following connector implementations:

	Lucene GraphDB connector

Workbench

The Workbench is the GraphDB web-based administration tool.

Connectors

The GraphDB Connectors provide extremely fast keyword and faceted
(aggregation) searches that are typically implemented by an external
component or service, but have the additional benefit of staying
automatically up-to-date with the GraphDB repository data.

The Connectors provide synchronisation at the entity level, where an
entity is defined as having a unique identifier (URI) and a set of
properties and property values. In terms of RDF, this corresponds to a
set of triples that have the same subject. In addition to simple
properties (defined by a single triple), the Connectors support property
chains. A property chain is defined as a sequence of triples where each
triple’s object is the subject of the subsequent triple.

GraphDB Free comes with the following connector implementations:

	Lucene GraphDB connector

Workbench

Workbench is the GraphDB web-based administration tool. The
user interface is similar to the RDF4J Workbench Web Application, but
with more functionality.

What makes GraphDB Workbench different?

	Better SPARQL editor based on YASGUI [http://about.yasgui.org];

	Import of server files;

	Export in more formats;

	Query monitoring with the possibility to kill a long running
query;

	System resource monitoring;

	User and permission management;

	Connector management;

	Cluster management.

The GraphDB Workbench can be used for:

	managing GraphDB repositories;

	loading and exporting data;

	executing SPARQL queries and updates;

	managing namespaces;

	managing contexts;

	viewing/editing RDF resources;

	monitoring queries;

	monitoring resources;

	managing users and permissions;

	managing connectors;

	provides REST API for automating various tasks for managing and
administering repositories.

The GraphDB Workbench is packaged as a separate .war file in the
GraphDB distribution. It can be used either as a workbench only, or as
workbench + database server.

Quick start guide

What’s in this document?

	Run GraphDB as a stand-alone server
	Running GraphDB

	Configuring GraphDB

	Stopping the database

	Set up your license

	Create a repository

	Load your data
	Load data through the GraphDB Workbench

	Load data through SPARQL or RDF4J API

	Load data through the GraphDB LoadRDF tool

	Explore your data and class relationships
	Class hierarchy

	Domain-Range graph

	Class relationships

	Query your data
	Query data through the Workbench

	Query data programmatically

	Additional resources

Run GraphDB as a desktop installation

The easiest way to setup and run GraphDB is to use the native installations provided for the GraphDB Free edition. This kind of installation is the best option for your laptop/desktop computer. It is suitable for users, who are unsure about the existence of Java platform and want to run the application in an OS with a GUI.

On Windows

	Download your GraphDB .exe file.

	Double click the application file and follow the on-screen installer prompts.

	Locate the GraphDB application on the Windows Start menu and start the database. The GraphDB Server and Workbench open at http://localhost:7200/.

On Mac OS

	Download the GraphDB .dmg file.

	Double click it and get a virtual disk on your desktop. Copy the program from the virtual disk to your hard disk applications folder, and you’re set.

	Start the database by clicking the application icon. The GraphDB Server and Workbench open at http://localhost:7200/.

On Linux

	Download the GraphDB .rpm or .deb file.

	Install the package with sudo rpm -i or sudo deb -i and the name of the downloaded package. Alternatively, you can double click the package name.

	Start the database by clicking the application icon. The GraphDB Server and Workbench open at http://localhost:7200/.

Configuring GraphDB

Once the GraphDB database is running, a small icon appears in the Status/Menu bar. To change the configuration, click the icon and click Settings...:

[image: _images/startGraphDBfree-deb.png]
All settings will be applied only after you click the Save and Restart button. To increase the maximum memory allocated by the Java process to 4GB, add -Xmx4G.

Warning

If you set an invalid Java option parameter, GraphDB may fail to start after the application restart. The only way to solve this problem is to remove the invalid line from the file %userprofile%\AppData\Roaming\com.ontotext.graphdb.free\packager\jvmuserargs.cfg (Windows), ~/Library/Application Support/com.ontotext.graphdb.free/packager/jvmuserargs.cfg (Mac OS), ~/.local/com.ontotext.graphdb.free/packager/jvmuserargs.cfg (Linux).

Stopping GraphDB

To stop the database simply close the GraphDB Free window.

Run GraphDB as a stand-alone server

The default way of running GraphDB is as a stand-alone server. The server is platform independent and it includes all recommended JVM parameters for immediate use.

Running GraphDB

	Download your GraphDB distribution file and unzip it.

	Start the GraphDB Server and Workbench interface by executing the startup script located in the /bin folder:

graphdb

A message appears in your console telling you that GraphDB has been started in workbench mode. To access the Workbench, open http://localhost:7200/ in your browser.

Options

The startup script supports the following options:

	Option
	Description

	-d
	daemonise (run in background), not available on Windows

	-s
	run in server-only mode (no workbench)

	-p pidfile
	write PID to <pidfile>

	
-h

--help

	print command line options

	-v
	print GraphDB version, then exit

	-Dprop
	set Java system property

	-Xprop
	set non-standard Java system property

Note

Run graphdb -s to start GraphDB in server-only mode without the web interface (no workbench). A remote workbench can still be attached to the instance.

Configuring GraphDB

Paths and network settings

The configuration of all GraphDB directory paths and network settings is read from the conf/graphdb.properties file. It controls where to store the database data, log files and internal data. To assign a new value, modify the file or override the setting by adding -D<property>=<new-value> as a parameter to the startup script. For example, to change the database port number:

graphdb -Dgraphdb.connector.port=<your-port>

The configuration properties can also be set in the environment variable GDB_JAVA_OPTS, using the same -D<property>=<new-value> syntax.

Note

The order of precedence for GraphDB configuration properties is: config file < GDB_JAVA_OPTS < command line supplied arguments.

Java virtual machine settings

It is strongly recommended to set explicit values for the Java heap space. You can control the heap size by supplying an explicit value to the startup script such as graphdb -Xms10g -Xmx10g or setting one of the following environment variables:

	GDB_HEAP_SIZE environment variable to set both the minimum and the maximum heap size (recommended).

	GDB_MIN_MEM environment variable to set only the minimum heap size.

	GDB_MAX_MEM environment variable to set only the maximum heap size.

For more information on how to change the default Java settings, check the instructions in the graphdb file.

Note

The order of precedence for JVM options is: GDB_MIN_MEM/GDB_MAX_MEM < GDB_HEAP_SIZE < GDB_JAVA_OPTS < command line supplied arguments.

Stopping the database

To stop the database, find the GraphDB process identifier and send kill <process-id>. This sends a shutdown signal and the database stops. If the database is run in a non-daemon mode, you can also send Ctrl+C interrupt to stop it.

Set up your license

GraphDB Free is available under an RDBMS-like free license.
It is free to use but not open-source.

Create a repository

Now let’s create your first repository.

Hint

When started, GraphDB creates GraphDB-HOME/data directory as an active location. To change the directory, see Configuring GraphDB Data Directory.

	Go to Setup -> Repositories.

	Click Create new repository.

[image: _images/createRepository.png]

	Enter myrepo as a Repository ID and leave all other optional configuration settings with their default values.

Tip

For repositories with more than few tens of millions of statements,
see Configuring a repository.

	Click the the Connect button to set the newly created repository as the repository for this
location.

[image: _images/connect_to_repo.png]

	Use the pin to select it as the default repository.

[image: _images/default-repo-pin.png]

Tip

You can also use curl command to perform basic location and repository management through the Workbench REST API.

Load your data

All examples given bellow are based on the News sample dataset provided in the distribution folder.

Tip

You can also use public datasets such as the w3.org Wine ontology by pasting its data URL - https://www.w3.org/TR/owl-guide/wine.rdf - in the Remote content tab of the Import page.

Load data through the GraphDB Workbench

Load data from local files

Let’s load your data.

	Go to Import -> RDF.

	Open the Local files tab and click the Select files icon to upload the files from the News sample dataset provided in the distribution folder.

[image: _images/import_local_file.png]

	Click the Import button.

	Enter the import settings in the pop-up window.

[image: _images/import_settings.png]

Import Settings

	Base URI: the default prefix for all local names in the file;

	Context: specifies a graph within the repository;

	Chunk size: the size of the batch operation; used for very large files (e.g., 10,000 - 100,000 triples per chunk);

	Retry times: the number of times the workbench will try to upload the chunk before canceling (in case of HTTP error, during the data transfer);

	Preserve BNnode IDs: when clicked, the parser keeps the blank node ID-s with their original strings.

Tip

Chunking a file is optional, but we recommend it for files larger than 200 MB.

	Click the Import button.

Note

You can also import data from files on the server where the workbench is located, from a remote URL (with a format extension or by specifying the data format), from a SPARQL construct query directly, or by pasting the RDF data in the Text area tab.

Load data through SPARQL or RDF4J API

The GraphDB database also supports a very powerful API with a standard
SPARQL or RDF4J endpoint to which data can be posted with cURL, a local
Java client API or a RDF4J console. It is compliant with all standards.
It allows every database operation to be executed via a HTTP client
request.

	Locate the correct GraphDB URL endpoint:

	select Setup -> Repositories

	click the link icon next to the repository name

[image: _images/locate_repo_URL.png]

	copy the repository URL.

	Go to the folder where your local data files are.

	Execute the script:

curl -X POST -H "Content-Type:application/x-turtle" -T localfilename.ttl
 http://localhost:7200/repositories/repository-id/statements

where localfilename.ttl is the data file you want to import
and http://localhost:7200/repositories/repository-id/statements is
the GraphDB URL endpoint of your repository.

Tip

Alternatively, use the full path to your local file.

Load data through the GraphDB LoadRDF tool

LoadRDF is a low level bulk load tool, which writes directly in the
database index structures. It is ultra fast and supports parallel
inference. For more information, see the Loading data using the LoadRDF tool.

Note

Loading data through the GraphDB LoadRDF tool can be performed only
if the repository is empty, e.g., the initial loading after the
database was down.

Explore your data and class relationships

Class hierarchy

To explore your data, navigate to Explore -> Class hierarchy. You can see a diagram depicting the hierarchy of the imported RDF classes by the number of instances. The biggest circles are the parent classes and the nested ones are their children.

Note

If your data has no ontology (hierarchy), the RDF classes will be visualised as separate circles, instead of nested ones.

[image: _images/rdf-class-hierarchy-diagram-news.png]
Explore your data - different actions

	To see what classes each parent has, hover over the nested circles.

	To explore a given class, click its circle. The selected class is highlighted with a dashed line and a side panel with its instances opens for further exploration. For each RDF class you can see its local name, URI and a list of its first 1000 class instances. The class instances are represented by their URIs, which when clicked, lead to another view, where you can further explore their metadata.

[image: _images/rdf-class-hierarchy-diagram-selected-class-news.png]

The side panel includes the following:

	Local name;

	URI (Press Ctrl+C / Cmd+C to copy to clipboard and Enter to close);

	Domain-Range Graph button;

	Class instances count;

	Scrollable list of the first 1000 class instances;

	View Instances in SPARQL View button. It redirects to the SPARQL view and executes an auto-generated query that lists all class instances without LIMIT.

	To go to the Domain-Range Graph diagram, double click a class circle or the Domain-Range Graph button from the side panel.

	To explore an instance, click its URI from the side panel.

[image: _images/rdf-class-hierarchy-diagram-class-instance-resource-view-news.png]

	To adjust the number of classes displayed, drag the slider on the left-hand side of the screen. Classes are sorted by the maximum instance count and the diagram displays only the current slider value.

[image: _images/rdf-class-hierarchy-diagram-slider-low-value-news.png]

	To administer your data view, use the toolbar options on the right-hand side of the screen.

[image: _images/rdf-class-hierarchy-diagram-toolbar.png]

	To see only the class labels, click the Hide/Show Prefixes. You can still view the prefixes when you hover over the class that interests you.

	To zoom out of a particular class, click the Focus diagram home icon.

	To reload the data on the diagram, click the Reload diagram icon. This is recommended when you have updated the data in your repository or you experience some strange behaviour, for example you cannot see a given class.

	To export the diagram as an .svg image, click the Export Diagram download icon.

Domain-Range graph

To explore the connectedness of a given class, double click the class circle or the Domain-Range Graph button from the side panel. You can see a diagram that shows this class and its properties with their domain and range, where domain refers to all subject resources and range - to all object resources.
For example, if you start from class pub:Company, you see something like: <pub-old:Mention pub-old:hasInstance pub:Company> <pub:Company pub:description xsd:string>.

[image: _images/rdf-domain-range-graph-diagram-news.png]
You can also further explore the class connectedness by clicking:

	the green nodes (object property class).

	the labels - they lead to the View resource page, where you can find more information about the current class or property.

	the slider Show collapsed predicates to hide all edges sharing the same source and target nodes.

[image: _images/rdf-domain-range-graph-diagram-collapsed-news.png]
To see all predicate labels contained in a collapsed edge, click the collapsed edge count
label, which is always in the format <count> predicates. A side panel opens with the target node label,
a list of the collapsed predicate labels and the type of the property (explicit or implicit). You can click these labels to see the resource in the View resource page.

[image: _images/rdf-domain-range-graph-diagram-collapsed-side-panel-news.png]
Administering the diagram view

To administer your diagram view, use the toolbar options on the right-hand side of the screen.

[image: _images/rdf-domain-range-graph-diagram-toolbar.png]

	To go back to your class in the Class hierarchy, click the Back to Class hierarchy diagram button.

	To collapse edges with common source/target nodes, in order to see the diagram more clearly, click the Show all predicates/Show collapsed predicates button. The default is collapsed.

	To export the diagram as an .svg image, click the Export Diagram download icon.

Class relationships

To explore the relationships between the classes, navigate to Explore -> Class relationships. You can see a complicated diagram showing only the top relationships, where each of them is a bundle of links between the individual instances of two classes. Each link is an RDF statement where the subject is an instance of one class, the object is an instance of another class, and the link is the predicate. Depending on the number of links between the instances of two classes, the bundle can be thicker or thinner and gets the color of the class with more incoming links. These links can be in both directions.

In the example below, you can see the relationships between the classes of the News sample dataset provided in the distribution folder. You can observe that the class with the biggest number of links (the thickest bundle) is pub-old:Document.

[image: _images/news-scenario-dependencies.png]
To remove all classes, use the X icon.

[image: _images/news-scenario-remove-all.png]
To control which classes to display in the diagram, use the add/remove icon next to each class.

[image: _images/news-scenario-add-class.png]
To see how many annotations (mentions) are there in the documents, click on the blue bundle representing the relationship between the classes pub-old:Document and pub-old:TextMention. The tooltip shows that there are 6197 annotations linked by the pub-old:containsMention predicate.

[image: _images/news-scenario-class-document.png]
To see how many of these annotations are about people, click on light purple bundle representing the relationship between the classes pub-old:TextMention and pub:Person. The tooltip shows that 274 annotations are about people linked by the pub-old:hasInstance predicate.

[image: _images/news-scenario-class-person.png]

Query your data

Query data through the Workbench

Hint

SPARQL is a SQL-like query language for RDF graph databases with the
following types:

	SELECT - returns tabular results;

	CONSTRUCT - creates a new RDF graph based on query results;

	ASK - returns “YES”, if the query has a solution, otherwise
“NO”;

	DESCRIBE - returns RDF data about a resource; useful when you
do not know the RDF data structure in the data source;

	INSERT - inserts triples into a graph;

	DELETE - deletes triples from a graph.

For more information, see the Additional resources section.

Now it’s time to delve into your data. The following is one possible scenario for searching in it.

	Select the repository you want to work with, in this example News, and click the SPARQL menu tab.

	Let’s say you are interested in people. Find all people mentioned in the documents from this news articles dataset.

PREFIX pub: <http://ontology.ontotext.com/taxonomy/>
PREFIX pub-old: <http://ontology.ontotext.com/publishing#>
select distinct ?x ?Person where {
?x a pub:Person .
?x pub:preferredLabel ?Person .
?doc pub-old:containsMention / pub-old:hasInstance ?x .
}

[image: _images/news-scenario-all-people.png]

	Run a query to calculate the RDF rank of the instances based on their interconnectedness.

PREFIX rank: <http://www.ontotext.com/owlim/RDFRank#>
INSERT DATA { _:b1 rank:compute _:b2. }

	Find all people mentioned in the documents, ordered by popularity in the repository.

PREFIX pub: <http://ontology.ontotext.com/taxonomy/>
PREFIX pub-old: <http://ontology.ontotext.com/publishing#>
PREFIX rank: <http://www.ontotext.com/owlim/RDFRank#>
select distinct ?x ?PersonLabel ?rank where {
 ?x a pub:Person .
 ?x pub:preferredLabel ?PersonLabel .
 ?doc pub-old:containsMention / pub-old:hasInstance ?x .
 ?x rank:hasRDFRank ?rank .
} ORDER by DESC (?rank)

[image: _images/news-scenario-ordred-by-popularity.png]

	Find all people who are mentioned together with their political parties.

PREFIX pub-old: <http://ontology.ontotext.com/publishing#>
PREFIX pub: <http://ontology.ontotext.com/taxonomy/>
select distinct ?personLabel ?partyLabel where {
 ?document pub-old:containsMention ?mention .
 ?mention pub-old:hasInstance ?person .
 ?person pub:preferredLabel ?personLabel .
 ?person pub:memberOfPoliticalParty ?party .
 ?party pub:hasValue ?value .
 ?value pub:preferredLabel ?partyLabel .
}

[image: _images/news-scenario-people-and-political-parites.png]

	Did you know that Marlon Brando was from the Democratic Party? Find what other mentions occur together with Marlon Brando in the given news article.

PREFIX pub: <http://ontology.ontotext.com/taxonomy/>
PREFIX pub-old: <http://ontology.ontotext.com/publishing#>
select distinct ?Mentions where {
<http://www.reuters.com/article/2014/10/06/us-art-auction-idUSKCN0HV21B20141006> pub-old:containsMention / pub-old:hasInstance ?x .
?x pub:preferredLabel ?Mentions .

}

[image: _images/news-scenario-MB-and-other-mentions.png]

	Find everything available about Marlon Brando in the database.

PREFIX pub: <http://ontology.ontotext.com/taxonomy/>
PREFIX pub-old: <http://ontology.ontotext.com/publishing#>
select distinct ?p ?objectLabel where {
<http://ontology.ontotext.com/resource/tsk78dfdet4w> ?p ?o .
 {
?o pub:hasValue ?value .
 ?value pub:preferredLabel ?objectLabel .
 } union {
 ?o pub:hasValue ?objectLabel .
 filter (isLiteral(?objectLabel)) .
 }
}

[image: _images/news-scenario-MB-data.png]

	Find all documents that mention members of the Democratic Party and the names of these people.

PREFIX pub-old: <http://ontology.ontotext.com/publishing#>
PREFIX pub: <http://ontology.ontotext.com/taxonomy/>
select distinct ?document ?personLabel where {
 ?document pub-old:containsMention ?mention .
 ?mention pub-old:hasInstance ?person .
 ?person pub:preferredLabel ?personLabel .
 ?person pub:memberOfPoliticalParty ?party .
 ?party pub:hasValue ?value .
 ?value pub:preferredLabel "Democratic Party"@en .
}

[image: _images/news-scenario-all-DP-members-and-names.png]

	Find when these people were born and died.

PREFIX pub-old: <http://ontology.ontotext.com/publishing#>
PREFIX pub: <http://ontology.ontotext.com/taxonomy/>
select distinct ?person ?personLabel ?dateOfbirth ?dateOfDeath where {
 ?document pub-old:containsMention / pub-old:hasInstance ?person .
 ?person pub:preferredLabel ?personLabel .
 OPTIONAL {
 ?person pub:dateOfBirth / pub:hasValue ?dateOfbirth .
 }
 OPTIONAL {
 ?person pub:dateOfDeath / pub:hasValue ?dateOfDeath .
 }
 ?person pub:memberOfPoliticalParty / pub:hasValue / pub:preferredLabel "Democratic Party"@en .
} order by ?dateOfbirth

[image: _images/news-scenario-dob-dod.png]

Tip

You can play with more example queries from the Example_queries.rtf file provided in the distribution folder.

Note

GraphDB also features an Autocomplete index, which offers suggestions for the URIs local names in the SPARQL editor and the View resource page.

Query data programmatically

SPARQL is not only a standard query language, but also a protocol for
communicating with RDF databases. GraphDB stays compliant with the
protocol specification and allows querying data with standard HTTP
requests.

Execute the example query with a HTTP GET request:

curl -G -H "Accept:application/x-trig"
 -d query=CONSTRUCT+%7B%3Fs+%3Fp+%3Fo%7D+WHERE+%7B%3Fs+%3Fp+%3Fo%7D+LIMIT+10
 http://localhost:7200/repositories/yourrepository

Execute the example query with a POST operation:

curl -X POST --data-binary @file.sparql -H "Accept: application/rdf+xml"
 -H "Content-type: application/x-www-form-urlencoded"
 http://localhost:7200/repositories/worker-node

where, file.sparql contains an encoded query:

query=CONSTRUCT+%7B%3Fs+%3Fp+%3Fo%7D+WHERE+%7B%3Fs+%3Fp+%3Fo%7D+LIMIT+10

Tip

For more information how to interact with GraphDB APIs, refer to the
RDF4J and SPARQL protocols or the Linked Data Platform
specifications.

Additional resources

	SPARQL, OWL, and RDF:

	
RDF: http://www.w3.org/TR/rdf11-concepts/

RDFS: http://www.w3.org/TR/rdf-schema/

SPARQL Overview: http://www.w3.org/TR/sparql11-overview/

SPARQL Query: http://www.w3.org/TR/sparql11-query/

SPARQL Update:
http://www.w3.org/TR/sparql11-update [http://www.w3.org/TR/sparql11-update/]

Installation

	Requirements

	Deployment scenarios

	Running GraphDB

	Configuring GraphDB

	Migrating GraphDB configurations from v6 to v7

	Distribution package

	Using Maven artifacts

Requirements

What’s in this document?

	Minimum

	Recommended

	Licensing

Minimum

The minimum requirements allow loading datasets only up to 50 million RDF triples.

	2 GB Memory

	2 GB Disk space

	Java SE Development Kit 8 or higher (optional for GraphDB desktop installation)

Recommended

The recommended requirements support repositories up to 1B RDF triples.

	16 GB Memory

	200 GB Disk space on SSD

	Java SE Development Kit (JDK) 8 or higher (optional for GraphDB desktop installation)

Note

The required memory varies depending on the data volumes and workload.

Licensing

GraphDB Free is available under an RDBMS-like free license.
It is free to use but not open-source. Before redistributing GraphDB Free, please contact us at graphdb-info@ontotext.com to receive a permission.

Deployment scenarios

	GraphDB Server - a set of programming interfaces that exposes all database functionality as a REST API. GraphDB stays fully compliant with the RDF4J Server REST API [http://rdf4j.org/doc/the-rdf4j-server-rest-api/]. This is the minimal required functionality to start the database and use it from a client application.

	GraphDB Workbench - management interfaces implemented on top of the GraphDB Server REST API. It provides a user- friendly web application to write SPARQL queries, import, export information and perform other maintenance activities. GraphDB Workbench also includes all GraphDB Server interfaces and can point them to an embedded database (i.e., no additional GraphDB Server installation is required) or a remote GraphDB Server.

Running GraphDB

GraphDB can be operated as a desktop or a server application. The server application is recommended if you plan to migrate your setup to a production environment. Choose the one that best suits your needs and follow the steps below:

Run GraphDB as a desktop installation - For desktop users we recommend the quick installation, which comes with a preconfigured Java. This is the easiest and fastest way to start using GraphDB database. The desktop installation is available only for GraphDB Free users.

Run GraphDB as a stand-alone server - For production use we recommend to install the stand-alone server. The installation comes with a preconfigure web server. This is the standard way to use GraphDB if you plan to use the database for longer periods with preconfigured log files.
Run Graphdb in a docker container - If you are into docker and containers, we provide ready to use images for docker. Find more at https://github.com/Ontotext-AD/graphdb-docker

	Run GraphDB as a desktop installation

	Run GraphDB as a stand-alone server

Run GraphDB as a stand-alone server

The default way of running GraphDB is as a stand-alone server. The server is platform independent and it includes all recommended JVM parameters for immediate use.

Running GraphDB

	Download your GraphDB distribution file and unzip it.

	Start the GraphDB Server and Workbench interface by executing the startup script located in the /bin folder:

graphdb

A message appears in your console telling you that GraphDB has been started in workbench mode. To access the Workbench, open http://localhost:7200/ in your browser.

Options

The startup script supports the following options:

	Option
	Description

	-d
	daemonise (run in background), not available on Windows

	-s
	run in server-only mode (no workbench)

	-p pidfile
	write PID to <pidfile>

	
-h

--help

	print command line options

	-v
	print GraphDB version, then exit

	-Dprop
	set Java system property

	-Xprop
	set non-standard Java system property

Note

Run graphdb -s to start GraphDB in server-only mode without the web interface (no workbench). A remote workbench can still be attached to the instance.

Configuring GraphDB

Paths and network settings

The configuration of all GraphDB directory paths and network settings is read from the conf/graphdb.properties file. It controls where to store the database data, log files and internal data. To assign a new value, modify the file or override the setting by adding -D<property>=<new-value> as a parameter to the startup script. For example, to change the database port number:

graphdb -Dgraphdb.connector.port=<your-port>

The configuration properties can also be set in the environment variable GDB_JAVA_OPTS, using the same -D<property>=<new-value> syntax.

Note

The order of precedence for GraphDB configuration properties is: config file < GDB_JAVA_OPTS < command line supplied arguments.

Java virtual machine settings

It is strongly recommended to set explicit values for the Java heap space. You can control the heap size by supplying an explicit value to the startup script such as graphdb -Xms10g -Xmx10g or setting one of the following environment variables:

	GDB_HEAP_SIZE environment variable to set both the minimum and the maximum heap size (recommended).

	GDB_MIN_MEM environment variable to set only the minimum heap size.

	GDB_MAX_MEM environment variable to set only the maximum heap size.

For more information on how to change the default Java settings, check the instructions in the graphdb file.

Note

The order of precedence for JVM options is: GDB_MIN_MEM/GDB_MAX_MEM < GDB_HEAP_SIZE < GDB_JAVA_OPTS < command line supplied arguments.

Stopping the database

To stop the database, find the GraphDB process identifier and send kill <process-id>. This sends a shutdown signal and the database stops. If the database is run in a non-daemon mode, you can also send Ctrl+C interrupt to stop it.

Configuring GraphDB

GraphDB 7 relies on several key directories for configuration, logging and data.

What’s in this document?

	Directories
	GraphDB Home

	Checking the configured directories

	Configuration
	Config properties

	Configuring logging

	Best practices
	Step by step guide

Directories

GraphDB Home

The GraphDB home defines the root directory where GraphDB stores all of its data.
The home can be set through the system or config file property graphdb.home.

The default value for the GraphDB home directory depends on how you run GraphDB:

	Running as a standalone server: the default is the same as the distribution directory.

	All other types of installations: OS-dependent directory.
	On Mac: ~/Library/Application Support/GraphDB.

	On Windows: \Users\<username>\AppData\Roaming\GraphDB.

	On Linux and other Unixes: ~/.graphdb.

Note

In the unlikely case of running GraphDB on an ancient Windows XP the default
directory is \Documents and Settings\<username>\Application Data\GraphDB.

GraphDB does not store any files directly in the home directory but uses the following
subdirectories for data or configuration:

Data directory

The GraphDB data directory defines where GraphDB stores repository data.
The data directory can be set through the system or config property graphdb.home.data.
The default value is the subdirectory data relative to the GraphDB home directory.

Config directory

The GraphDB config directory defines where GraphDB to look for user-definable configuration.
The config directory can be set through the system property graphdb.home.conf.

Note

It is not possible to set the config directory through a config property
as the value is needed before the config properties are loaded.

The default value is the subdirectory conf relative to the GraphDB home directory.

Work directory

The GraphDB work directory defines where GraphDB stores non-user-definable configuration.
The work directory can be set through the system or config property graphdb.home.work.
The default value is the subdirectory work relative to the GraphDB home directory.

Logs directory

The GraphDB logs directory defines where GraphDB stores log files.
The logs directory can be set through the system or config property graphdb.home.logs.
The default value is the subdirectory logs relative to the GraphDB home directory.

Note

When running GraphDB as deployed .war files, the logs directory will be a subdirectory
graphdb within the Tomcat’s logs directory.

Checking the configured directories

When GraphDB starts, it logs the actual value for each of the above directories, e.g.

GraphDB Home directory: /opt/test/graphdb-se-7.x.x
GraphDB Config directory: /opt/test/graphdb-se-7.x.x/conf
GraphDB Data directory: /opt/test/graphdb-se-7.x.x/data
GraphDB Work directory: /opt/test/graphdb-se-7.x.x/work
GraphDB Logs directory: /opt/test/graphdb-se-7.x.x/logs

Configuration

There is a single config file for GraphDB. GraphDB loads the config file graphdb.properties
from the GraphDB config directory.

A sample file is provided in the distribution under conf/graphdb.properties.

Config properties

Config properties are defined in the config file is the following format:
``propertyName = propertyValue``, i.e. using the standard Java properties file syntax.

Each config property can be overridden through a Java system property with the same name,
provided in the environment variable GDB_JAVA_OPTS or on the command line.

Note

The legacy properties (e.g. owlim-license) in the config file are ignored
but they work if specified as system properties.

List of configuration properties

General properties

The general properties define some basic configuration values that are shared with all
GraphDB components and types of installation.

	graphdb.home

	defines the GraphDB home directory.

	graphdb.home.data

	defines the GraphDB data directory.

	graphdb.home.conf

	(only as a system property) defines the GraphDB conf directory.

	graphdb.home.work

	defines the GraphDB work directory.

	graphdb.home.logs

	defines the GraphDB logs directory.

	graphdb.license.file

	sets a custom path to the license file to use.

	graphdb.jolokia.secret

	sets a custom Jolokia secret.

	graphdb.page.cache.size

	the amount of memory to be taken by the page cache

Network properties

The network properties control how the standalone application listens on a network.
These properties correspond to the attributes of the embedded Tomcat Connector.
For more information, see the Tomcat’s documentation [https://tomcat.apache.org/tomcat-8.0-doc/config/http.html#Attributes].

Each property is composed of the prefix graphdb.connector. + the relevant Tomcat Connector attribute.
The most important property is:

	graphdb.connector.port

	defines the port to use. The default is 7200.

In addition, the sample config file provides an example for setting up SSL.

Note

The graphdb.connector.<xxx> properties are only relevant when running GraphDB
as a standalone application.

Engine properties

The GraphDB Engine can be configured through a set of properties composed of the prefix
graphdb.engine. + the relevant engine property. These properties correspond to the properties
that can be set when creating a repository through the Workbench or through a .ttl file.

Note

The properties defined in the config OVERRIDE the properties for each repository,
regardless of whether you created the repository before or after you set the global value of an engine property.
As such, the global overrides should be used only in specific cases while for normal everyday needs you should
set the corresponding properties when you create a repository.

A well-established specific use-case is changing the Entity Pool implementation for the whole installation.
The default value is “classic”. Other implementations are “transactional-simple” and “transactional”,
which is the same as “transactional-simple” for this version of GraphDB.

	graphdb.engine.entity-pool-implementation

	defines the Entity Pool implementation for the whole installation.

Configuring logging

GraphDB uses logback to configure logging. The default configuration is provided as logback.xml
in the GraphDB config directory.

Best practices

Even though GraphDB provides the means to specify separate custom directories for data, configuration and so on,
it is recommended to specify the home directory only. This ensures that every piece of data,
configuration or logging is within the specified location.

Step by step guide

	Choose a directory for GraphDB home, e.g. /opt/graphdb-instance.

	Create the directory /opt/graphdb-instance.

	(Optional) Copy the subdirectory conf from the distribution into /opt/graphdb-instance.

	Start GraphDB with graphdb -Dgraphdb.home=/opt/graphdb-instance or set the -D option in Tomcat.

GraphDB creates the missing subdirectories data, conf (if you skipped that step), logs and work.

Migrating GraphDB configurations from v6 to v7

What’s in this document?

	Procedure

	Converting a repository created with GraphDB v6 to v7

Procedure

There are two options for upgrade:

	generate .war files from GraphDB 7 distribution

	execute the following script: <graphdb_dist>/bin/generate-war-files. Two .war files will be produced: graphdb-server.war and graphdb-workbench.war.

	prepare two instances of Tomcat server - one for the master and one for the worker nodes. You can copy existing Tomcat deployments but make sure you have deleted the existing web applications of GraphDB 6, e.g.:

rm -rf <Tomcat>/webapps/openrdf-*

	append to your tomcat’s startup script in the JAVA_OPTS section -Dgraphdb.home.data=<path_to_your_repositories>. This is a new configuration option introduced with GraphDB 7. The configuration option in GraphDB 6 is info.aduna.platform.appdata.basedir and it has been deprecated in v7.

	GraphDB 7 logs can be found at <Tomcat>/logs/graphdb>.

	use the standalone distribution of GraphDB 7 (recommended)

	extract the distribution of GraphDB 7 to a selected location;

	edit conf/graphdb.properties and set appropriate configuration options, e.g. location of your repositories or port number for accessing the SPARQL endpoint (default is 7200);

	you can set your GraphDB 7 license by copying it to: directory conf/ and renaming it to: graphdb.license;

	move relevant configuration options related to GraphDB from Tomcat (e.g. JAVA_OPTS section in setenv.sh) to bin/graphdb.in.sh (.cmd for Windows).

	start GraphDB 7 by running the script bin/graphdb (you can run it with the option: --help to see all available run-modes).

Converting a repository created with GraphDB v6 to v7

At this point you have a working GraphDB 7 installation. This can be done by following these steps:

	Start v7 worker and create corresponding repositories as in v6;

	Stop v7 worker, and manually replace each of the v7 repositories’ storage/ directories with the corresponding v6 storage/ . Make sure that you have deleted the v7 storage/ before copying v6 over it.

	Start the v7 worker. The repositories will be automatically converted to v7 on their first initialization, i.e. on the first query. The conversion to v7 may take some time depending on the size of data in the repository.

If configuring a cluster, you need to convert your v6 repositories to v7 on all workers.

Using Maven artifacts

What’s in this document?

	Public Maven repository

	Distribution

	GraphDB JAR file for embedding the database or plugin development

From GraphDB 7.1, we opened our Maven repository and it is now possible to download GraphDB Maven artifacts without credentials.

Note

You still need to get a license from our Sales team as the artifacts do not provide such.

Public Maven repository

The public Maven repository for the current Graphdb release is at http://maven.ontotext.com/content/groups/all-onto. To get started, add the following endpoint to your preferred build system.

For the Gradle build script:

repositories {
 maven {
 url "http://maven.ontotext.com/content/groups/all-onto"
 }
}

For the Maven POM file:

<repositories>
 <repository>
 <id>ontotex-public</id>
 <url>http://maven.ontotext.com/content/groups/all-onto</url>
 </repository>
</repositories>

Distribution

To use the distribution for some automation or to run integration tests in embedded Tomcat, get the zip artifacts with the following snippet:

GraphDB JAR file for embedding the database or plugin development

To embed the database in your application or develop a plugin, you need the GraphDB runtime JAR. Here are the details for the runtime JAR artifact:

Administration

	Administration tasks

	Administration tools

	Sizing guidelines

	Disk space requirements

	Creating locations

	Creating a repository

	Configuring a repository

	Access rights and security

	Backing up and recovering a repository

	Query monitoring and termination

	Troubleshooting

Administration tools

GraphDB can be administered through the Workbench, the JMX
interface, or programmatically.

What’s in this document?

	Workbench

	JMX interface
	Configuring the JMX endpoint

Workbench

The Workbench is the web-based administration interface to GraphDB. It lets you administer GraphDB, as well as load, explore, manage, query and export data. To use it, start GraphDB in a workbench mode and open http://localhost:7200/ in your browser.

JMX interface

After initialisation, GraphDB registers a number of JMX MBeans for
each repository, each providing a different set of information and
functions for specific features.

Configuring the JMX endpoint

Configure the JMX endpoint using
special system properties when starting the Java virtual machine (JVM)
in which GraphDB is running. For example, the following command line
parameters set the JMX server endpoint to listen on port 2815, without
an authentication and a secure socket layer:

	Linux/Mac - add the following configuration in <graphdb_distribution>/bin/graphdb.in.sh.

JAVA_OPTS_ARRAY+=("-Djava.rmi.server.hostname=`hostname`")
JAVA_OPTS_ARRAY+=("-Dcom.sun.management.jmxremote")
JAVA_OPTS_ARRAY+=("-Dcom.sun.management.jmxremote.port=2815")
JAVA_OPTS_ARRAY+=("-Dcom.sun.management.jmxremote.ssl=false")
JAVA_OPTS_ARRAY+=("-Dcom.sun.management.jmxremote.authenticate=false")

	Windows - add the following configuration in <graphdb_distribution>/bin/graphdb.in.cmd.

set JAVA_OPTS=%JAVA_OPTS% -Djava.rmi.server.hostname=`hostname`
set JAVA_OPTS=%JAVA_OPTS% -Dcom.sun.management.jmxremote
set JAVA_OPTS=%JAVA_OPTS% -Dcom.sun.management.jmxremote.port=2815
set JAVA_OPTS=%JAVA_OPTS% -Dcom.sun.management.jmxremote.ssl=false
set JAVA_OPTS=%JAVA_OPTS% -Dcom.sun.management.jmxremote.authenticate=false

Once GraphDB is loaded, use any compliant JMX client, e.g., jconsole
that is part of the Java development kit, to access the JMX interface on
the configured port.

Sizing guidelines

What’s in this document?

	Entry-level deployment

	Mid-range deployment

	Enterprise deployment

The following sizing guidelines provide a glimpse into what hardware and
physical resource allocations are required at a high level. For a
thorough analysis, please contact your GraphDB sales or support team to
schedule a tuning analysis session.

Entry-level deployment

Low data volume & limited, simple queries:

	1-50 users;

	Less than 25 simultaneous queries;

	Simple queries;

	Less than 100 million explicit statements (triples);

	Less than 18 GB of data;

	Offline (no real-time insert, update, delete and synchronisation);

	Inferencing off.

Recommendations:

	1 master node (Intel Core i7);

	4 cores (CPUs);

	4-16 GB RAM;

	50 GB disk space (SSD w/SATA).

Mid-range deployment

Low data volume/limited, complex queries:

	50-100 users;

	25 – 50 simultaneous queries;

	Simple & moderately complex queries;

	Between 100 million and 1 billion explicit statements (triples);

	Less than 175 GB of data;

	Online (moderate real-time insert, update, delete and
synchronisation).

Recommendations:

	2-4 master nodes (Intel Core i7);

	8-16 cores (CPUs) per master;

	8-32 GB RAM;

	50-100 GB disk space per node (SSD w/SATA).

Enterprise deployment

High data volume/extensive, complex queries

	100-500 users;

	50-100 simultaneous queries;

	Simple & highly complex queries;

	Between 1 & 50 billion explicit statements (triples);

	Less than 8.5 terabytes;

	Online (persistent real-time insert, update, delete and
synchronisation).

Recommendations:

	4-8 master nodes (Intel Core i7);

	16-32 cores (CPUs) per master;

	32 + GB RAM;

	100-200 GB disk space per node (SSD w/SATA).

Disk space requirements

What’s in this document?

	GraphDB disk space requirements per statement

	GraphDB disk space requirements for loading a dataset

GraphDB disk space requirements per statement

GraphDB computes inferences when new explicit statements are committed
to the repository. The number of inferred statements can be zero, when
using the ‘empty’ ruleset, or many multiples of the number of explicit
statements (depending on the chosen ruleset and the complexity of the
data).

The disk space required for each statement further depends on the size
of the URIs and literals. The typical datasets with only the default
indices require around 200 bytes, and up to about 300 bytes when all
optional indices are turned on.

So, when using the default indices, a good estimate for the amount of
disk space you will need is 200 bytes per statement (explicit and
inferred), i.e.:

	1B triples takes about 90G (without context indexes) - 120G (with context indexes) disk space

	1B triples has around 300M unique RDF resources (entities), which consumes 2.8GB RAM

	10B triples has around 3B unique RDF resources (entities), which consumes 28GB RAM

GraphDB disk space requirements for loading a dataset

It depends on the reasoning complexity (the number of inferred triples), the
length of the URIs, the additional indices used, etc. For example,
the following table shows the required disk space in bytes per explicit
statement when loading the Wordnet dataset with various GraphDB
configurations:

	Configuration
	Bytes per explicit statement

	owl2-rl + all optional indices
	366

	owl2-rl
	236

	owl-horst + all optional indices
	290

	owl-horst
	196

	empty + all optional indices
	240

	empty
	171

When planning for storage capacity based on the input RDF file size, the
required disk space depends not only on the GraphDB configuration, but
also on the RDF file format used and the complexity of its contents. The
following table gives a rough estimate of the expected expansion from an
input RDF file to GraphDB storage requirements. E.g., when using OWL2-RL
with all optional indices turned on, GraphDB needs about 6.7GB of
storage space to load one gigabyte N3 file. With no inference (‘empty’)
and no optional indices, GraphDB needs about 0.7GB of storage space to
load one gigabyte Trix file. Again, these results were created with the
Wordnet dataset:

	
	N3
	N-Triples
	RDF/XML
	Trig
	Trix
	Turtle

	owl2-rl + all optional indices
	6.7
	2.2
	4.8
	6.6
	1.5
	6.7

	owl2-rl
	4.3
	1.4
	3.1
	4.2
	1.0
	4.3

	owl-horst + all optional indices
	5.3
	1.7
	3.8
	5.2
	1.2
	5.3

	owl-horst
	3.6
	1.2
	2.6
	3.5
	0.8
	3.6

	empty + all optional indices
	4.4
	1.4
	3.1
	4.3
	1.0
	4.4

	empty
	3.1
	1.0
	2.2
	3.1
	0.7
	3.1

Creating locations

What’s in this document?

	Active location

	Inactive location

	Connect to a remote location

	Configure a data location

Locations represent individual GraphDB servers, where the repository data is stored. They can be local (a directory on the disk) or remote (an end-point URL), and can be attached, edited and detached. Only a single location can be active at a time. Each location has a SYSTEM repository containing meta-data about how to initialise other repositories from the current location.

To manage your data locations:

	Start a browser and go to the Workbench web application using a
URL of this
form: http://localhost:7200.
- substituting localhost and the 7200 port number as
appropriate.

	Go to Setup -> Repositories.

Active location

When started, GraphDB creates GraphDB-HOME/data directory as an active location. To change the directory, see Configuring GraphDB Data Directory.

[image: _images/default-location.png]
Change active location settings

Be default, the active location does not send anonymous usage statistics to Ontotext. To change this, click on the icon Change active location settings and enable it.

[image: _images/usage-statistics-icon.png]

[image: _images/usage-statistics.png]

View or update its license

Click the Key icon

[image: _images/view-license-icon.png]
to check the details of your current license.

Inactive location

All inactive locations are listed below the active repository window. Here, you can change the locations settings, as well as disconnect the location from the running GraphDB.

[image: _images/inactive-locations.png]

Connect to a remote location

To connect to a remote location:

	Click the Connect to location button and add the HTTP RDF4J Location of your repository, for example http://localhost:8083.

[image: _images/attach-location.png]

	Optionally, you can set a user and a password for this location.

You can attach multiple locations but only one can be active at a given
time. The active location is always shown in the navigation bar next to a plug icon.

Note

Using basic HTTP authentication may be required for accessing the HTTP-JMX bridge in the Monitor views. Each GraphDB distribution contains a generated jolokia-secret in <graphdb-dist>/work/jolokia.properties, when using remote location you should pass the jolokia-secret to access these features.

Note

If you use the Workbench as a SPARQL endpoint, all your queries are sent to a repository in the currently active location. This works well if you do not change the active location. To
have endpoints that are always accessible outside the Workbench, we
recommend using standalone Workbench and Engine installations,
connecting the Workbench to the Engine over a remote location and
using the Engine endpoints (i.e., not the ones provided by the
Workbench) in any software that executes SPARQL queries.

Configure a data location

Set the property graphdb.home.data in <graphdb_dist>/conf/graphdb.properties. If no property is set, the default repositories location will be: <graphdb_dist>/data.

Creating a repository

What’s in this document?

	Create a repository
	Using the Workbench

	Using the RDF4J console

	Manage repositories
	Select a repository

	Make it a default repository

	Edit a repository

Create a repository

There are two ways for creating and managing repositories, either through the Workbench interface, or by using the RDF4J console.

Using the Workbench

To manage your repositories, go to Setup -> Repositories. This opens a list of available repositories and their locations.

	Click the the Connect button next to the location you want to activate.

[image: _images/activate-location.png]

	Click the Create new repository button or create it from a file by using the configuration template that can be found at configs/templates/.

[image: _images/createRepository.png]

	Enter the Repository ID (e.g., repository1) and leave all other
optional configuration settings with their default values.

Tip

For repositories with more than few tens of millions of statements, see the configuration parameters.

	Click the Create button. You newly created repository appears in the repositories list.

Using the RDF4J console

Note

Use the create command to add new repositories to the location
that the console is connected to. This command expects the
name of the template that describes the repository’s configuration.

	Run the RDF4J console application, which resides in the /bin folder:

console.cmd (Windows)
./console (Unix/Linux)

	Connect to the GraphDB server instance using the command:

connect http://localhost:7200.

	
	Create a repository using the command:

	create free.

	Fill in the values of the parameters in the console.

	Exit the RDF4J console.

quit.

Manage repositories

Select a repository

	Connect the newly created repository to the active location.

[image: _images/connect_to_repo.png]

	Alternatively, use the dropdown menu in the top right corner. This allows you to easily change the repository while running queries as well as importing and exporting data in other views.

[image: _images/selectRepository.png]

Make it a default repository

Use the pin to select it as a default repository.

[image: _images/default-repo-pin.png]

Edit a repository

To edit or download the repository configuration as a turtle file, copy its URL, or delete it, use the icons next to its name.

[image: _images/repo-actions.png]

Warning

Once a repository is deleted, all data contained in it is irrevocably lost.

Configuring a repository

Before you start adding or changing the parameters’ values, it is good to plan your repository configuration, to know what each of the parameters does, what the configuration template is and how it works, what data structures GraphDB supports, what configuration values are optimal for your set up, etc.

What’s in this document?

	Plan a repository configuration

	Configure a repository through the GraphDB Workbench

	Edit a repository

	Configure a repository programmatically

	Configuration parameters

	Configure GraphDB memory
	Configure Java heap memory

	Single global page cache

	Configure Entity pool memory

	Sample memory configuration

	Reconfigure a repository
	Using the Workbench

	In the SYSTEM repository

	Global overrides

	Rename a repository
	Using the workbench

	Editing of the SYSTEM repository

Plan a repository configuration

To plan your repository configuration, check out the following sections:

	Sizing guidelines.

	Disk space requirements.

	Configuration parameters.

	How the template works.

	GraphDB data structures.

	Configure Java heap memory.

	Configure Entity pool memory.

Configure a repository through the GraphDB Workbench

To configure a new repository, complete the repository properties form.

[image: _images/addRepository_Free.png]

Edit a repository

Some of the parameters you specify at repository creation time can be changed at any point.

	Click the edit icon next to a repository to edit it.

	Restart GraphDB for the changes to take effect.

Configure a repository programmatically

Tip

GraphDB uses a RDF4J configuration
template [http://rdf4j.org/doc/rdf4j-server-workbench-and-console/rdf4j-console/#Repository_configuration_templates_advanced]
for configuring its repositories. RDF4J keeps the repository
configurations with their parameters, modelled in RDF, in the SYSTEM
repository. Therefore, in order to create a new repository, the RDF4J
needs such an RDF file to populate the SYSTEM repository. For more information how the configuration template works, see Repository configuration template - how it works.

To configure a new repository programmatically:

	Fill in the .ttl configuration template that can be found in the /templates folder of the GraphDB distribution. The parameters are described in the Configuration parameters section.

RDF4J configuration template for a GraphDB Free repository

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix rep: <http://www.openrdf.org/config/repository#>.
@prefix sr: <http://www.openrdf.org/config/repository/sail#>.
@prefix sail: <http://www.openrdf.org/config/sail#>.
@prefix owlim: <http://www.ontotext.com/trree/owlim#>.

[] a rep:Repository ;
 rep:repositoryID "graphdb-test" ;
 rdfs:label "GraphDB Free repository" ;
 rep:repositoryImpl [
 rep:repositoryType "graphdb:FreeSailRepository" ;
 sr:sailImpl [
 sail:sailType "graphdb:FreeSail" ;

 owlim:base-URL "http://example.org/graphdb#" ;
 owlim:defaultNS "" ;
 owlim:entity-index-size "10000000" ;
 owlim:entity-id-size "32" ;
 owlim:imports "" ;
 owlim:repository-type "file-repository" ;
 owlim:ruleset "rdfs-plus-optimized" ;
 owlim:storage-folder "storage" ;

 owlim:enable-context-index "false" ;

 owlim:enablePredicateList "true" ;

 owlim:in-memory-literal-properties "true" ;
 owlim:enable-literal-index "true" ;

 owlim:check-for-inconsistencies "false" ;
 owlim:disable-sameAs "false" ;
 owlim:query-timeout "0" ;
 owlim:query-limit-results "0" ;
 owlim:throw-QueryEvaluationException-on-timeout "false" ;
 owlim:read-only "false" ;
 owlim:nonInterpretablePredicates "http://www.w3.org/2000/01/rdf-schema#label;http://www.w3.org/1999/02/22-rdf-syntax-ns#type;http://www.ontotext.com/owlim/ces#gazetteerConfig;http://www.ontotext.com/owlim/ces#metadataConfig" ;
]
].

	Update the RDF4J SYSTEM repository with this configuration by issuing the following on the command line (all in one line) replacing the filename (config.ttl), URL to the remote server’s SYSTEM directory (http://server1:7200/repositories/SYSTEM) and a unique context in which to put the repository configuration (http://example.com#g1):

curl -X POST -H "Content-Type:application/x-turtle" -T config.ttl
 -d graph=http://example.com#g1
 http://server1:7200/repositories/SYSTEM/rdf-graphs/service

	Update the SYSTEM repository with a single statement to indicate that the unique context is an instance of sys:RepositoryContext:

curl -X POST -H "Content-Type:application/x-turtle"
 -d "<http://example.com#g1> a <http://www.openrdf.org/config/repository#RepositoryContext>."
 http://server1:7200/repositories/SYSTEM/statements

Configuration parameters

This is a list of all repository configuration parameters. Some of the parameters can be
changed (effective after a restart), some cannot be changed (the change has no effect)
and others need special attention once a repository has been created, as changing them will
likely lead to inconsistent data (e.g., unsupported inferred statements, missing
inferred statements, or inferred statements that can not be deleted).

	base-URL

	defaultNS

	entity-index-size

	entity-id-size

	imports

	repository-type

	ruleset

	storage-folder

	enable-context-index

	enablePredicateList

	index-in-memory-literal-properties

	enable-literal-index

	check-for-inconsistencies

	disable-sameAs

	query-timeout

	query-limit-results

	throw-QueryEvaluationException-on-timeout

	read-only

	Non-interpretable predicates

	base-URL (Can be changed)

	
Description: Specifies the default namespace for the main persistence file. Non-empty namespaces are recommended, because their use guarantees the uniqueness of the anonymous nodes that may appear within the repository.

Default value: none

	defaultNS (Cannot be changed)

	
Description: Default namespaces corresponding to each imported schema file separated by semicolon and the number of namespaces must be equal to the number of schema files from the imports parameter.

Default value: <empty>

Example: owlim:defaultNS "http://www.w3.org/2002/07/owl#;http://example.org/owlim#".

Warning

This parameter cannot be set via a command line argument.

	entity-index-size (Cannot be changed by the user once initially set)

	
Description: Defines the initial size of the entity hash table index entries. The bigger the size, the less the collisions in the hash table and the faster the entity retrieval. The entity hash table will adapt to the number of stored entities once the number of collisions passes a critical threshold.

Default value: 10000000

	entity-id-size (Cannot be changed)

	
Description: Defines the bit size of internal IDs used to index entities (URIs, blank nodes and literals). In most cases, this parameter can be left to its default value. However, if very large datasets containing more than 2 31 entities are used, set this parameter to 40. Be aware that this can only be set when instantiating a new repository and converting an existing repository from 32 to 40-bit entity widths is not possible.

Default value: 32

Possible values: 32 and 40

	imports (Cannot be changed)

	
Description: A list of schema files that will be imported at start up. All the statements, found in these files, will be loaded in the repository and will be treated as read-only. The serialisation format is determined by the file extension:

	.brf => BinaryRDF

	.n3 => N3

	.nq => N-Quads

	.nt => N-Triples

	.owl => RDF/XML

	.rdf => RDF/XML

	.rdfs => RDF/XML

	.trig => TriG

	.trix => TriX

	.ttl => Turtle

	.xml => TriX

Default value: none

Example: owlim:imports "./ont/owl.rdfs;./ont/ex.rdfs".

Tip

Schema files can be either a local path name, e.g., ./ontology/myfile.rdf or a URL, e.g., http://www.w3.org/2002/07/owl.rdf. If this parameter is used, the default namespace for each imported schema file must be provided using the defaultNS parameter.

	repository-type (Cannot be changed)

	
Default value: file-repository

Possible values: file-repository, weighted-file-repository.

	ruleset (Needs special attention)

	
Description: Sets of axiomatic triples, consistency checks and entailment rules, which determine the applied semantics.

Default value: rdfs-plus-optimized

Possible values: empty, rdfs, owl-horst, owl-max and owl2-rl and their optimised counterparts rdfs-optimized, owl-horst-optimized, owl-max-optimized and owl2-rl-optimized. A custom ruleset is chosen by setting the path to its rule file .pie.

Tip

Hints on optimising GraphDB’s rulesets.

	storage-folder (Can be changed)

	
Description: specifies the folder where the index files will be stored.

Default value: none

	enable-context-index (Can be changed)

	
Default value: false

Possible value: true, where GraphDB will build and use the context index/indices.

	enablePredicateList (Can be changed)

	
Description: Enables or disables mappings from an entity (subject or object) to its predicates; switching this on can significantly speed up queries that use wildcard predicate patterns.

Default value: false:

	in-memory-literal-properties (Can be changed)

	
Description: Turns caching of the literal languages and data-types on and off. If the caching is on and the entity pool is restored from persistence, but there is no such cache available on disk, it is created after the entity pool initialisation.

Default value: false

	enable-literal-index (Can be changed)

	
Description: Enables or disables the storage. The literal index is always built as data is loaded/modified. This parameter only affects whether the index is used during query-answering.

Default value: true

	check-for-inconsistencies (Can be changed)

	
Description: Turns the mechanism for consistency checking on and off; consistency checks are defined in the rule file and are applied at the end of every transaction, if this parameter is true. If an inconsistency is detected when committing a transaction, the whole transaction will be rolled back.

Default value: false

	disable-sameAs (Needs special attention)

	
Description: Enables or disables the owl:sameAs optimisation.

Default value: false

	query-timeout (Can be changed)

	
Description: Sets the number of seconds after which the evaluation of a query will be terminated; values less than or equal to zero mean no limit.

Default value: 0; (no limit);

	query-limit-results (Can be changed)

	
Description: Sets the maximum number of results returned from a query after which the evaluation of a query will be terminated; values less than or equal to zero mean no limit.

Default value: 0; (no limit);

	throw-QueryEvaluationException-on-timeout (Can be changed)

	
Default value: false

Possible value: true; if set, a QueryEvaluationException is thrown when the duration of a query execution exceeds the time-out parameter.

	read-only (Can be changed)

	
Description: In this mode, no modifications are allowed to the data or namespaces.

Default value: false

Possible value: true, puts the repository in to read-only mode.

	Non-interpretable predicates

	
Description: “Colon-separated list of predicates (full URLs) that GraphDB will not try to process with the registered GraphDB plugins. (Predicates processed by registered plugins are often called “Magic” predicates). This optimization will speed up the data loading by providing a hint that these predicates are not magic.”

Default value: http://www.w3.org/2000/01/rdf-schema#label;http://www.w3.org/1999/02/22-rdf-syntax-ns#type;http://www.ontotext.com/owlim/ces#gazetteerConfig;http://www.ontotext.com/owlim/ces#metadataConfig

Configure GraphDB memory

Configure Java heap memory

The following diagram offers a view of the memory use by
the GraphDB structures and processes:

[image: _images/total_JAVA_Heap_Memory.png]
To specify the maximum amount of heap space used by a JVM, use the -Xmx virtual machine parameter.

The Xmx value should be about 2/3 of the system memory. For example, if a system has 8GB total of RAM and 1GB is used by
the operating system, services, etc. and 1GB by the entity pool and the hash maps, as they are off heap, ideally, the JVM that hosts the
application using GraphDB should have a maximum heap size of 6GB
and can be set using the JVM argument: -Xmx6g.

Single global page cache

In GraphDB 7.2, we introduce a new cache strategy called single global page cache. It means that there is one global cache shared between all internal structures of all repositories and you no longer have to configure the cache-memory, tuple-index-memory and predicate-memory, or size every repository and calculate the amount of memory dedicated to it. If one of the repositories is used more at the moment, it naturally gets more slots in the cache.

Current global cache implementation can be enabled by specifying:
-Dgraphdb.global.page.cache=true -Dgraphdb.page.cache.size=3G.
If you don’t specify page.cache.size but only enable the global cache, it will take 50% of the Xmx parameter.

Note

You don’t have to change/edit your repository configurations, the new cache
will be used when you upgrade to the new version.

Configure Entity pool memory

From GraphDB 7.2 on, you no longer have to calculate the entity pool memory when
giving the JVM max heap memory parameter to GraphDB. All entity pool structures
now reside off-heap, i.e. outside of the normal JVM heap.

This means, however, that you need to leave some memory outside of the Xmx.

To activate the old behaviour, you can still enable on heap
allocation with

-Dgraphdb.epool.onheap=true

If you are concerned about that the process will eat up unlimited amount of memory, you can specify a maximum size with
-XX:MaxDirectMemorySize
which defaults to the Xmx parameter(at least in openjdk and oracle jdk).

Sample memory configuration

This is a sample configuration demonstrating how to correctly size a GraphDB server with a single repository. The loaded dataset is estimated to 500M RDF statements and 150M unique entities. As a rule of thumb, the average number of unique entities compared to the total number of statements in a standard dataset is 1:3.

	Configuration parameter
	Description
	Example value

	Total OS memory
	Total physical system memory
	16 GB

	On heap JVM (-Xmx) configuration
	Maximum heap memory allocated by the JVM process
	10 GB

	page.cache.size
	Global single cache shared between all internal structures of all repositories (the default value is 50% of the heap size)
	5 GB

	Remaining on-heap memory for query execution
	Raw estimate of the memory for query execution; higher value is required if many long running analytical queries are expected
	~4.5 GB

	entity-index-size (“Entity index size”) stored off-heap by default
	Size of the initial entity pool hashtable; the recommended value is equal to the total number of unique entities
	150000000

	Memory footprint of the entity pool stored off-heap by default
	Calculated from entity-index-size and total number of entities; this memory will be taken after the repository initialisation
	~2.5 GB

	Remaining OS memory
	Raw estimate of the memory left to the OS
	~3.5 GB

Reconfigure a repository

Once a repository is created, it is possible to change some parameters,
either by editing it in the Workbench, by changing the configuration in the SYSTEM repository or by setting a global override for a given property.

Note

When you change a repository parameter you have to restart GraphDB
for the changes to take effect.

Using the Workbench

To edit a repository parameter in the GraphDB Workbench,
go to Admin -> Repositories and click the edit icon
for the repository whose parameters you want to edit. A form opens where
you can edit them. Click the Save button to save your changes.

In the SYSTEM repository

Changing the configuration in the SYSTEM repository is generally
not recommended as a simple error might corrupt your repository configuration.

The configurations are usually structured using blank node identifiers,
which are always unique, so attempting to modify a statement with a
blank node by using the same blank node identifier will fail. However,
this can be achieved with SPARQL UPDATE using a DELETE-INSERT-WHERE
command.

PREFIX sys: <http://www.openrdf.org/config/repository#>
PREFIX sail: <http://www.openrdf.org/config/repository/sail#>
PREFIX onto: <http://www.ontotext.com/trree/owlim#>
DELETE { GRAPH ?g {?sail ?param ?old_value } }
INSERT { GRAPH ?g {?sail ?param ?new_value } }
WHERE {
 GRAPH ?g { ?rep sys:repositoryID ?id . }
 GRAPH ?g { ?rep sys:repositoryImpl ?impl . }
 GRAPH ?g { ?impl sys:repositoryType ?type . }
 GRAPH ?g { ?impl sail:sailImpl ?sail . }
 GRAPH ?g { ?sail ?param ?old_value . }
 FILTER(?id = "repo_id") .
 FILTER(?param = onto:enable-context-index) .
 BIND("true" AS ?new_value) .
}

Warning

Some parameters can not be changed after a repository has been
created. These either have no effect (once the relevant data
structures are built, their structure can not be changed) or
changing them will cause inconsistencies (these parameters affect
the reasoner).

Global overrides

It is also possible to override a repository parameter for all repositories
by setting a configuration or system property. Please, see Engine properties
for more information.

Rename a repository

Using the workbench

Use the workbench to change the Repository ID field.
It executes the following steps properly and takes care to update all places in the workbench where the repository name is used.

Editing of the SYSTEM repository

Warning

Changing the SYSTEM repository is generally not recommended as a simple error might corrupt your repository configuration.

For an existing repository that has already been used:

	Restart GraphDB to ensure that the repository is not loaded into
memory (with locked/open files).

	Select the SYSTEM repository.

	Execute the following SPARQL update with the appropriate old and new
names substituted in the last two lines.

PREFIX sys:<http://www.openrdf.org/config/repository#>
DELETE { GRAPH ?g { ?repository sys:repositoryID ?old_name } }
INSERT { GRAPH ?g { ?repository sys:repositoryID ?new_name } }
WHERE {
 GRAPH ?g { ?repository a sys:Repository . }
 GRAPH ?g { ?repository sys:repositoryID ?old_name . }
 FILTER(?old_name = "old_repository_name") .
 BIND("new_repository_name" AS ?new_name) . }

	Rename the folder for this repository in the file system.

Please refer to Configuring the GraphDB data directory
for more information on how to find the location of your repositories on the disk.

Note

There is another consideration regarding the storage folder http://www.ontotext.com/trree/owlim#storage-folder

If it is set to an absolute pathname and moving the repository requires an update of this parameter as well, you will need the value of this parameter (with the new name).

Access rights and security

Controlling access to a GraphDB repository and assigning user accounts
to roles with specified access permissions allows you to:

	Create security constraints on operations (reading statements,
writing statements, modifying named graphs, changing namespace
definitions, etc.);

	Group security constraints in security roles;

	Manage user accounts and assign these to specific security roles.

What’s in this document?

	Managing users’ access
	User roles

	Login and default credentials

	Free access

Managing users’ access

To manage your users’ access, go to Setup -> Users and Access. The page displays a list of users and the number of repositories they have access to.

[image: _images/users.png]
Here you can create new users, edit their profiles, change their password, user roles, and read/write permissions for each repository, and delete them. Repository permissions can be bound to a specific location or to all locations (“*” in the location list).

User roles

	User - a user who can read and write according to his permissions for
each repository;

	Repository admin - a user who can manage repositories but cannot manage locations and users.

	Full Admin - a user with full access, including creating, editing and
deleting users.

[image: _images/Create_user.png]

Login and default credentials

By default, the security for the entire Workbench instance is disabled. It means that everyone has full access to the repositories and the admin functionality. To enable them, move the Security slider above the user table to on. If security is enabled, the first page you will see is the login page.

[image: _images/login.png]
The default administrator account information is:

username: admin

password: root

It is highly recommended that you change the root password as soon as
you log in for the first time. Click your username (admin) in the top
right corner to change it.

Free access

To allow people to access
a predefined set of functionalities without having to log in, go to Admin -> Users and Access
and click the Free Access slider above the user table. A dialog box opens and prompts you
to select the access rights for free access users. The available
permissions are similar to those for authenticated users,
e.g., you can provide read or read/write access to one or more repositories.

Note

To use free access, you must have security enabled.
The settings do not show if security is disabled.

[image: _images/usersFreeAccess1.png]

Tip

Free access is especially useful for providing read-only access to a repository.

[image: _images/usersFreeAccess2.png]

Backing up and recovering a repository

What’s in this document?

	Backing up a repository

	Restoring a repository

Backing up a repository

Several options are available:

Option 1: Using the GraphDB Workbench

Note

Best used for a small running system.

Export the database contents using the Workbench. To
preserve the contexts (named graph) when exporting/importing the
whole database, use a context-aware RDF file format, e.g., TriG.

	Go to Explore/Graphs overview.

	Choose the files you want to export.

	Click Export graph as TriG.

[image: _images/export_TriG.png]
Option 2: Exporting the data of each repository

Note

Works without stopping GraphDB but it is very slow.

	Export the data of each repository, while the database is running.

Note

All updates executed after the EXPORT had been started will not
be put in the exported data (due to the READ COMMITTED
transaction isolation in GraphDB).

	Shutdown the database (stop Tomcat) and delete the older GraphDB application(s) – .war files and the expanded folder.

Option 3: Using the graph store protocol and curl

This can be achieved on the command line in a single step using the graph store protocol (change the repository URL and name of the export file
accordingly).

curl -X GET -H "Accept:application/x-trig" "http://localhost:7200/repositories/test/statements?infer=false"

This method streams a snapshot of the database’s explicit statements
into the export.trig file.

Option 4: Programmatically using the RDF4J API.

Use the RepositoryConnection.exportStatements() [http://rdf4j.org/javadoc/2.0/org/eclipse/rdf4j/repository/RepositoryConnection.html#exportStatements-org.eclipse.rdf4j.model.Resource-org.eclipse.rdf4j.model.IRI-org.eclipse.rdf4j.model.Value-boolean-org.eclipse.rdf4j.rio.RDFHandler-org.eclipse.rdf4j.model.Resource...-] method with the includeInferred flag set to false (in order
not to serialise the inferred statements).

Example:

RepositoryConnection connection = repository.getConnection();
FileOutputStream outputStream = new FileOutputStream(new File("/tmp/test.txt"));
RDFWriter writer = Rio.createWriter(RDFFormat.NTRIPLES, outputStream);
connection.exportStatements(null, null, null, false, writer);
IOUtils.closeQuietly(outputStream);

Use the RepositoryConnection.getStatements() [http://rdf4j.org/javadoc/2.0/org/eclipse/rdf4j/repository/RepositoryConnection.html#getStatements-org.eclipse.rdf4j.model.Resource-org.eclipse.rdf4j.model.URI-org.eclipse.rdf4j.model.Value-boolean-org.eclipse.rdf4j.model.Resource...-] method with the includeInferred flag set to false (in order not to serialise the inferred statements).

Example:

java.io.OutputStream out = ...;
RDFWriter writer = Rio.createWriter(RDFFormat.NTRIPLES, out);
writer.startRDF();
RepositoryResult<Statement> statements =
repositoryConnection.getStatements(null, null, null, false);
while (statements.hasNext()) {
 writer.handleStatement(statements.next());
}
statements.close();
writer.endRDF();
out.flush();

The returned iterator can be used to visit every explicit statement in
the repository and one of the RDF4J RDF writer implementations can be
used to output the statements in the chosen format. If the data will be
re-imported, we recommend the N-Triples format as it can
easily be broken into large ‘chunks’ that can be inserted and committed
separately.

Option 5: Copying GraphDB storage folders

Note

It is very fast but requires stopping GraphDB.

	Stop GraphDB/Tomcat.

	Manually copy the storage folders to the backup location.

kill <pid-of-graphdb>
sleep 10 #wait some time for the graphdb to stop
cp -r {your data directory}/repositories/your-repo ~/your-backups/TODAY-DATE/

Tip

For more information about data directory, see here.

Restoring a repository

Several options are available:

Option 1: Importing data with preserved contexts in RDF4J Workbench

Note

Best used for a small running system.

	Go to Add.

	Choose Data format: TriG.

	Choose RDF Data File: e.g., export.trig.

	Clear the context text field (it will have been set to the URL of the
file). If this is not cleared, all the imported RDF statements
will be given a context of file://export.trig or similar.

	Upload.

You can also use the TriX format (an XML-based context-aware RDF serialisation).

Option 2: Importing data with preserved contexts in GraphDB Workbench

Note

Best used for a small running system.

See Loading data.

Option 3: Replacing the GraphDB storage directory (and any subdirectories)

Note

If it is possible to shut down the repository.

	Replace the entire contents of the storage directory (and any
subdirectories) with the backup.

	Restart the repository.

	Check the log file to ensure a successful start up.

Query monitoring and termination

What’s in this document?

	Query monitoring and termination using the workbench

	Query monitoring and termination using the JMX interface
	Query monitoring

	Terminating a query

	Terminating a transaction

	Automatically prevent long running queries

Query monitoring and termination can be done manually from the Workbench or by running a JMX operation, and automatically - by configuring GraphDB to abort queries after a certain query-timeout is reached.

Query monitoring and termination using the workbench

When there are running queries their number is shown up next to the Repositories dropdown menu.

To track and interrupt long running queries:

	Go to Monitoring -> Queries or click the Running queries status next to the Repositories dropdown menu.

	Press the Abort query button to stop a query.

Note

If you are connected to a remote location, you need to have the JMX configured properly.
See how in Administration tools.

[image: _images/query-monitoring.png]
To interrupt long running queries, click the Abort query button.

Query monitoring and termination using the JMX interface

Query monitoring

GraphDB offers a number of monitoring and control functions through JMX. It also provides detailed statistics about executing queries or more accurately
query result iterators. This is done through the SailIterationMonitor
MBean, one for each repository instance. Each bean instance is named
after the storage directory of the repository it relates to.

	Package
	com.ontotext

	MBean name
	SailIterationMonitor

The SailIterationMonitor Mbean has a single attribute TrackRecords,
which is an array of objects with the following attributes:

	Attribute
	Description

	isRequestedToStop
	indicates if the query has been requested to terminate early (see below)

	msLifeTime
	the lifetime of the iterator (in ms) between being created and reaching the CLOSED state

	msSinceCreated
	the time (in ms) since the iterator was created

	nNext
	the total number of invocations of next() for this iterator

	nsAverageForOneNext
	the average time spent for one (has)Next calculation (in nanoseconds), i.e., nsTotalSpentInNext / nNext

	nsTotalSpentInNext
	the cumulative time spent in (has)Next calculations (in nanoseconds)

	state
	the current state of the iterator, values are: ACTIVE, IN_NEXT, IN_HAS_NEXT, IN_REMOVE, IN_CLOSE, CLOSED

	trackId
	a unique ID for this iterator - if debug level is used to increase the detail of the GraphDB output, then this value is used to identify queries when logging the query execution plan and optimisation information.

[image: _images/query_load.png]
The collection of these objects grows for each executing/executed query,
however, older objects in the CLOSED state expire and are removed from
the collection as the query result iterators are garbage collected.

Terminating a query

A single operation available with this MBean:

	Operation
	Description

	requestStop
	Request that a query terminates early;
parameter: trackId of the query to stop.

This operation allows administrator to request that a query
terminates earliest possible.

To terminate a query, execute the requestStop command with given trackId of the query. As a result:

	The isRequestedToStop attribute is set to true.

	The query terminates normally when hasNext() returns false.

	Collected result so far will be returned by the interrupted query.

Terminating a transaction

It is also possible to terminate a long committing update transaction. For example, when
committing a ‘chain’ of many thousands of statements using some transitive property,
the inferencer will attempt to materialise all possible combinations leading to hundreds of millions of inferred statements. In such a situation, you can abort the commit operation
and rollback to the state the database had before the commit was attempted.

The following MBean is used:

	Package
	com.ontotext

	MBean name
	OwlimRepositoryManager

This MBean has no attributes:

	Operation
	Description

	abortTransactionCommit
	Request that the currently executing (lengthy) commit operation be terminated and rolled back.

Automatically prevent long running queries

You can set a global query time-out period by adding a configuration parameter query-timeout. All queries will stop after this many seconds, where a default value of 0 indicates no limit.

Troubleshooting

	Database health checks

	System metrics monitoring

	Diagnosing and reporting critical errors

	Storage tool

Database health checks

What’s in this document?

	Possible values for health checks and their meaning

	Default health checks for the different GraphDB editions

	Running the health checks

The GraphDB health check endpoint is at http://localhost:7200/repositories/myrepo/health.

Parameter: checks (By default all checks are run.)

Behaviour: Run only the specified checks.

Accepts multiple values: True.

Values: read-availability, storage-folder, long-running-queries, predicates-statistics, master-status.

Possible responses: HTTP status 200 (the repository is healthy), 206 (the repository needs attention but it is not something critical), 500 (the repository is inconsistent, i.e. some checks failed).

Possible values for health checks and their meaning

	Value
	Description

	read-availability
	Checks whether the repository is readable.

	storage-folder
	Checks if there are at least 20 MB writable left for the storage folder. The mega bytes can be controlled with the system parameter health.minimal.free.storage.

	long-running-queries
	Checks if there are queries running for more than 20 seconds. The time can be controlled with the system parameter health.max.query.time.seconds. If more than 20 seconds, you either have a slow query or there is a problem with the database.

	predicates-statistics
	Checks if the predicate statistics contain correct values.

	master-status
	Checks whether the master is up and running, can access its workers, and the peers are not lagging. If there are non- readable workers, the status will be yellow. If there are workers that are off, the status will be red.

Default health checks for the different GraphDB editions

	Name
	Free
	SE
	EE / Worker
	EE / Master

	read-availability
	✅
	✅
	✅
	✅

	storage-folder
	✅
	✅
	✅
	✅

	long-running-queries
	✅
	✅
	✅
	❌

	predicates-statistics
	✅
	✅
	✅
	❌

	master-status
	❌
	❌
	❌
	✅

Running the health checks

To run the health checks for a particular repository, in the example myrepo, execute the following command:

curl 'http://localhost:7200/repositories/myrepo/health?checks=<value1>&checks=<value2>'

	an example output for a healthy repository with HTTP status 200:

{
 "predicates-statistics": "OK",
 "long-running-queries": "OK",
 "read-availability": "OK",
 "status": "green",
 "storage-folder": "OK"
}

	an example output for an unhealthy repository with HTTP status 500:

{
 predicates-statistics: "OK",
 long-running-queries: "OK",
 read-availability: "OK",
 storage-folder: "UNHEALTHY: Permission denied java.io.IOException: Permission denied",
 status: "red"
}

The status field in the output means the following:

	green - all is good;

	yellow - the repository needs attention;

	red - the repository is inconsistent in some way.

System metrics monitoring

What’s in this document?

	Page cache metrics
	cache.flush

	cache.hit

	cache.load

	cache.miss

	Entity pool metrics
	epool.read

	epool.write

The database exposes a lot of metrics that help to tune the memory parameters and performance. They can be found in the JMX console under
the com.ontotext.metrics package. The global metrics that are shared between the repositories are under the top level package and those
specific to repositories - under com.ontotext.metrics.<repository-id>.

[image: _images/jmx-metrics.png]

Page cache metrics

The global page cache provides metrics that help to tune the amount of memory given for the page cache.

cache.flush

A timer [http://metrics.dropwizard.io/3.1.0/getting-started/#timers] for the pages that are evicted out of the page and the amount of time it takes for them to be flushed on the disc.

cache.hit

Number of hits in the cache. This can be viewed as the number of pages that do not need to be read from the disc but can be taken from the cache.

cache.load

A timer [http://metrics.dropwizard.io/3.1.0/getting-started/#timers] for the pages that have to be read from the disc. The smaller the number of pages is, the better.

cache.miss

Number of cache misses. The smaller this number is, the better. If you see that the number of hits is smaller than the misses, then it is probably a good idea to increase the page cache memory.

Entity pool metrics

You can monitor the number of reads and writes in the entity pool of each repository.

epool.read

A timer [http://metrics.dropwizard.io/3.1.0/getting-started/#timers] for the number of reads in the entity pool.

epool.write

A timer [http://metrics.dropwizard.io/3.1.0/getting-started/#timers] for the number of writes in the entity pool.

Diagnosing and reporting critical errors

What’s in this document?

	Logs
	Setting up the root logger

	Logs location

	Log files

	Report script
	Requirements

	Example

It is essential to gather as much as possible details about an issue once it appears.
For this purpose, we provide utility scripts that generate such issue reports by collecting data from various log files, JVM etc. Using those issue reports helps us to investigate and provide an appropriate solution as quickly as possible.

Logs

GraphDB uses slf4j [http://www.slf4j.org/] for logging through the Logback [http://logback.qos.ch/] implementation (the RDF4J facilities for log configuration discovery are no longer used). Instead, the whole distribution has a central place for the logback.xml configuration file in GraphDB-HOME/conf/logback.xml. If you use the war file setup, you can provide the log file location through a system parameter or we will pick it up from the generated war file.

Note

Check the the Logback [http://logback.qos.ch/] configuration location rules for more information.

On startup, GraphDB logs the logback configuration file location:

[INFO] 2016-03-17 17:29:31,657 [main | ROOT] Using 'file:/opt/graphdb-ee/conf/logback.xml' as logback's configuration file for graphdb

Setting up the root logger

The default ROOT logger is set to INFO. You can change it in several ways:

	Edit the logback.xml configuration file.

Note

You don’t have to restart the database as it will check the file for changes every 30 seconds and will reconfigure the logger.

	Change the log level through the logback JMX configurator. For more information see the Logback manual chapter 10 [http://logback.qos.ch/manual/jmxConfig.html].

	Start each component with graphdb.logger.root.level set to your desired root logging level. For example:

bin/graphdb -Dgraphdb.logger.root.level=WARN

Logs location

By default, all database components and tools log in GraphDB-HOME/logs, when run from the bin folder. If you setup GraphDB by deploying .war files into a stand-alone servlet container, the following
rules apply:

	To log in a specified directory, set the logDestinationDirectory system property.

	If GraphDB is run in Tomcat, the logs can be find in ${catalina.base}/logs/graphdb.

	If GraphDB is run in Jetty, the logs can be find in ${jetty.base}/logs/graphdb.

	Otherwise, all logs are in the logs subdirectory of the current working directory for the process.

Log files

Different things are logged in different files. This should make it easier to
follow what is going on in different parts of the system

	http-log.log - contains the HTTP communication between the
master and the workers.

	query-log.log - contains all queries that were sent to the
database. The format is machine readable and allows us to replay the queries when
debugging a problem.

	main.log - contains all messages coming from the main part of the engine.

Report script

The Report script gathers valuable information for tracing and reproducing an issue.

Note

The report script is designed to collect logs only when GraphDB is run in Tomcat!

Note

If the issue is related to the cluster, an information must be provided for every worker and master.

Tip

If possible, run the report script while the issue is
taking place.

report is a bash script that accepts a Tomcat’s pid, automatically
gathers most of the necessary information and produces a bug report. It
can be found in the bin folder in the GraphDB distribution.

To start the script run:

./report <tomcat's-pid>

The reproduced issue report contains following information:

✅ Logs files.

✅ jstack <pid> from Tomcat.

✅ jmap -histo <pid> from Tomcat.

✅ jstat -gcutil <pid> 1000 100 - (optional) it makes 100 gc snapshots one every second. A much better option is to give GC logs.

❌ If possible, start the JVM with the following GC logs parameters:

-XX:NumberOfGCLogFiles=5 -XX:+PrintGCApplicationStoppedTime -XX:+PrintGCCause -XX:+PrintGCDetails
 -XX:-PrintTenuringDistribution -XX:+UseCompressedOops -XX:+UseGCLogFileRotation -Xloggc:<file>

then change the file destination to something that is writeable and provide these log files.

✅ tail -10000 from the syslog (on most machines, this is located in /var/log/syslog).

✅ If anything is touched in the Tomcat’s conf directory, it must be provided as is.

❌ If this is an out of memory issue, then start java with -XX:+HeapDumpOnOutOfMemoryError and try to reproduce. Then, provide the heap dump, generated by the JVM.

❌ If this is a cluster, check that there is NTP on the machines (i.e., their time is synchonised).

❌ If the issue is reproduced on a client dataset, it will help us to have access to it.

✅ Output from bin/versions.sh in Tomcat.

✅ The version of graphdb.

❌ Logs from the client. We need this to check for errors from the RDF4J client.

Hint

Legend:

✅ Information gathered by the script.

❌ Information that is not supported by the script and you need to gather it separately.

Requirements

	bash installed;

	run the script with either the Tomcat’s user or a user that has equal read/write permissions.

Example

Before running the script, you might need to give it executable
permission chmod +x report

Without parameters

If no parameters are given, a help message will be displayed:

$ report
The program accepts a single argument, tomcat's pid
Usage: ./report <tomcat's-pid>

Real run

You need the Tomcat’s pid. On most setups you can easily check the
Tomcat’s pid with jps

$ jps | grep Bootstrap
32053 Bootstrap

you can see that Tomcat is running with pid 32053. Now run the
report script:

$./report 32053
Picked up _JAVA_OPTIONS: -Dawt.useSystemAAFontSettings=lcd -Dswing.aatext=true
Found tomcat home as /home/myname/Downloads/apache-tomcat-7.0.55
Found aduna base as /home/myname/.graphdb
Did you change files in tomcat's conf directory?[y|n] (n): y
Getting tomcat version information
Getting graphdb version information
Collecting tomcat runtime parameters
Copying tomcat logs from /home/myname/Downloads/apache-tomcat-7.0.55/logs
Copying aduna logs from /home/myname/.graphdb/logs
Waiting for jstat to finish
You can find the collected data in 32053-data

first the script asks you if this is a default Tomcat configuration:
Did you change files in Tomcat's conf directory?[y|n]
y will copy the Tomcat config for you. It will also tell you where to find the produced diagnostic files
(You can find the collected data in 32053-data), which varies from
pid to pid. When reporting an issue, just zip this directory and send it to
us.

Storage tool

What’s in this document?

	Options

	Supported commands

	Examples

The Storage Tool is an application for scanning and repairing a GraphDB repository.
To run the Storage Tool, please execute bin/storage-tool in the GraphDB distribution folder. For help run ./storage-tool –help.

Note

The tool works only on repository images that are not in use (i.e., when the database is down).

Options

-command=<operation to be executed, MANDATORY>
-storage=<absolute path to repo storage dir, MANDATORY>
-esize=<size of entity pool IDs: 32 or 40 bits, DEFAULT 32>
-statusPrintInterval=<size of the external sort buffer, DEFAULT 95, means 95M elements, max value is also 95>
-pageCacheSize=<size of the page cache, DEFAULT 10, means 10K elements>
-sortBufferSize=<size of the external sort buffer, DEFAULT 100, means 100M elements>
-srcIndex=<one of pso, pos, pcso, pcos>
-destIndex=<one of pso, pos, pcso, pcos, predicates>
-origURI=<original existing URI in the repo>
-replURI=<new non-existing URI in the repo>
-destFile=<path to file used to store exported data>

Supported commands

	scan - scans the repository index(es) and prints statistics about the number of statements and repository consistency;

	rebuild - uses the source index srcIndex to rebuild the destination index destIndex. If srcIndex = destIndex, compacts destIndex. If srcIndex is missing and destIndex = predicates, just rebuilds destIndex.

	replace - replaces an existing entity -origURI with a non-existing one -replURI;

	repair - repairs the repository indexes and restores data, a better variant of the merge index;

	export - uses the source index (srcIndex) to export repository data to the destination file destFile. Supported destination file extensions formats: .trig .ttl .nq

Examples

	scan the repository, print statement statistics and repository consistency status:

-command=scan -storage=/repo/storage

	when everything is OK

__scan results__
mask | pso | pos | pcso | pcos | diff | flags
0001 | 19 | 19 | 19 | 19 | OK | INF
0002 | 25 | 25 | 25 | 25 | OK | EXP
0005 | 102 | 102 | 102 | 102 | OK | INF RO

__additional checks__
 | pso | pos | pcso | pcos | stat | check-type
 | 2e9d | 2e9d | 2e9d | 2e9d | OK | checksum
 | 0 | 0 | 0 | 0 | OK | literals as subjects
 | 0 | 0 | 0 | 0 | OK | literals as predicates
 | 0 | 0 | 0 | 0 | OK | literals as contexts
 | 0 | 0 | 0 | 0 | OK | blanks as predicates
 | true | true | true | true | OK | page consistency
 | - | - | - | - | OK | epool consistency

Scan determines that this repo image is consistent!

	when there are broken indexes

__scan results__
mask | pso | pos | pcso | pcos | diff | flags
0001 | 310,512,696 | 310,512,696 | 310,512,697 | 310,512,696 | ERR | INF
0002 | 183,244,533 | 183,244,533 | 183,244,534 | 183,244,533 | ERR | EXP
0005 | 102 | 102 | 102 | 102 | OK | INF RO
0020 | 235 | 215 | 19 | 0 | OK | DEL
0021 | 687 | 821 | 0 | 0 | OK | INF DEL
0022 | 911 | 975 | 0 | 0 | OK | EXP DEL

__additional checks__
 | pso | pos | pcso | pcos | stat | check-type
 | ffffffffce1a908d | ffffffffce1a908d | ffffffffda22fb99 | ffffffffce1a908d | ERR | checksum
 | 0 | 0 | 0 | 0 | OK | literals as subjects
 | 0 | 0 | 0 | 0 | OK | literals as predicates
 | 0 | 0 | 0 | 0 | OK | literals as contexts
 | 0 | 0 | 0 | 0 | OK | blanks as predicates
 | true | true | true | true | OK | page consistency
 | - | - | - | - | OK | epool consistency

Scan determines that this repo image is INCONSISTENT

pcso contains more statements then the other indexes, we have the following options:

	rebuild pcso from one of the other indexes

	rebuild all other indexes from pcso, because it has one statement more and we do not want to lose it

	scan the PSO index of a 40bit repository, print a status message every 60 seconds:

-command=scan -storage=/repo/storage -srcIndex=pso -esize=40 -statusPrintInterval=60

	compact the PSO index (self-rebuild equals compacting):

-command=rebuild -storage=/repo/storage -esize=40 -srcIndex=pso -destIndex=pso

	rebuild the POS index from the PSO index and compact POS:

-command=rebuild -storage=/repo/storage -esize=40 -srcIndex=pso -destIndex=pos

	rebuild the predicates statistics index:

-command=rebuild -storage=/repo/storage -esize=40 -destIndex=predicates

	replace http://onto.com#e1 with http://onto.com#e2:

-command=replace -storage=/repo/storage -origURI=<http://onto.com#e1>
 -replURI=<http://onto.com#e2>

	dump the repository data using the POS index into a f.trig file:

-command=export -storage=/repo/storage -srcIndex=pos -destFile=/repo/storage/f.trig

Usage

	Loading data

	Exploring data

	Querying Data

	Exporting data

	Using the Workbench REST API

	Using GraphDB with the RDF4J API

	Additional indexing

	GraphDB connectors

	GraphDB dev guide

	Experimental features

Loading data

You can load data in GraphDB using the workbench or the LoadRDF tool. GraphDB also supports the conversion of tabular data into RDF and its direct load into an active repository, using simple SPARQL queries and a virtual endpoint. This functionality is based on OpenRefine [http://openrefine.org/]. The supported formats are TSV, CSV, *SV, Excel (.xls and. xlsx), JSON, XML, RDF as XML, and Google sheet.

	Loading data using the workbench

	Loading data using OntoRefine

	Loading data using the LoadRDF tool

Loading data using the workbench

What’s in this document?

	Import settings

	Importing local files

	Importing server files

	Importing remote content

	Paste and import

	Import data with an INSERT query

There are several ways of importing data:

	from local files;

	from files on the server where the workbench is located;

	from a remote URL (with a format extension or by specifying the data format);

	by pasting the RDF data in the Text area tab;

	from a SPARQL construct query directly.

All import methods support asynchronous running of the import tasks,
except for the text area import, which is intended for a very fast
and simple import.

Note

Currently, only one import task of a type is executed at a time,
while the others wait in the queue as pending.

Note

For Local repositories, since the parsing is done by the Workbench, we support interruption and additional settings.

When the location is a remote one, you just send the data to the remote endpoint and the parsing and loading is performed there.

A file name filter is available to narrow down the list if you have many files.

Import settings

The settings for each import are saved so that you can use them, in case
you want to re-import a file. They are:

	Base URI - specifies the base URI against which to resolve any
relative URIs found in the uploaded data;

	Context - if specified, imports the data into the specific context;

	Chunk size - the number of statements to commit in one chunk. If a
chunk fails, the import operations are interrupted and the imported
statements are not rollbacked. The default is no chunking. When there
is no chunking, all statements are loaded in one transaction.

	Retry times - how many times to retry the commit if it fails.

	Preserve BNode IDs - assigns its own internal blank node identifiers
or uses the blank node IDs it finds in the file.

	Verify data type values - verifies that the values of the datatype properties in the file are valid; throws exception if the datatype is not recongised.

[image: _images/import_settings.png]

Importing local files

Note

The limitation of this method is that it supports files of a limited
size. The default is 200MB and it is controlled by the
graphdb.workbench.maxUploadSize property. The value is in
bytes (-Dgraphdb.workbench.maxUploadSize=20971520).

Loading data from the Local files directly streams the file to the
RDF4J’s statements endpoint:

	Click the icon to browse files for uploading;

	When the files appear in the table, either import a file by clicking
Import on its line or select multiple files and click Batch
import;

	The import settings modal appears, just in case you want to add
additional settings.

[image: _images/importProgress.png]

Importing server files

The server files import allows you to load files of arbitrary sizes. Its
limitation is that the files must be put (symbolic links are supported)
in a specific directory. By default, it is
${user.home}/graphdb-import/.

If you want to tweak the directory location, see the
graphdb.workbench.importDirectory system property. The directory
is scanned recursively and all files with a semantic MIME type are visible in the Server files tab.

Importing remote content

You can import from a URL with RDF data. Each endpoint that returns RDF
data may be used.

[image: _images/import_remote_content.png]
If the URL has an extension, it is used to detect the correct data type
(e.g., http://linkedlifedata.com/resource/umls-concept/C0024117.rdf). Otherwise, you have to provide the Data Format parameter, which is sent as Accept header to the endpoint and then to the import loader.

Paste and import

You can import data by pasting it directly in the Text area tab. This very simple text import sends the data to the Repository Statements Endpoint [http://rdf4j.org/doc/the-rdf4j-server-rest-api/#Repository_statements].

[image: _images/import_text_area.png]

Import data with an INSERT query

You can also insert triples into a graph with an INSERT query in the SPARQL editor.

[image: _images/INSERT_query.png]

Loading data using OntoRefine

What’s in this document?

	OntoRefine - overview and features

	Example Data

	Upload data in OntoRefine
	Open OntoRefine in the Workbench

	Create a project

	Import a project

	Open a project

	Viewing tabular data as RDF
	Rows

	Records

	RDFising data
	Using CONSTRUCT query in the OntoRefine SPARQL endpoint

	Using CONSTRUCT query in the GraphDB SPARQL endpoint

	Importing data in GraphDB

	Additional Resources

OntoRefine - overview and features

GraphDB OntoRefine is a data transformation tool, based on OpenRefine [http://openrefine.org/] and integrated in the GraphDB Workbench. It can be used for converting tabular data into RDF and importing it into a GraphDB repository, using simple SPARQL queries and a virtual endpoint. The supported formats are TSV, CSV, *SV, XLS, XLSX, JSON, XML, RDF as XML, and Google sheet. Using OntoRefine, you can easily filter your data, edit its inconsistencies, convert it into RDF, and import it into a repository.

OntoRefine enables you to:

	Upload your data file(s) and create a project.

	View the cleaned data as RDF.

	Transform your data using SPIN functions [http://spinrdf.org/].

	Import the newly created RDF directly in a GraphDB repository by using the GraphDB SPARQL endpoint.

Example Data

The data used for the examples can be found at:

	Datahub - https://datahub.io/dataset/list-of-us-presidents/resource/ba0cdb03-c0f0-45ff-a21f-63fdf6ce1a89;

	Kaggle - https://www.kaggle.com/deepmatrix/imdb-5000-movie-dataset.

Upload data in OntoRefine

Open OntoRefine in the Workbench

To transform your data into RDF, you need a working GraphDB database.

	Start GraphDB in a workbench mode.

graphdb

	Open http://localhost:7200/ in a browser.

	Go to Import -> Tabular (OntoRefine).

All data files in OntoRefine are organized as projects. One project can have more than one data file.

The Create Project action area consists of three tabs corresponding to the source of data. You can upload a file from your computer, specify the URL of a publicly accessible data, or paste data from the clipboard.

Create a project

	Click Create Project -> Get data from.

	Select one or more files to upload:

	from your computer

[image: _images/ontoRefine-upload-file.png]

	from web addresses (URLs)

[image: _images/ontoRefine-upload-file-url.png]

	from clipboard

[image: _images/ontoRefine-upload-file-clipboard.png]

	Click Next.

	(Optional) Change the table configurations and update the preview.

With the first opening of the file, OntoRefine tries to recognize the encoding of the text file and all delimiters.

[image: _images/ontoRefine-table-configurations.png]

	Click Create Project.

The result is table similar to that of an Excel or a Google sheet.

Import a project

To import an already existing OntoRefine project:

	Go to Import Project.

	Choose a file (.tar or .tar.gz)

	Import it.

[image: _images/ontoRefine-import-project.png]

Open a project

Once the project is created

	Go to Open Project.

	Click the one you want to work on.

	(Optional) Rename your project or delete it.

[image: _images/ontoRefine-rename-delete.png]

Viewing tabular data as RDF

Unlike OpenRefine that supports RDF for an input, OntoRefine also supports RDF as an output. To view your data as triples, click the OntoRefine SPARQL button. OpenRefine can view the same data both as rows and as records. See https://github.com/OpenRefine/OpenRefine/wiki/Variables#record and http://kb.refinepro.com/2012/03/difference-between-record-and-row.html.

[image: _images/ontoRefine-view-as-rdf.png]

Warning

OntoRefine SPARQL button sends queries only to the currently open OntoRefine project and must not be mistaken with the GraphDB Workbench SPARQL tab, which is directly connected to the current repository.

Rows

The rows and columns from the table are mapped with the help of the following URIs:

	urn:rowNNN - identifies a row, NNN is the 1-based row number;

	urn:Row - the RDF type for each row;

	urn:rowNumber - the property for row number, i.e. the same information as in urn:row_NNN_ but as an integer literal;

	urn:col:MMM - properties for each named column, MMM is the name of the column;

	urn:colNNN - properties for each named or unnamed column, NNN is the 1-based column number.

Note

Columns can be accessed both through the name-based urn:col:MMM and the number-based urn:colNNN properties.

Example

Refine table

[image: _images/ontoRefine-raw-table.png]

RDF data

A basic SELECT that illustrates how to select the raw RDF by column names.
select * {
 ?presidentRow a <urn:Row> ;
 <urn:col:President> ?president ;
 <urn:col:Presidency> ?presidency ;
 <urn:col:Took_office> ?tookOffice ;
 <urn:col:Took_office> ?leftOffice ;
 <urn:col:Party> ?party ;
 <urn:col:Home_State> ?state .
}

[image: _images/ontoRefine-raw-rdf.png]

Records

If there are records, the following URIs will be used in addition to the row ones:

	urn:recordNNN - identifies a record, NNN is the 1-based record number;

	urn:Record - the RDF type for each record;

	urn:recordNumber - the property for record number, i.e. the same information as in urn:record_NNN_ but as an integer literal;

	urn:recordId - the property for record id (the value from the first column that creates an OpenRefine record);

	urn:hasRow - the property that links records to rows.

Example

Refine table

[image: _images/ontoRefine-record-table.png]

RDF data

SELECT ?s ?p ?o
WHERE {
 ?s ?p ?o .
} LIMIT 50

[image: _images/ontoRefine-record-view.png]

RDFising data

You can transform your data in the OntoRefine SPARQL endpoint or directly in the GraphDB SPARQL endpoint using a CONSTRUCT query.

Using CONSTRUCT query in the OntoRefine SPARQL endpoint

GraphDB 8.O supports SPIN [http://spinrdf.org/] functions:

	SPARQL functions for splitting a string

	SPARQL functions for parsing dates

	SPARQL functions for encoding URIs

Parsing dates and encoding URIs

prefix spif: <http://spinrdf.org/spif#>
prefix pres: <http://example.com/president/>
A CONSTRUCT query that maps the raw RDF data from OntoRefine to user-specified
RDF data (different IRIs, types, property names and dates as date-typed literals)
construct {
 ?presidentIRI a pres:President ;
 pres:tookOffice ?tookOfficeParsed ;
 pres:leftOffice ?leftOfficeParsed ;
 pres:nominatedBy ?party ;
 pres:homeState ?stateIRI
} where {
 ?presidentRow a <urn:Row> ;
 <urn:col:President> ?president ;
 <urn:col:Presidency> ?presidency ;
 <urn:col:Took_office> ?tookOffice ;
 <urn:col:Took_office> ?leftOffice ;
 <urn:col:Party> ?party ;
 <urn:col:Home_State> ?state .
 # Uses SPIN function to parse the dates
 bind(spif:parseDate(?tookOffice, "dd/MM/yyyy") as ?tookOfficeParsed)
 bind(spif:parseDate(?leftOffice, "dd/MM/yyyy") as ?leftOfficeParsed)
 # Uses several functions to construct IRIs for the presidents and their states
 bind(iri(concat("http://example.com/", spif:encodeURL(?president))) as ?presidentIRI)
 bind(iri(concat("http://example.com/", spif:encodeURL(?state))) as ?stateIRI)
}

[image: _images/ontoRefine-parsing-dates.png]

Splitting content in a cell

PREFIX spif: <http://spinrdf.org/spif#>
select ?m ?genres
where {
 ?m a <urn:Row> ;
 <urn:col:genres> ?genres .
}

[image: _images/ontoRefine-splitting-cells1.png]
PREFIX spif: <http://spinrdf.org/spif#>
construct {
 ?m a <urn:Movie> ;
 <urn:hasGenre> ?genre
} where {
 ?m a <urn:Row> ;
 <urn:col:genres> ?genres .
 ?genre spif:split (?genres "\\|")
}

[image: _images/ontoRefine-splitting-cells2.png]

Using CONSTRUCT query in the GraphDB SPARQL endpoint

The same queries can be executed in the GraphDB SPARQL endpoint. It is almost the same as executing the query in the OntoRefine SPARQL editor but you have to use SERVICE to connect to OntoRefine’s SPARQL endpoint.

	Click the link in the OntoRefine window to get the actual endpoint for your project.

[image: _images/ontoRefine-sparql-endpoint-permalink.png]

	Go to GraphDB SPARQL menu.

	Execute the query.

prefix spif: <http://spinrdf.org/spif#>
prefix pres: <http://example.com/president/>
A CONSTRUCT query that maps the raw RDF data from OntoRefine to user-specified
RDF data (different IRIs, types, property names and dates as date-typed literals)
construct {
 ?presidentIRI a pres:President ;
 pres:tookOffice ?tookOfficeParsed ;
 pres:leftOffice ?leftOfficeParsed ;
 pres:nominatedBy ?party ;
 pres:homeState ?stateIRI
 } where {
 # Uses SERVICE to fetch the raw RDF data from OntoRefine
 service <http://localhost:7200/rdf-bridge/1502952420990> {
 ?presidentRow a <urn:Row> ;
 <urn:col:President> ?president ;
 <urn:col:Presidency> ?presidency ;
 <urn:col:Took_office> ?tookOffice ;
 <urn:col:Took_office> ?leftOffice ;
 <urn:col:Party> ?party ;
 <urn:col:Home_State> ?state .
 }
 # Uses SPIN function to parse the dates
 bind(spif:parseDate(?tookOffice, "dd/MM/yyyy") as ?tookOfficeParsed)
 bind(spif:parseDate(?leftOffice, "dd/MM/yyyy") as ?leftOfficeParsed)
 # Uses several functions to construct IRIs for the presidents and their states
 bind(iri(concat("http://example.com/", spif:encodeURL(?president))) as ?presidentIRI)
 bind(iri(concat("http://example.com/", spif:encodeURL(?state))) as ?stateIRI)
 }

	The result will be:

[image: _images/graphdb-sparql-parsing-dates.png]

Importing data in GraphDB

When you are satisfied with the transformation of your data, you can import it in the current repository without leaving the GraphDB Workbench.

	Click the link in the OntoRefine window to get the actual endpoint for your project.

[image: _images/ontoRefine-sparql-endpoint-permalink.png]

	Go to GraphDB SPARQL menu.

	Execute the query to import the results.

Hint

The query is the same as the previous one. You only have to change CONSTRUCT to INSERT. Instead of showing the RDF, GraphDB will insert it into the current repository.

prefix spif: <http://spinrdf.org/spif#>
prefix pres: <http://example.com/president/>
An INSERT query that maps the raw RDF data from OntoRefine to user-specified
RDF data (different IRIs, types, property names and dates as date-typed literals)
and inserts the data into the current GraphDB repository.
insert {
 ?presidentIRI a pres:President ;
 pres:tookOffice ?tookOfficeParsed ;
 pres:leftOffice ?leftOfficeParsed ;
 pres:nominatedBy ?party ;
 pres:homeState ?stateIRI
} where {
 # Uses SERVICE to fetch the raw RDF data from OntoRefine
 service <http://localhost:8081/rdf-bridge/1738437518153> {
 ?presidentRow a <urn:Row> ;
 <urn:col:President> ?president ;
 <urn:col:Presidency> ?presidency ;
 <urn:col:Took_office> ?tookOffice ;
 <urn:col:Took_office> ?leftOffice ;
 <urn:col:Party> ?party ;
 <urn:col:Home_State> ?state .
 }
 # Uses SPIN function to parse the dates
 bind(spif:parseDate(?tookOffice, "dd/MM/yyyy") as ?tookOfficeParsed)
 bind(spif:parseDate(?leftOffice, "dd/MM/yyyy") as ?leftOfficeParsed)
 # Uses several functions to construct IRIs for the presidents and their states
 bind(iri(concat("http://example.com/", spif:encodeURL(?president))) as ?presidentIRI)
 bind(iri(concat("http://example.com/", spif:encodeURL(?state))) as ?stateIRI)
}

Additional Resources

	OpenRefine Documentation [http://openrefine.org/documentation.html]

	OpenRefine Documentation for Users [https://github.com/OpenRefine/OpenRefine/wiki/Documentation-For-Users]

	OpenRefine Tutorial [http://enipedia.tudelft.nl/wiki/OpenRefine_Tutorial]

	Tutorial: OpenRefine, By Atima Han Zhuang Ishita Vedvyas Rishikesh Dole [http://casci.umd.edu/wp-content/uploads/2013/12/OpenRefine-tutorial-v1.5.pdf]

	Google Refine Tutorial, by David Huynh, Ph.D. [http://enipedia.tudelft.nl/enipedia/images/d/d0/David_Fran%C3%A7ois_Huynh-Google_Refine-tutorial.pdf]

Loading data using the LoadRDF tool

The LoadRDF tool is an OFFLINE tool, designed for fast loading of large data sets. It cannot be used against a running server. Rationale for an offline tool is to achieve an optimal performance for loading large amounts of RDF data by directly serializing them into GraphDB’s internal indexes and producing a ready to use repository.

The LoadRDF tool resides in the bin/ folder of the GraphDB distribution. It loads data in a new repository, created from the workbench or the standard configuration turtle file found in configs/templates, or uses an existing repository. In the latter case, the repository data is automatically overwritten.

Warning

During the bulk load, the GraphDB plugins are ignored, in order to speed up the process. Afterwards, when the server is started, the plugin data can be rebuilded.

What’s in this document?

	Command Line Options

	Procedure
	Initial load using the workbench

	Initial load using a config file

	Initial load into an independent data location

	A GraphDB Repository Configuration Sample

	Tuning LoadRDF

Command Line Options

usage: loadrdf [OPTION]... [FILE]...
Loads data in a newly created repository or overwrites an existing one.
 -c,--configFile <file_path> repo definition .ttl file
 -f,--force overwrite existing repo
 -i,--id <repository-id> existing repository id
 -m,--mode <serial|parallel> singlethread | multithread parse/load/infer
 -p,--partialLoad allow partial load of file that contains
 corrupt line
 -s,--stopOnFirstError stop process if the dataset contains a
 corrupt file

The mode specifies the way the data is loaded in the repository:

	serial - parsing is followed by entity resolution, which is then followed by load, optionally followed by inference, all done in a single thread.

	parallel - using multi-threaded parse, entity resolution, load and inference. This gives a significant boost when loading large data sets with enabled inference.

Note

The LoadRDF Tool supports .zip and .gz files, and directories. If specified, the directories can be processed recursively.

Procedure

There are several typical use-cases for loading data with the LoadRDF tool:

Initial load using the workbench

	Configure LoadRDF repositories location by setting the property graphdb.home.data in <graphdb_dist>/conf/graphdb.properties. If no property is set, the default repositories location will be: <graphdb_dist>/data.

	Start GraphDB.

	Start a browser and go to the Workbench Web application using a
URL of this
form: http://localhost:7200.
- substituting localhost and the 7200 port number as
appropriate.

	Set up a valid license for the GraphDB.

	Go to Setup-> Repositories.

	Create and configure a repository.

	Shut down GraphDB.

	
	Start the bulk load with following command:

	$ <graphdb-dist>/bin/loadrdf -f -i <repo-name> -m parallel <RDF data file(s)>

$ <graphdb-dist>/bin/loadrdf -f -i <repo-name> -m serial <RDF data file(s)>

	Start GraphDB.

Initial load using a config file

	Stop GraphDB.

	Configure LoadRDF repositories location by setting the property graphdb.home.data in <graphdb_dist>/conf/graphdb.properties. If no property is set, the default repositories location will be: <graphdb_dist>/data.

	Create a configuration file.

	Make sure that a valid license has been configured for the LoadRDF tool.

	
	Start the bulk load with following command:

	$ <graphdb-dist>/bin/loadrdf -c <repo-config.ttl> -m parallel <RDF data file(s)>

$ <graphdb-dist>/bin/loadrdf -c <repo-config.ttl> -m serial <RDF data file(s)>

	Start GraphDB.

Initial load into an independent data location

Note

It does not depend on whether GraphDB server is running or not.

	Change the graphdb.home.data location by setting the property graphdb.home.data in <graphdb_dist>/conf/graphdb.properties.

	
	Start the bulk load with following command (this load will read the changed configuration without influencing the running server):

	$ <graphdb-dist>/bin/loadrdf -c <repo-config.ttl> -m parallel <RDF data file(s)>

$ <graphdb-dist>/bin/loadrdf -c <repo-config.ttl> -m serial <RDF data file(s)>

	Restore graphdb.home.data original location.

	
	Choose a repository where you want to deploy the loaded repository or create one using the same <repo-config.ttl> configuration.

	
Note

In case, you choose an existing repository, make sure it is not active and have the same <repo-config.ttl> configuration.

	Replace the repository’s data (/storage directory) with the corresponding loaded /storage directory.

A GraphDB Repository Configuration Sample

Example configuration template, using minimal parameters set. However, you can add more optional parameters from the configs/templates example:

#
Configuration template for an GraphDB-Free repository
#
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix rep: <http://www.openrdf.org/config/repository#>.
@prefix sr: <http://www.openrdf.org/config/repository/sail#>.
@prefix sail: <http://www.openrdf.org/config/sail#>.
@prefix owlim: <http://www.ontotext.com/trree/owlim#>.

[] a rep:Repository ;
 rep:repositoryID "repo-test-1" ;
 rdfs:label "My first test repo" ;
 rep:repositoryImpl [
 rep:repositoryType "graphdb:FreeSailRepository" ;
 sr:sailImpl [
 sail:sailType "graphdb:FreeSail" ;

 # i want inference
 owlim:ruleset "owl-horst-optimized" ;

 # disable context index(because my data do not uses contexts)
 owlim:enable-context-index "false" ;

 # nice to have, will speedup the future queries
 owlim:enablePredicateList "true" ;
 owlim:enable-literal-index "true" ;
 owlim:in-memory-literal-properties "true" ;
]
].

Tuning LoadRDF

The LoadRDF tool accepts java command line options, using -D. To change them, edit the command line script.

The following options can tune the behaviour of the parallel loading:

	-Dpool.buffer.size - the buffer size (the number of statements) for each stage. Defaults to 200,000 statements. You can use this parameter to tune the memory usage and the overhead of inserting data:
	less buffer size reduces the memory required;

	bigger buffer size reduces the overhead as the operations performed by threads have a lower probability to wait for the operations on which they rely and the CPU is intensively used most of the time.

	-Dinfer.pool.size - the number of inference threads in parallel mode. The default value is the number of cores of the machine processor or 4, as set in the command line scripts. A bigger pool theoretically means faster load if there are enough unoccupied cores and the inference does not wait for the other load stages to complete.

Exploring data

What’s in this document?

	Class hierarchy
	Explore your data - different actions

	Domain-range graph

	Class relationships

	Viewing and editing resources
	View and add a resource

	Edit a resource

Class hierarchy

To explore your data, navigate to Explore -> Class hierarchy. You can see a diagram depicting the hierarchy of the imported RDF classes by the number of instances. The biggest circles are the parent classes and the nested ones are their children.

Note

If your data has no ontology (hierarchy), the RDF classes is visualised as separate circles, instead of nested ones.

[image: _images/rdf-class-hierarchy-diagram-dbpedia.png]

Explore your data - different actions

	To see what classes each parent has, hover over the nested circles.

	To explore a given class, click its circle. The selected class is highlighted with a dashed line and a side panel with its instances opens for further exploration. For each RDF class you can see its local name, URI and a list of its first 1000 class instances. The class instances are represented by their URIs, which when clicked lead to another view, where you can further explore their metadata.

[image: _images/rdf-class-hierarchy-diagram-selected-class-dbpedia.png]

The side panel includes the following:

	Local name;

	URI (Press Ctrl+C / Cmd+C to copy to clipboard and Enter to close);

	Domain-Range Graph button;

	Class instances count;

	Scrollable list of the first 1000 class instances;

	View Instances in SPARQL View button. It redirects to the SPARQL view and executes an auto-generated query that lists all class instances without LIMIT.

	To go to the Domain-Range Graph diagram, double click a class circle or the Domain-Range Graph button from the side panel.

	To explore an instance, click its URI from the side panel.

[image: _images/rdf-class-hierarchy-diagram-class-instance-resource-view-dbpedia.png]

	To adjust the number of classes displayed, drag the slider on the left-hand side of the screen. Classes are sorted by the maximum instance count and the diagram displays only the current slider value.

[image: _images/rdf-class-hierarchy-diagram-slider-low-value-dbpedia.png]

	To administer your data view, use the toolbar options on the right-hand side of the screen.

[image: _images/rdf-class-hierarchy-diagram-toolbar.png]

	To see only the class labels, click the Hide/Show Prefixes. You can still view the prefixes when you hover over the class that interests you.

[image: _images/rdf-class-hierarchy-diagram-no-prefix-classes-dbpedia.png]

	To zoom out of a particular class, click the Focus diagram home icon.

	To reload the data on the diagram, click the Reload diagram icon. This is recommended when you have updated the data in your repository or you experience some strange behaviour, for example you cannot see a given class.

	To export the diagram as an .svg image, click the Export Diagram download icon.

Domain-range graph

To see all properties of a given class as well as their domain and range, double click its class circle or the Domain-Range Graph button from the side panel. The RDF Domain-Range Graph view opens, enabling you to further explore the class connectedness by clicking the green nodes (object property class).

[image: _images/rdf-domain-range-graph-diagram-dbpedia.png]

	To administer your graph view, use the toolbar options on the right-hand side of the screen.

[image: _images/rdf-domain-range-graph-diagram-toolbar.png]

	To go back to your class in the RDF Class hierarchy, click the Back to Class hierarchy diagram button.

	To export the diagram as an .svg image, click the Export Diagram download icon.

Class relationships

To explore the relationships between the classes, navigate to Explore -> Class relationships. You can see a complicated diagram which by default is showing only the top relationships. Each of them is a bundle of links between the individual instances of two classes. Each link is an RDF statement where the subject is an instance of one class, the object is an instance of another class, and the link is the predicate. Depending on the number of links between the instances of two classes, the bundle can be thicker or thinner and gets the color of the class with more incoming links. These links can be in both directions. Note that contrary to the Class hierarchy, the Class relationships diagram is based on the real statements between classes, not on the Ontology schema.

In the example below, you can see that Person is the class with the biggest number of links. It is very strongly connected to Feature and City and most of the links are from Person. Also, you notice that all classes have many outgoing links to opengis:_Feature.

[image: _images/dependencies.png]
Left to the diagram you can see a list of all classes ordered by the links they have and an indicator of the direction of the links. Click on it to see the actual classes this class is linked to, again ordered by the number of links with the actual number shown. Also, the direction of the links is displayed.

[image: _images/dependencies-menu.png]
Use the list of classes to control which classes to see in the diagram with the add/remove icons next to each class. Remove all classes by the rubber icon. The green background of a class indicates that the class is present in the diagram. You see that Person has much more connections to City than Village.

[image: _images/dependencies-add-class.png]
For each two classes in the diagram you can find the top predicates that connect them, again ordered and with the number of statements of this predicate and instances of these classes. Person is linked to City by the birthPlace and deathPlace predicates.

[image: _images/dependencies-predicates.png]
All these statistics are built on top of the whole repository so when you have a lot of data, the building of the diagram may be very slow. Please, be patient in that case.

Viewing and editing resources

View and add a resource

To view a resource in the repository, go to Explore -> View resource and
enter the URI of a resource or navigate to it by clicking the SPARQL
results links.

[image: _images/resourceFind.png]
Viewing resources provides an easy way to see triples where a given URI is the subject, predicate or object.

[image: _images/resourceView.png]
Even when the resource is not in the database, you can still add it from the resource view.

[image: _images/resourceFindNew.png]
[image: _images/resourceNew.png]
Here, you can create as many triples as you need for it, using the resource edit. To add a triple, fill in the necessary fields and click the tick, next to the last one.

[image: _images/resourceEditNew.png]
To view the new statements in TriG, click the View TriG button.

[image: _images/resourceViewTriG-1.png]
[image: _images/resourceViewTriG-2.png]
When ready, save the new resource to the repository.

Edit a resource

Once you open a resource in View resource, you can also edit it. Click
the edit icon next to the resource namespace and add, change or delete
the properties of this resource.

[image: _images/resourceEditExisting.png]

Note

You cannot change or delete the inferred statements.

Querying Data

To manage and query your data, click the SPARQL menu. The SPARQL view integrates the YASGUI [http://about.yasgui.org/] query editor plus some additional features, which are described below.

Hint

SPARQL is a SQL-like query language for RDF graph databases with the
following types:

	SELECT - returns tabular results;

	CONSTRUCT - creates a new RDF graph based on query results;

	ASK - returns “YES”, if the query has a solution, otherwise
“NO”;

	DESCRIBE - returns RDF data about a resource; useful when you
do not know the RDF data structure in the data source;

	INSERT - inserts triples into a graph;

	DELETE - deletes triples from a graph.

The SPARQL editor offers two viewing/editing modes - horizontal and vertical.

[image: _images/sparql.png]
Use the vertical mode switch to show the editor and the results next
to each other, which is particularly useful on wide screen. Click the
switch again to return to horizontal mode.

[image: _images/sparqlVertical.png]
Both in horizontal and vertical mode, you can also hide the editor or
the results to focus on query editing or result viewing. Click the
buttons Editor only, Editor and results or Results only to
switch between the different modes.

	Manage your data by writing queries in the text area. It offers syntax highlighting and namespace autocompletion for easy reading and writing.

Tip

To add/remove namespaces, go to Data -> Namespaces.

	Include or exclude inferred statements in the results by clicking the >>-like icon. When inferred statements are included, both elements of the arrow icon are the same colour (ON), otherwise the left element is dark and the right one is greyed out (OFF).

	Execute the query by clicking the Run button or use Ctrl/Cmd + Enter.

Tip

You can find other useful shortcuts in the keyboard shortcuts link in the lower right corner of the SPARQL editor.

	The results can be viewed in different formats according to the type of the query. By default, they are displayed as a table. Other options are Raw response, Pivot table and Google Charts. You can order the results by column values and filter them by table values. The total number of results and the query execution time are displayed in the query results header.

Note

The total number of results is obtained by an async request with a default-graph-uri parameter and the value http://www.ontotext.com/count.

	Navigate through all results by using pagination (SPARQL view can only show a limited number of results at a time). Each page executes the query again with query limit and offset for SELECT queries. For graph queries (CONSTRUCT and DESCRIBE), all results are fetched by the server and only the page of interest is gathered from the results iterator and sent to the client.

	The query results are limited to 1000, since your browser cannot handle an infinite number of results. Obtain all results by using Download As and select the required format for the data (JSON, XML, CSV, TSV and Binary RDF for Select queries and all RDF formats for Graph query results).

	Use the editor’s tabs to keep several queries opened, while working with GraphDB. The queries are saved in your browser’s local storage, so you can return to them even after switching views.

	Save your query with the Create saved query icon.

	Access existing saved queries from the Show saved queries icon (saved queries are persisted on the server running the Workbench).

	Copy your query as a URL by clicking the Get URL to current query icon. For a longer query, first save it and then get a link to the saved query by opening the saved queries list and clicking the respective Get URL to query icon.

Exporting data

What’s in this document?

	Exporting a repository

	Exporting individual graphs

	Exporting query results

	Exporting resources

Data can be exported in several ways and formats.

Exporting a repository

	Go to Explore/Graphs overview.

	Click Export repository button and then the format that fits your needs.

[image: _images/Export.png]

Exporting individual graphs

	Go to Explore/Graphs overview.

	Filter the list of contexts (graphs) in a repository to find the one you interested in.

	Inspect its triples by clicking it.

	Delete a graph by clicking the bucket icon.

	Or click the format that fits your needs to download the graph.

[image: _images/contexts.png]

Exporting query results

The SPARQL query results can also be exported from the SPARQL view by clicking Download As.

Exporting resources

From the resource description page, export the RDF triples that make up
the resource description to JSON, JSON-LD, RDF-XML, N3/Turtle and
N-Triples:

[image: _images/resourceDownload.png]

Using the Workbench REST API

What’s in this document?

	Security management

	Location management

	Repository management

	Data import

	Saved queries

The Workbench REST API can be used to automate
various tasks without having to resort to opening the Workbench in a
browser and doing them manually.

The REST API calls fall into six major categories:

Security management

Use the security management API to add, edit or remove users, thus
integrating the Workbench security into an existing system.

Location management

Use the location management API to attach, activate, edit, or detach
locations.

Repository management

Use the repository management API to add, edit or remove a repository to/from
any attached location. Unlike the RDF4J API, you can work with multiple
remote locations from a single access point. When combined with the
location management, it can be used to automate the creation of multiple
repositories across your network.

Data import

Use the data import API to import data in GraphDB. You can choose between
server files and a remote URL.

Saved queries

Use the saved queries API to create, edit or remove saved queries. It is
a convenient way to automate the creation of saved queries that are
important to your project.

You can find more information about each REST API in Setup -> REST API
Documentation, as well as execute them directly from there and see the
results.

[image: _images/swagger.png]

Using GraphDB with the RDF4J API

What’s in this document?

	RDF4J API
	Accessing a local repository

	Accessing a remote repository

	SPARQL endpoint

	Graph Store HTTP Protocol

This section describes how to use the RDF4J API to create and access GraphDB
repositories, both on the local file-system and remotely via the RDF4J
HTTP server.

RDF4J comprises a large collection of libraries, utilities and APIs.
The important components for this section are:

	the RDF4J classes and interfaces (API), which provide a uniform access
to the SAIL components from multiple vendors/publishers;

	the RDF4J server application.

RDF4J API

Programmatically, GraphDB can be used via the RDF4J Java framework of
classes and interfaces. Documentation for these interfaces (including
Javadoc [http://rdf4j.org/javadoc/2.0/]). Code snippets in the
following sections are taken from (or are variations of) the
developer-getting-started examples, which come with the GraphDB
distribution.

Accessing a local repository

With RDF4J 2, repository configurations are represented as RDF
graphs. A particular repository configuration is described as a
resource, possibly a blank node, of type:
http://www.openrdf.org/config/repository#Repository.

This resource has an id, a label and an implementation, which in
turn has a type, SAIL type, etc. A short repository configuration is taken
from the developer-getting-started template file repo-defaults.ttl

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix rep: <http://www.openrdf.org/config/repository#>.
@prefix sr: <http://www.openrdf.org/config/repository/sail#>.
@prefix sail: <http://www.openrdf.org/config/sail#>.
@prefix owlim: <http://www.ontotext.com/trree/owlim#>.

[] a rep:Repository ;
 rep:repositoryID "graphdb-repo" ;
 rdfs:label "GraphDB Getting Started" ;
 rep:repositoryImpl [
 rep:repositoryType "openrdf:SailRepository" ;
 sr:sailImpl [
 sail:sailType "graphdb:FreeSail" ;
 owlim:ruleset "owl-horst-optimized" ;
 owlim:storage-folder "storage" ;
 owlim:base-URL "http://example.org/owlim#" ;
 owlim:repository-type "file-repository" ;
 owlim:imports "./ontology/owl.rdfs" ;
 owlim:defaultNS "http://example.org/owlim#" .
]
].

The Java code that uses the configuration to instantiate a repository
and get a connection to it is as follows:

// Instantiate a local repository manager and initialize it
RepositoryManager repositoryManager = new LocalRepositoryManager(new File("."));
repositoryManager.initialize();

// Instantiate a repository graph model
TreeModel graph = new TreeModel();

// Read repository configuration file
InputStream config = EmbeddedGraphDB.class.getResourceAsStream("/repo-defaults.ttl");
RDFParser rdfParser = Rio.createParser(RDFFormat.TURTLE);
rdfParser.setRDFHandler(new StatementCollector(graph));
rdfParser.parse(config, RepositoryConfigSchema.NAMESPACE);
config.close();

// Retrieve the repository node as a resource
Resource repositoryNode = GraphUtil.getUniqueSubject(graph, RDF.TYPE, RepositoryConfigSchema.REPOSITORY);

// Create a repository configuration object and add it to the repositoryManager
RepositoryConfig repositoryConfig = RepositoryConfig.create(graph, repositoryNode);
repositoryManager.addRepositoryConfig(repositoryConfig);

// Get the repository from repository manager, note the repository id set in configuration .ttl file
Repository repository = repositoryManager.getRepository("graphdb-repo");

// Open a connection to this repository
RepositoryConnection repositoryConnection = repository.getConnection();

// ... use the repository

// Shutdown connection, repository and manager
repositoryConnection.close();
repository.shutDown();
repositoryManager.shutDown();

The procedure is as follows:

	Instantiate a local repository manager with the data directory to use
for the repository storage files (repositories store their data
in their own subdirectory from here).

	Add a repository configuration for the desired repository type to the
manager.

	‘Get’ the repository and open a connection to it.

From then on, most activities will use the connection object to interact
with the repository, e.g., executing queries, adding statements,
committing transactions, counting statements, etc. See the
developer-getting-started examples.

Note

Example above assumes that GraphDB-Free edition is used. If using Standard or Enterprise
editions, a valid license file should be set to the system property graphdb.license.file

Accessing a remote repository

The RDF4J server is a Web application that allows interaction with
repositories using the HTTP protocol. It runs in a JEE compliant servlet
container, e.g., Tomcat, and allows client applications to interact with
repositories located on remote machines. In order to connect to and use
a remote repository, you have to replace the local repository manager
for a remote one. The URL of the RDF4J server must be provided, but no
repository configuration is needed if the repository already exists on
the server. The following lines can be added to the developer-getting-started
example program, although a correct URL must be specified:

RepositoryManager repositoryManager =
 new RemoteRepositoryManager("http://192.168.1.25:7200");
repositoryManager.initialize();

The rest of the example program should work as expected, although the
following library files must be added to the class-path:

	commons-httpclient-3.1.jar

	commons-codec-1.10.jar

SPARQL endpoint

The RDF4J HTTP server is a fully fledged SPARQL endpoint - the RDF4J
HTTP protocol is a superset of the SPARQL 1.1
protocol [http://www.w3.org/TR/sparql11-protocol/]. It provides an
interface for transmitting SPARQL queries and updates to a SPARQL
processing service and returning the results via HTTP to the entity that
requested them.

Any tools or utilities designed to interoperate with the SPARQL protocol
will function with GraphDB because it exposes a sparql compliant endpoint.

Graph Store HTTP Protocol

The Graph Store HTTP Protocol is fully supported for direct and indirect
graph names. The SPARQL 1.1 Graph Store HTTP
Protocol [http://www.w3.org/TR/sparql11-http-rdf-update/] has the
most details, although further information can be found in the RDF4J Server REST API [http://rdf4j.org/doc/the-rdf4j-server-rest-api/#Graph_Store_support].

This protocol supports the management of RDF statements in named graphs
in the REST style, by providing the ability to get, delete, add to or
overwrite statement in named graphs using the basic HTTP methods.

Additional indexing

	Autocomplete index

	GeoSPARQL support

Autocomplete index

What’s in this document?

	Autocomplete in the SPARQL editor

	Autocomplete in the View resource

The Autocomplete index offers suggestions for the URIs local names in the SPARQL editor and the View Resource page.

It is disabled by default. Go to Setup -> Autocomplete to enable it. GraphDBD indexes all URIs in the repository by splitting their local names into words, for example, subPropertyOf is split into sub+Property+Of. This way, when you search for a word, the Autocomplete finds URIs with local names containing the symbols that you typed in the editor.

[image: _images/autocompleteEnable.png]
If you get strange results and you think the index is broken, use the Build Now button.

[image: _images/autocompleteBuildNow.png]
If you try to use autocompletion before it is enabled, a tooltip warns you that the autocomplete index is off and provides a link for building the index.

[image: _images/autocompleteEnableLink.png]

Autocomplete in the SPARQL editor

To start autocompletion in the SPARQL editor, use the shortcuts Alt+Enter / Ctrl+Space / Cmd+Space depending on your OS and the way you have set up your shortcuts. You can use autocompletion to:

	search in all URIs

[image: _images/autocompleteNoPrefix.png]

	search only for URIs that start with a certain prefix

[image: _images/autocompletePub.png]

	search for more than one word

Tip

Just start writing the words one after another without spaces, e.g., “pngOnto”, and the index smartly splits them.

[image: _images/autocomplete_moreThanOneWord.png]

	search for numbers

[image: _images/autocompleteNumber.png]

Autocomplete in the View resource

To use the autocompletion feature to find a resource, go to Explore -> View resource and start typing.

[image: _images/autocompleteResource.png]

GeoSPARQL support

What’s in this document?

	What is GeoSPARQL

	Usage
	Plugin control predicates

	GeoSPARQL predicates

What is GeoSPARQL

GeoSPARQL is a standard for representing and querying geospatial linked data for the Semantic Web from the Open Geospatial Consortium (OGC) [http://www.opengeospatial.org/].The standard provides:

	a small topological ontology in RDFS/OWL for representation using Geography Markup Language
(GML) [https://en.wikipedia.org/wiki/Geography_Markup_Language] and Well-Known Text
(WKT) [https://en.wikipedia.org/wiki/Well-known_text] literals;

	Simple Features, RCC8, and DE-9IM (a.k.a. Egenhofer) topological relationship vocabularies and ontologies for qualitative reasoning;

	a SPARQL query interface using a set of topological SPARQL extension functions for quantitative reasoning.

The following is a simplified diagram of some geometry classes and properties:

[image: _images/GeoSPARQL-geometry.png]

Usage

Plugin control predicates

The plugin allows you to configure it through SPARQL UPDATE queries with embedded control predicates.

Enable plugin

When the plugin is enabled, it indexes all existing GeoSPARQL data in the repository and automatically reindexes any updates.

PREFIX : <http://www.ontotext.com/plugins/geosparql#>

INSERT DATA {
 _:s :enabled "true" .
}

Disable plugin

When the plugin is disabled, it does not index any data or process updates. It does not handle any of the GeoSPARQL predicates either.

PREFIX : <http://www.ontotext.com/plugins/geosparql#>

INSERT DATA {
 _:s :enabled "false" .
}

Force reindex GeoSPARQL geometry data

This configuration option is usually used when index files are either corrupted or have been mistakenly deleted.

PREFIX : <http://www.ontotext.com/plugins/geosparql#>

INSERT DATA {
 _:s :forceReindex ""
}

GeoSPARQL predicates

The following are some examples of select queries on geographic data.

For demo purposes, just import the following files:

	geosparql-simple-features-geometries.rdf

	geosparql-example.rdf

and run the following queries on them:

Example 1

PREFIX my: <http://example.org/ApplicationSchema#>
PREFIX geo: <http://www.opengis.net/ont/geosparql#>
PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT ?f
WHERE {
 my:A my:hasExactGeometry ?aGeom .
 ?aGeom geo:asWKT ?aWKT .
 ?f my:hasExactGeometry ?fGeom .
 ?fGeom geo:asWKT ?fWKT .
 FILTER (geof:sfContains(?aWKT, ?fWKT) && !sameTerm(?aGeom, ?fGeom))
}

Example 2

PREFIX my: <http://example.org/ApplicationSchema#>
PREFIX geo: <http://www.opengis.net/ont/geosparql#>
PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT ?f
WHERE {
 ?f my:hasPointGeometry ?fGeom .
 ?fGeom geo:asWKT ?fWKT .
 FILTER (geof:sfWithin(?fWKT, '''
 <http://www.opengis.net/def/crs/OGC/1.3/CRS84>
 Polygon ((-83.4 34.0, -83.1 34.0, -83.1 34.2, -83.4 34.2, -83.4 34.0))
 '''^^geo:wktLiteral))
}

Example 3

PREFIX my: <http://example.org/ApplicationSchema#>
PREFIX geo: <http://www.opengis.net/ont/geosparql#>
PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT ?f
WHERE {
 ?f my:hasExactGeometry ?fGeom .
 ?fGeom geo:asWKT ?fWKT .
 my:A my:hasExactGeometry ?aGeom .
 ?aGeom geo:asWKT ?aWKT .
 my:D my:hasExactGeometry ?dGeom .
 ?dGeom geo:asWKT ?dWKT .
 FILTER (geof:sfTouches(?fWKT, geof:union(?aWKT, ?dWKT)))
}

Example 4

PREFIX uom: <http://www.opengis.net/def/uom/OGC/1.0/>
PREFIX my: <http://example.org/ApplicationSchema#>
PREFIX geo: <http://www.opengis.net/ont/geosparql#>
PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT ?f
WHERE {
 my:C my:hasExactGeometry ?cGeom .
 ?cGeom geo:asWKT ?cWKT .
 ?f my:hasExactGeometry ?fGeom .
 ?fGeom geo:asWKT ?fWKT .
 FILTER (?fGeom != ?cGeom)
} ORDER BY ASC(geof:distance(?cWKT, ?fWKT, uom:metre)) LIMIT 3

Example 5

PREFIX geo: <http://www.opengis.net/ont/geosparql#>
PREFIX my: <http://example.org/ApplicationSchema#>

SELECT ?f
WHERE {
 ?f geo:sfOverlaps my:AExactGeom
}

Example 6

Note

Using geometry literals in the object position is a GraphDB extension and not part of the GeoSPARQL specification.

PREFIX geo: <http://www.opengis.net/ont/geosparql#>
PREFIX my: <http://example.org/ApplicationSchema#>

SELECT ?f
WHERE {
 ?f geo:sfOverlaps
 "Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, -83.6 34.5, -83.6 34.1))"^^geo:wktLiteral
}

Tip

For more information about GeoSPARQL predicates and functions, see the current official spec [http://www.opengis.net/doc/IS/geosparql/1.0]: OGC 11-052r4, Version: 1.0, Approval Date: 2012-04-27, Publication Date: 2012-09-10.

GraphDB connectors

	Lucene GraphDB connector

Lucene GraphDB connector

What’s in this document?

	Overview and features

	Usage

	Setup and maintenance
	Creating a connector instance
	Using the workbench

	Using the create command

	Dropping a connector instance

	Listing available connector instances
	In the Connectors management view

	With a SPARQL query

	Instance status check

	Working with data
	Adding, updating and deleting data

	Simple queries

	Combining Lucene results with GraphDB data

	Entity match score

	Basic facet queries

	Sorting

	Limit and offset

	Snippet extraction

	Total hits

	List of creation parameters
	Special field definitions
	Copy fields

	Multiple property chains per field

	Datatype mapping

	Advanced filtering and fine tuning
	Basic entity filter example

	Advanced entity filter example

	Overview of connector predicates

	Caveats
	Order of control

	Upgrading from previous versions
	Migrating from GraphDB 6.2 to 6.6

	Migrating from a pre-6.2 version

	Changes in field configuration and synchronisation

Overview and features

The GraphDB Connectors provide extremely fast normal and faceted
(aggregation) searches, typically implemented by an external component
or a service such as Lucene but have the additional benefit of staying
automatically up-to-date with the GraphDB repository data.

The Connectors provide synchronisation at the entity level, where an
entity is defined as having a unique identifier (a URI) and a set of
properties and property values. In terms of RDF, this corresponds to a
set of triples that have the same subject. In addition to simple
properties (defined by a single triple), the Connectors support
property chains. A property chain is defined as a sequence of triples
where each triple’s object is the subject of the following triple.

The main features of the GraphDB Connectors are:

	maintaining an index that is always in sync with the data stored in
GraphDB;

	multiple independent instances per repository;

	the entities for synchronisation are defined by:
	a list of fields (on the Lucene side) and property chains (on the
GraphDB side) whose values will be synchronised;

	a list of rdf:type‘s of the entities for synchronisation;

	a list of languages for synchronisation (the default is all
languages);

	additional filtering by property and value.

	full-text search using native Lucene queries;

	snippet extraction: highlighting of search terms in the search
result;

	faceted search;

	sorting by any preconfigured field;

	paging of results using offset and limit;

	custom mapping of RDF types to Lucene types;

	specifying which Lucene analyzer to use (the default is Lucene’s
StandardAnalyzer);

	stripping HTML/XML tags in literals (the default is not to strip
markup);

	boosting an entity by the numeric value of one or more
predicates;

	custom scoring expressions at query time to evaluate score based on
Lucene score and entity boost.

Each feature is described in detail below.

Usage

All interactions with the Lucene GraphDB Connector shall be done through
SPARQL queries.

There are three types of SPARQL queries:

	INSERT for creating and deleting connector instances;

	SELECT for listing connector instances and querying their
configuration parameters;

	INSERT/SELECT for storing and querying data as part of the normal
GraphDB data workflow.

In general, this corresponds to INSERT adds or modifies data and
SELECT queries existing data.

Each connector implementation defines its own URI prefix to distinguish
it from other connectors. For the Lucene GraphDB Connector, this is
http://www.ontotext.com/connectors/lucene#. Each command or predicate
executed by the connector uses this prefix, e.g.,
http://www.ontotext.com/connectors/lucene#createConnector to create a
connector instance for Lucene.

Individual instances of a connector are distinguished by unique names
that are also URIs. They have their own prefix to avoid clashing with
any of the command predicates. For Lucene, the instance prefix is
http://www.ontotext.com/connectors/lucene/instance#.

	Sample data

	All examples use the following sample data, which describes five
fictitious wines: Yoyowine, Franvino, Noirette, Blanquito and Rozova as
well as the grape varieties required to make these wines. The minimum
required ruleset level in GraphDB is RDFS.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix : <http://www.ontotext.com/example/wine#> .

:RedWine rdfs:subClassOf :Wine .
:WhiteWine rdfs:subClassOf :Wine .
:RoseWine rdfs:subClassOf :Wine .

:Merlo
 rdf:type :Grape ;
 rdfs:label "Merlo" .

:CabernetSauvignon
 rdf:type :Grape ;
 rdfs:label "Cabernet Sauvignon" .

:CabernetFranc
 rdf:type :Grape ;
 rdfs:label "Cabernet Franc" .

:PinotNoir
 rdf:type :Grape ;
 rdfs:label "Pinot Noir" .

:Chardonnay
 rdf:type :Grape ;
 rdfs:label "Chardonnay" .

:Yoyowine
 rdf:type :RedWine ;
 :madeFromGrape :CabernetSauvignon ;
 :hasSugar "dry" ;
 :hasYear "2013"^^xsd:integer .

:Franvino
 rdf:type :RedWine ;
 :madeFromGrape :Merlo ;
 :madeFromGrape :CabernetFranc ;
 :hasSugar "dry" ;
 :hasYear "2012"^^xsd:integer .

:Noirette
 rdf:type :RedWine ;
 :madeFromGrape :PinotNoir ;
 :hasSugar "medium" ;
 :hasYear "2012"^^xsd:integer .

:Blanquito
 rdf:type :WhiteWine ;
 :madeFromGrape :Chardonnay ;
 :hasSugar "dry" ;
 :hasYear "2012"^^xsd:integer .

:Rozova
 rdf:type :RoseWine ;
 :madeFromGrape :PinotNoir ;
 :hasSugar "medium" ;
 :hasYear "2013"^^xsd:integer .

Setup and maintenance

	Third-party component versions

	This version of the Lucene GraphDB Connector uses Lucene version 6.2.1.

Creating a connector instance

Creating a connector instance is done by sending a SPARQL query with the
following configuration data:

	the name of the connector instance (e.g., my_index);

	classes to synchronise;

	properties to synchronise.

The configuration data has to be provided as a JSON string
representation and passed together with the create command.

Using the workbench

	Go to Setup -> Connectors.

	Click the New Connector button in the tab of the respective Connector type you want to create.

	Fill in the configuration form.

	Execute the CREATE statement from the form by clicking OK. Alternatively, you can view its SPARQL query by clicking View SPARQL Query, and then copy it to execute it manually or integrate it in automation scripts.

[image: _images/create-connector-lucene.png]

Using the create command

The create command is triggered by a SPARQL INSERT with the
createConnector predicate, e.g., it creates a connector instance
called my_index, which synchronises the wines from the sample data
above:

PREFIX : <http://www.ontotext.com/connectors/lucene#>
PREFIX inst: <http://www.ontotext.com/connectors/lucene/instance#>

INSERT DATA {
 inst:my_index :createConnector '''
{
 "types": [
 "http://www.ontotext.com/example/wine#Wine"
],
 "fields": [
 {
 "fieldName": "grape",
 "propertyChain": [
 "http://www.ontotext.com/example/wine#madeFromGrape",
 "http://www.w3.org/2000/01/rdf-schema#label"
]
 },
 {
 "fieldName": "sugar",
 "propertyChain": [
 "http://www.ontotext.com/example/wine#hasSugar"
],
 "multivalued": false
 },
 {
 "fieldName": "year",
 "propertyChain": [
 "http://www.ontotext.com/example/wine#hasYear"
]
 }
]
}
''' .
}

The above command creates a new Lucene connector instance.

The "types" key defines the RDF type of the entities to synchronise and,
in the example, it is only entities of the type http://www.ontotext.com/example/wine#Wine
(and its subtypes). The "fields" key defines the mapping from RDF to
Lucene. The basic building block is the property chain, i.e., a sequence
of RDF properties where the object of each property is the subject of
the following property. In the example, three bits of information are
mapped - the grape the wines are made of, sugar content, and year. Each
chain is assigned a short and convenient field name: “grape”, “sugar”,
and “year”. The field names are later used in the queries.

Grape is an example of a property chain composed of more than one
property. First, we take the wine’s madeFromGrape property, the object
of which is an instance of the type Grape, and then we take the
rdfs:label of this instance. Sugar and year are both composed of a
single property that links the value directly to the wine.

Dropping a connector instance

Dropping a connector instance removes all references to its external
store from GraphDB as well as all Lucene files associated with it.

The drop command is triggered by a SPARQL INSERT with the
dropConnector predicate where the name of the connector instance has
to be in the subject position, e.g., this removes the connector
my_index:

PREFIX : <http://www.ontotext.com/connectors/lucene#>
PREFIX inst: <http://www.ontotext.com/connectors/lucene/instance#>

INSERT DATA {
 inst:my_index :dropConnector "" .
}

Listing available connector instances

In the Connectors management view

Existing Connector instances show under Existing connectors
(below the New Connector button). Click the name of an instance to view
its configuration and SPARQL query, or click the repair /
delete icons to perform these operations.

[image: _images/connectors.png]

With a SPARQL query

Listing connector instances returns all previously created instances. It
is a SELECT query with the listConnectors predicate:

PREFIX : <http://www.ontotext.com/connectors/lucene#>

SELECT ?cntUri ?cntStr {
 ?cntUri :listConnectors ?cntStr .
}

?cntUri is bound to the prefixed URI of the connector instance that
was used during creation, e.g., http://www.ontotext.com/connectors/lucene/instance#my_index>,
while ?cntStr is bound to a string, representing the part after the
prefix, e.g., "my_index".

Instance status check

The internal state of each connector instance can be queried using a
SELECT query and the connectorStatus predicate:

PREFIX : <http://www.ontotext.com/connectors/lucene#>

SELECT ?cntUri ?cntStatus {
 ?cntUri :connectorStatus ?cntStatus .
}

?cntUri is bound to the prefixed URI of the connector instance,
while ?cntStatus is bound to a string representation of the status
of the connector represented by this URI. The status is key-value based.

Working with data

Adding, updating and deleting data

From the user point of view, all synchronisation happens transparently
without using any additional predicates or naming a specific store
explicitly, i.e., you must simply execute standard SPARQL
INSERT/DELETE queries. This is achieved by intercepting all changes in
the plugin and determining which abstract documents need to be updated.

Simple queries

Once a connector instance has been created, it is possible to query data
from it through SPARQL. For each matching abstract document, the
connector instance returns the document subject. In its simplest form,
querying is achieved by using a SELECT and providing the Lucene
query as the object of the query predicate:

PREFIX : <http://www.ontotext.com/connectors/lucene#>
PREFIX inst: <http://www.ontotext.com/connectors/lucene/instance#>

SELECT ?entity {
 ?search a inst:my_index ;
 :query "grape:cabernet" ;
 :entities ?entity .
}

The result binds ?entity to the two wines made from grapes that have
“cabernet” in their name, namely :Yoyowine and :Franvino.

Note

You must use the field names you chose when you created
the connector instance. They can be identical to the property URIs
but you must escape any special characters according to what
Lucene expects.

	Get a query instance of the requested connector instance by using the
RDF notation "X a Y" (= X rdf:type Y), where X is a variable and Y is
a connector instance URI. X is bound to a query instance of the
connector instance.

	Assign a query to the query instance by using the system predicate
:query.

	Request the matching entities through the :entities predicate.

It is also possible to provide per query search options by using one or
more option predicates. The option predicates are described in detail
below.

Combining Lucene results with GraphDB data

The bound ?entity can be used in other SPARQL triples in order to build
complex queries that fetch additional data from GraphDB, for example, to
see the actual grapes in the matching wines as well as the year they
were made:

PREFIX : <http://www.ontotext.com/connectors/lucene#>
PREFIX inst: <http://www.ontotext.com/connectors/lucene/instance#>
PREFIX wine: <http://www.ontotext.com/example/wine#>

SELECT ?entity ?grape ?year {
 ?search a inst:my_index ;
 :query "grape:cabernet" ;
 :entities ?entity .
 ?entity wine:madeFromGrape ?grape .
 ?entity wine:hasYear ?year
}

The result looks like this:

	?entity
	?grape
	?year

	:Yoyowine
	:CabernetSauvignon
	2013

	:Franvino
	:Merlo
	2012

	:Franvino
	:CabernetFranc
	2012

Note

:Franvino is returned twice because it is made from two
different grapes, both of which are returned.

Entity match score

It is possible to access the match score returned by Lucene with the
score predicate. As each entity has its own score, the predicate
should come at the entity level. For example:

PREFIX : <http://www.ontotext.com/connectors/lucene#>
PREFIX inst: <http://www.ontotext.com/connectors/lucene/instance#>

SELECT ?entity ?score {
 ?search a inst:my_index ;
 :query "grape:cabernet" ;
 :entities ?entity .
 ?entity :score ?score
}

The result looks like this but the actual score might be different as it
depends on the specific Lucene version:

	?entity
	?score

	:Yoyowine
	0.9442660212516785

	:Franvino
	0.7554128170013428

Basic facet queries

Consider the sample wine data and the my_index connector instance
described previously. You can also query facets using the same instance:

PREFIX : <http://www.ontotext.com/connectors/lucene#>
PREFIX inst: <http://www.ontotext.com/connectors/lucene/instance#>

SELECT ?facetName ?facetValue ?facetCount WHERE {
 # note empty query is allowed and will just match all documents, hence no :query
 ?r a inst:my_index ;
 :facetFields "year,sugar" ;
 :facets _:f .
 _:f :facetName ?facetName .
 _:f :facetValue ?facetValue .
 _:f :facetCount ?facetCount .
}

It is important to specify the facet fields by using the facetFields
predicate. Its value is a simple comma-delimited list of field names. In
order to get the faceted results, use the facets predicate. As each
facet has three components (name, value and count), the facets predicate
binds a blank node, which in turn can be used to access the individual
values for each component through the predicates facetName,
facetValue, and facetCount.

The resulting bindings look like the following:

	facetName
	facetValue
	facetCount

	year
	2012
	3

	year
	2013
	2

	sugar
	dry
	3

	sugar
	medium
	2

You can easily see that there are three wines produced in 2012 and two
in 2013. You also see that three of the wines are dry, while two are
medium. However, it is not necessarily true that the three wines
produced in 2012 are the same as the three dry wines as each facet is
computed independently.

Sorting

It is possible to sort the entities returned by a connector query
according to one or more fields. Sorting is achieved by the orderBy
predicate the value of which is a comma-delimited list of fields. Each
field can be prefixed with a minus to indicate sorting in descending
order. For example:

PREFIX : <http://www.ontotext.com/connectors/lucene#>
PREFIX inst: <http://www.ontotext.com/connectors/lucene/instance#>

SELECT ?entity {
 ?search a inst:my_index ;
 :query "year:2013" ;
 :orderBy "-sugar" ;
 :entities ?entity .
}

The result contains wines produced in 2013 sorted according to their
sugar content in descending order:

	entity

	Rozova

	Yoyowine

By default, entities are sorted according to their matching score in
descending order.

Note

If you join the entity from the connector query to other
triples stored in GraphDB, GraphDB might scramble the order. To
remedy this, use ORDER BY from SPARQL.

Tip

Sorting by an analysed textual field works but might produce
unexpected results. Analysed textual fields are composed of tokens
and sorting uses the least (in the lexicographical sense) token. For
example, “North America” will be sorted before “Europe” because the
token “america” is lexicographically smaller than the token
“europe”. If you need to sort by a textual field and still do
full-text search on it, it is best to create a copy of the field
with the setting "analyzed":false. For more information, see
Copy fields.

Note

Unlike Lucene 4, which was used in GraphDB 6.x, Lucene 5 imposes
an additional requirement on fields used for sorting.
They must be defined with multivalued = false.

Limit and offset

Limit and offset are supported on the Lucene side of the query. This is
achieved through the predicates limit and offset. Consider this
example in which an offset of 1 and a limit of 1 are specified:

PREFIX : <http://www.ontotext.com/connectors/lucene#>
PREFIX inst: <http://www.ontotext.com/connectors/lucene/instance#>

SELECT ?entity {
 ?search a inst:my_index ;
 :query "sugar:dry" ;
 :offset "1" ;
 :limit "1" ;
 :entities ?entity .
}

The result contains a single wine, Franvino. If you execute the query
without the limit and offset, Franvino will be second in the list:

	entity

	Yoyowine

	Franvino

	Blanquito

Note

The specific order in which GraphDB returns the results
depends on how Lucene returns the matches, unless sorting is
specified.

Snippet extraction

Snippet extraction is used for extracting highlighted snippets of text that
match the query. The snippets are accessed through the dedicated
predicate snippets. It binds a blank node that in turn provides the
actual snippets via the predicates snippetField and snippetText.
The predicate snippets must be attached to the entity, as each entity
has a different set of snippets. For example, in a search for Cabernet:

PREFIX : <http://www.ontotext.com/connectors/lucene#>
PREFIX inst: <http://www.ontotext.com/connectors/lucene/instance#>

SELECT ?entity ?snippetField ?snippetText {
 ?search a inst:my_index ;
 :query "grape:cabernet" ;
 :entities ?entity .
 ?entity :snippets _:s .
 _:s :snippetField ?snippetField ;
 :snippetText ?snippetText .
}

the query returns the two wines made from Cabernet Sauvignon or Cabernet
Franc grapes as well as the respective matching fields and snippets:

	?entity
	?snippetField
	?snippetText

	:Yoyowine
	grape
	Cabernet Sauvignon

	:Franvino
	grape
	Cabernet Franc

Note

The actual snippets might be different as this depends on
the specific Lucene implementation.

It is possible to tweak how the snippets are collected/composed by using
the following option predicates:

	:snippetSize - sets the maximum size of the extracted text
fragment, 250 by default;

	:snippetSpanOpen - text to insert before the highlighted text,
by default;

	:snippetSpanClose - text to insert after the highlighted text,
 by default.

The option predicates are set on the query instance, much like the
:query predicate.

Total hits

You can get the total number of hits by using the totalHits
predicate, e.g., for the connector instance my_index and a query that
retrieves all wines made in 2012:

PREFIX : <http://www.ontotext.com/connectors/lucene#>
PREFIX inst: <http://www.ontotext.com/connectors/lucene/instance#>

SELECT ?totalHits {
 ?r a inst:my_index ;
 :query "year:2012" ;
 :totalHits ?totalHits .
}

As there are three wines made in 2012, the value 3 (of type xdd:long)
binds to ?totalHits.

List of creation parameters

The creation parameters define how a connector instance is created by
the :createConnector predicate. Some are required and some are optional.
All parameters are provided together in a JSON object, where the
parameter names are the object keys. Parameter values may be simple JSON
values such as a string or a boolean, or they can be lists or objects.

All of the creation parameters can also be set conveniently from the
Create Connector user interface in the GraphDB Workbench without any
knowledge of JSON.

	analyzer (string), optional, specifies Lucene analyser

	The Lucene Connector supports custom Analyser implementations. They may
be specified via the analyzer parameter whose value must be a fully
qualified name of a class that extends
org.apache.lucene.analysis.Analyzer. The class requires either a default
constructor or a constructor with exactly one parameter of type
org.apache.lucene.util.Version. For example, these two classes are valid
implementations:

package com.ontotext.example;

import org.apache.lucene.analysis.Analyzer;

public class FancyAnalyzer extends Analyzer {
 public FancyAnalyzer() {
 ...
 }
 ...
}

package com.ontotext.example;

import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.util.Version;

public class SmartAnalyzer extends Analyzer {
 public SmartAnalyzer(Version luceneVersion) {
 ...
 }
 ...
}

FancyAnalyzer and SmartAnalyzer can then be used by specifying their
fully qualified names, for example:

...
 "analyzer": "com.ontotext.example.SmartAnalyzer",
...

	types (list of URI), required, specifies the types of entities to sync

	The RDF types of entities to sync are specified as a list of URIs. At
least one type URI is required.

	languages (list of string), optional, valid languages for literals

	RDF data is often multilingual but you can map only some of the
languages represented in the literal values. This can be done by
specifying a list of language ranges to be matched to the language tags
of literals according to RFC 4647 [http://www.rfc-editor.org/rfc/rfc4647.txt], Section 3.3.1. Basic Filtering. In
addition, an empty range can be used to include literals that have no
language tag. The list of language ranges maps all existing literals
that have matching language tags.

	fields (list of field object), required, defines the mapping from RDF to Lucene

	The fields define exactly what parts of each entity will be synchronised
as well as the specific details on the connector side. The field is the
smallest synchronisation unit and it maps a property chain from GraphDB
to a field in Lucene. The fields are specified as a list of field
objects. At least one field object is required. Each field object has
further keys that specify details.

	
	fieldName (string), required, the name of the field in Lucene

	The name of the field defines the mapping on the connector side. It is
specified by the key fieldName with a string value. The field name is
used at query time to refer to the field. There are few restrictions on
the allowed characters in a field name but to avoid unnecessary escaping
(which depends on how Lucene parses its queries), we recommend to keep
the field names simple.

	
	propertyChain (list of URI), required, defines the property chain to reach the value

	The property chain (propertyChain) defines the mapping on the GraphDB
side. A property chain is defined as a sequence of triples where the
entity URI is the subject of the first triple, its object is the subject
of the next triple and so on. In this model, a property chain with a
single element corresponds to a direct property defined by a single
triple. Property chains are specified as a list of URIs where at least
one URI must be provided.

See Copy fields for defining multiple
fields with the same property chain.

See Multiple property chains per field for defining
a field whose values are populated from more than one property chain.

	
	defaultValue (string), optional, specifies a default value for the field

	The default value (defaultValue) provides means for specifying a default
value for the field when the property chain has no matching values in
GraphDB. The default value can be a plain literal, a literal with a
datatype (xsd: prefix supported), a literal with language, or a URI. It
has no default value.

	
	indexed (boolean), optional, default true

	If indexed, a field is available for Lucene queries. true by default.

This option corresponds to Lucene’s field option "indexed".

	
	stored (boolean), optional, default true

	Fields can be stored in Lucene and this is controlled by the Boolean
option "stored". Stored fields are required for retrieving snippets.
true by default.

This options corresponds to Lucene’s property "stored".

	
	analyzed (boolean), optional, default true

	When literal fields are indexed in Lucene, they will be analysed
according to the analyser settings. Should you require that a given
field is not analysed, you may use "analyzed". This option has no effect
for URIs (they are never analysed). true by default.

This option corresponds to Lucene’s property “tokenized”.

	
	multivalued (boolean), optional, default true

	RDF properties and synchronised fields may have more than one value. If
"multivalued" is set to true, all values will be synchronised to Lucene.
If set to false, only a single value will be synchronised. true by
default.

	
	facet (boolean), optional, default true

	Lucene needs to index data in a special way, if it will be used for
faceted search. This is controlled by the Boolean option “facet”. True
by default. Fields that are not synchronised for faceting are also not
available for faceted search.

	
	datatype (string), optional, the manual datatype override

	By default, the Lucene GraphDB Connector uses datatype of literal values
to determine how they must be mapped to Lucene types. For more
information on the supported datatypes, see
Datatype mapping.

The datatype mapping can be overridden through the parameter "datatype",
which can be specified per field. The value of "datatype" can be any of
the xsd: types supported by the automatic mapping.

Special field definitions

Copy fields

Often, it is convenient to synchronise one and the same data multiple
times with different settings to accommodate for different use cases,
e.g., faceting or sorting vs full-text search. The Lucene GraphDB
Connector has explicit support for fields that copy their value from
another field. This is achieved by specifying a single element in the
property chain of the form @otherFieldName, where otherFieldName is
another non-copy field. Take the following example:

...
 "fields": [
 {
 "fieldName": "grape",
 "propertyChain": [
 "http://www.ontotext.com/example/wine#madeFromGrape",
 "http://www.w3.org/2000/01/rdf-schema#label"
],
 "analyzed": true,
 },
 {
 "fieldName": "grapeFacet",
 "propertyChain": [
 "@grape"
],
 "analyzed": false,
 }
]
...

The snippet creates an analysed field “grape” and a non-analysed field
“grapeFacet”, both fields are populated with the same values and
“grapeFacet” is defined as a copy field that refers to the field
“facet”.

Note

The connector handles copy fields in a more optimal way
than specifying a field with exactly the same property chain as
another field.

Multiple property chains per field

Sometimes, you have to work with data models that define the same concept
(in terms of what you want to index in Lucene) with more than one
property chain, e.g., the concept of “name” could be defined as a single
canonical name, multiple historical names and some unofficial names.
If you want to index these together as a single field in Lucene
you can define this as a multiple property chains field.

Fields with multiple property chains are defined as a set of separate
virtual fields that will be merged into a single physical field
when indexed. Virtual fields are distinguished by the suffix /xyz,
where xyz is any alphanumeric sequence of convenience. For example,
we can define the fields name/1 and name/2 like this:

...
 "fields": [
 {
 "fieldName": "name/1",
 "propertyChain": [
 "http://www.ontotext.com/example#canonicalName"
],
 "fieldName": "name/2",
 "propertyChain": [
 "http://www.ontotext.com/example#historicalName"
]
 ...
 },
...

The values of the fields name/1 and name/2 will be merged
and synchronised to the field name in Lucene.

Note

You cannot mix suffixed and unsuffixed fields with the same same,
e.g., if you defined myField/new and myField/old you cannot have
a field called just myField.

Filters and fields with multiple property chains

Filters can be used with fields defined with multiple property chains.
Both the physical field values and the individual virtual field values are available:

	Physical fields are specified without the suffix, e.g., ?myField

	Virtual fields are specified with the suffix, e.g., ?myField/2 or ?myField/alt.

Note

Physical fields cannot be combined with parent() as their values
come from different property chains. If you really need to filter
the same parent level, you can rewrite parent(?myField) in (<urn:x>, <urn:y>)
as parent(?myField/1) in (<urn:x>, <urn:y>) || parent(?myField/2)
in (<urn:x>, <urn:y>) || parent(?myField/3) ... and surround it with
parentheses if it is a part of a bigger expression.

Datatype mapping

The Lucene GraphDB Connector maps different types of RDF values to
different types of Lucene values according to the basic type of the RDF
value (URI or literal) and the datatype of literals. The autodetection
uses the following mapping:

	RDF value
	RDF datatype
	Lucene type

	URI
	n/a
	StringField

	literal
	none
	TextField

	literal
	xsd:boolean
	StringField with values “true” and “false”

	literal
	xsd:double
	DoubleField

	literal
	xsd:float
	FloatField

	literal
	xsd:long
	LongField

	literal
	xsd:int
	IntField

	literal
	xsd:dateTime
	DateTools.timeToString(), second precision

	literal
	xsd:date
	DateTools.timeToString(), day precision

The datatype mapping can be affected by the synchronisation options too,
e.g., a non-analysed field that has xsd:long values is indexed with a
StringField.

Note

For any given field the automatic mapping uses the first
value it sees. This works fine for clean datasets but might lead to
problems, if your dataset has non-normalised data, e.g., the first
value has no datatype but other values have.

Advanced filtering and fine tuning

	entityFilter (string)

	The entityFilter parameter is used to fine-tune the set of entities
and/or individual values for the configured fields, based on the field
value. Entities and field values are synchronised to Lucene if, and only
if, they pass the filter. The entity filter is similar to a FILTER()
inside a SPARQL query but not exactly the same. Each configured field
can be referred to, in the entity filter, by prefixing it with a ?,
much like referring to a variable in SPARQL. Several operators are
supported:

	Operator
	Meaning
	Example

	?var in (value1, value2, ...)
	Tests if the field var‘s value is one of the specified values. Values that do not match, are treated as if they were not present in the repository.
	?status in ("active", "new")

	?var not in (value1, value2, ...)
	The negated version of the in-operator.
	?status not in ("archived")

	bound(?var)
	Tests if the field var has a valid value. This can be used to make the field compulsory.
	bound(?name)

	expr1 or expr2
	Logical disjunction of expressions expr1 and expr2.
	bound(?name) or bound(?company)

	expr1 && expr2
	Logical conjunction of expressions expr1 and expr2.
	bound(?status) && ?status in ("active", "new")

	!expr
	Logical negation of expression expr.
	!bound(?company)

	(expr)
	Grouping of expressions
	(bound(?name) or bound(?company)) && bound(?address)

Note

	?var in (...) filters the values of ?var and leaves only
the matching values, i.e., it will modify the actual data that
will be synchronised to Lucene

	bound(?var) checks if there is any valid value left after
filtering operators such as ?var in (...) have been applied

In addition to the operators, there are some constructions that can be
used to write filters based not on the values but on values related to
them:

	Accessing the previous element in the chain

	The construction parent(?var) is used for going to a previous level
in a property chain. It can be applied recursively as many times as
needed, e.g., parent(parent(parent(?var))) goes back in the chain
three times. The effective value of parent(?var) can be used with
the in or not in operator like this: parent(?company) in
(<urn:a>, <urn:b>), or in the bound operator like this: parent(bound(?var)).

	Accessing an element beyond the chain

	The construction ?var -> uri (alternatively, ?var o uri or
just ?var uri) is used for accessing additional values that are
accessible through the property uri. In essence, this construction
corresponds to the triple pattern value uri ?effectiveValue, where
?value is a value bound by the field var. The effective value of ?var
-> uri can be used with the in or not in operator like this:
?company -> rdf:type in (<urn:c>, <urn:d>). It can be combined
with parent() like this: parent(?company) -> rdf:type in (<urn:c>,
<urn:d>). The same construction can be applied to the bound operator
like this: bound(?company -> <urn:hasBranch>), or even combined
with parent() like this: bound(parent(?company) -> <urn:hasGroup>).

The URI parameter can be a full URI within < > or the special string
rdf:type (alternatively, just type), which will be expanded to
http://www.w3.org/1999/02/22-rdf-syntax-ns#type.

	Filtering by RDF graph

	The construction graph(?var) is used for accessing the RDF graph of a
field’s value. The typical use case is to sync only explicit values:
graph(?a) not in (<http://www.ontotext.com/implicit>).
The construction can be combined with parent() like this:
graph(parent(?a)) in (<urn:a>).

	Entity filters and default values

	Entity filters can be combined with default values in order to get more
flexible behaviour.

A typical use-case for an entity filter is having soft deletes, i.e.,
instead of deleting an entity, it is marked as deleted by the presence
of a specific value for a given property.

Basic entity filter example

Given the following RDF data:

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix : <http://www.ontotext.com/example#> .

the entity bellow will be synchronised because it has a matching value for city: ?city in ("London")
:alpha
 rdf:type :gadget ;
 :name "John Synced" ;
 :city "London" .

the entity below will not be synchronised because it lacks the property completely: bound(?city)
:beta
 rdf:type :gadget ;
 :name "Peter Syncfree" .

the entity below will not be synchronised because it has a different city value:
?city in ("London") will remove the value "Liverpool" so bound(?city) will be false
:gamma
 rdf:type :gadget ;
 :name "Mary Syncless" ;
 :city "Liverpool" .

If you create a connector instance such as:

PREFIX : <http://www.ontotext.com/connectors/lucene#>
PREFIX inst: <http://www.ontotext.com/connectors/lucene/instance#>

INSERT DATA {
 inst:my_index :createConnector '''
 {
 "types": ["http://www.ontotext.com/example#gadget"],
 "fields": [
 {
 "fieldName": "name",
 "propertyChain": ["http://www.ontotext.com/example#name"]
 },
 {
 "fieldName": "city",
 "propertyChain": ["http://www.ontotext.com/example#city"]
 }
],
 "entityFilter":"bound(?city) && ?city in (\\"London\\")"
 }
 ''' .
}

The entity :beta is not synchronised as it has no value for city.

To handle such cases, you can modify the connector configuration to
specify a default value for city:

...
 {
 "fieldName": "city",
 "propertyChain": ["http://www.ontotext.com/example#city"],
 "defaultValue": "London"
 }
...
}

The default value is used for the entity :beta as it has no value for city
in the repository. As the value is “London”, the entity is synchronised.

Advanced entity filter example

Sometimes, data represented in RDF is not well suited to map directly to
non-RDF. For example, if you have news articles and they can be tagged
with different concepts (locations, persons, events, etc.), one possible
way to model this is a single property :taggedWith. Consider the
following RDF data:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix : <http://www.ontotext.com/example2#> .

:Berlin
 rdf:type :Location ;
 rdfs:label "Berlin" .

:Mozart
 rdf:type :Person ;
 rdfs:label "Wolfgang Amadeus Mozart" .

:Einstein
 rdf:type :Person ;
 rdfs:label "Albert Einstein" .

:Cannes-FF
 rdf:type :Event ;
 rdfs:label "Cannes Film Festival" .

:Article1
 rdf:type :Article ;
 rdfs:comment "An article about a film about Einstein's life while he was a professor in Berlin." ;
 :taggedWith :Berlin ;
 :taggedWith :Einstein ;
 :taggedWith :Cannes-FF .

:Article2
 rdf:type :Article ;
 rdfs:comment "An article about Berlin." ;
 :taggedWith :Berlin .

:Article3
 rdf:type :Article ;
 rdfs:comment "An article about Mozart's life." ;
 :taggedWith :Mozart .

:Article4
 rdf:type :Article ;
 rdfs:comment "An article about classical music in Berlin." ;
 :taggedWith :Berlin ;
 :taggedWith :Mozart .

:Article5
 rdf:type :Article ;
 rdfs:comment "A boring article that has no tags." .

:Article6
 rdf:type :Article ;
 rdfs:comment "An article about the Cannes Film Festival in 2013." ;
 :taggedWith :Cannes-FF .

Now, if you map this data to Lucene so that the property :taggedWith
x is mapped to separate fields taggedWithPerson and
taggedWithLocation according to the type of x (we are not
interested in events), you can map taggedWith twice to different fields
and then use an entity filter to get the desired values:

PREFIX : <http://www.ontotext.com/connectors/lucene#>
PREFIX inst: <http://www.ontotext.com/connectors/lucene/instance#>

INSERT DATA {
 inst:my_index :createConnector '''
 {
 "types": ["http://www.ontotext.com/example2#Article"],
 "fields": [
 {
 "fieldName": "comment",
 "propertyChain": ["http://www.w3.org/2000/01/rdf-schema#comment"]
 },
 {
 "fieldName": "taggedWithPerson",
 "propertyChain": ["http://www.ontotext.com/example2#taggedWith"]
 },
 {
 "fieldName": "taggedWithLocation",
 "propertyChain": ["http://www.ontotext.com/example2#taggedWith"]
 }
],
 "entityFilter": "?taggedWithPerson type in (<http://www.ontotext.com/example2#Person>)
 && ?taggedWithLocation type in (<http://www.ontotext.com/example2#Location>)"
 }
 ''' .
}

Note

type is the short way to write <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>.

The six articles in the RDF data above will be mapped as such:

	Article URI
	Value in taggedWithPerson
	Value in taggedWithLocation
	Explanation

	:Article1
	:Einstein
	:Berlin
	:taggedWith has the values :Einstein, :Berlin and :Cannes-FF. The filter leaves only the correct values in the respective fields. The value :Cannes-FF is ignored as it does not match the filter.

	:Article2
	
	:Berlin
	:taggedWith has the value :Berlin. After the filter is applied, only taggedWithLocation is populated.

	:Article3
	:Mozart
	
	:taggedWith has the value :Mozart. After the filter is applied, only taggedWithPerson is populated

	:Article4
	:Mozart
	:Berlin
	:taggedWith has the values :Berlin and :Mozart. The filter leaves only the correct values in the respective fields.

	:Article5
	
	
	:taggedWith has no values. The filter is not relevant.

	:Article6
	
	
	:taggedWith has the value :Cannes-FF. The filter removes it as it does not match.

This can be checked by issuing a faceted search for taggedWithLocation
and taggedWithPerson:

PREFIX : <http://www.ontotext.com/connectors/lucene#>
PREFIX inst: <http://www.ontotext.com/connectors/lucene/instance#>

SELECT ?facetName ?facetValue ?facetCount {
 ?search a inst:my_index ;
 :facetFields "taggedWithLocation,taggedWithPerson" ;
 :facets _:f .
 _:f :facetName ?facetName ;
 :facetValue ?facetValue ;
 :facetCount ?facetCount .
}

If the filter was applied, you should get only :Berlin for
taggedWithLocation and only :Einstein and :Mozart for taggedWithPerson:

	?facetName
	?facetValue
	?facetCount

	taggedWithLocation
	http://www.ontotext.com/example2#Berlin
	3

	taggedWithPerson
	http://www.ontotext.com/example2#Mozart
	2

	taggedWithPerson
	http://www.ontotext.com/example2#Einstein
	1

Overview of connector predicates

The following diagram shows a summary of all predicates that can
administer (create, drop, check status) connector instances or issue
queries and retrieve results. It can be used as a quick reference of
what a particular predicate needs to be attached to. For example, to
retrieve entities, you need to use :entities on a search instance and to
retrieve snippets, you need to use :snippets on an entity. Variables
that are bound as a result of a query are shown in green, blank helper
nodes are shown in blue, literals in red, and URIs in orange. The
predicates are represented by labelled arrows.

[image: scale 0.85 left to right direction skinparam activity { BackgroundColor<<BNode>> #D1E0FF BackgroundColor<<Var>> #D1FFD1 BackgroundColor<<URI>> #FFCC80 BackgroundColor #FFE3E3 } partition "Instance level" { "instance URI" <<URI>> -->[:createConnector] "JSON params" "instance URI" -->[:dropConnector] "dummy value" "instance URI" -->[:repairConnector] "dummy value" "instance URI" -->[:connectorStatus] "?status" <<Var>> "_:search" <<BNode>> -->[rdf:type] "instance URI" } partition "Search level: query and options" { "_:search" -->[:query] "query value" "_:search" -->[:limit] "limit value" "_:search" -->[:offset] "offset value" "_:search" -->[:orderBy] "order by expression" "_:search" -->[:facetFields] "field name list" "_:search" -->[:snippetSize] "snippet size value" "_:search" -->[:snippetSpanOpen] "string" "_:search" -->[:snippetSpanClose] "string" } partition "Search level: results" "_:search" -->[:entities] "?entity" <<Var>> "_:search" -->[:totalHits] "?totalHits" <<Var>> "_:search" -->[:facets] "_:facet" <<BNode>> } partition "Entity level" { "?entity" -->[:score] "?score" <<Var>> "?entity" -->[:snippets] "_:snippet" <<BNode>> } partition "Snippet level" { "_:snippet" -->[:snippetField] "?snippetField" <<Var>> "_:snippet" -->[:snippetText] "?snippetText" <<Var>> } partition "Facet level" { "_:facet" -->[:facetName] "?facetName" <<Var>> "_:facet" -->[:facetValue] "?facetValue" <<Var>> "_:facet" -->[:facetCount] "?facetCount" <<Var>> }]

Caveats

Order of control

Even though SPARQL per se is not sensitive to the order of triple
patterns, the Lucene GraphDB Connector expects to receive certain
predicates before others so that queries can be executed properly. In
particular, predicates that specify the query or query options need to
come before any predicates that fetch results.

The diagram in
Overview of connector predicates
provides a quick overview of the predicates.

Upgrading from previous versions

Migrating from GraphDB 6.2 to 6.6

There are no new connector options in GraphDB 7.

The Lucene Connector in GraphDB 6.2 to 6.6 uses Lucene 4.x and the Lucene Connector in GraphDB 7
uses Lucene 5.x. GraphDB 7 can use connector instances created with GraphDB 6.2 to 6.6 with the
following exception:

	Fields used for sorting (orderBy predicate) need to be declared with multivalued = false now.
If you use orderBy you have to recreate your connector instances.

We recommend to drop any existing instances and recreate them to benefit from any performance
improvements in Lucene 5.x even if you do not have any orderBy’s in your queries.

Migrating from a pre-6.2 version

GraphDB prior to 6.2 shipped with version 3.x of the Lucene GraphDB
Connector that had different options and slightly different behaviour
and internals. Unfortunately, it is not possible to migrate existing
connector instances automatically. To prevent any data loss, the Lucene
GraphDB Connector will not initialise, if it detects an existing
connector in the old format. The recommended way to migrate your
existing instances is:

	Backup the INSERT statement used to create the connector instance.

	Drop the connector.

	Deploy the new GraphDB version.

	Modify the INSERT statement according to the changes described below.

	Re-create the connector instance with the modified INSERT statement.

You might also need to change your queries to reflect any changes in
field names or extra fields.

Changes in field configuration and synchronisation

Prior to 6.2, a single field in the config could produce up to three
individual fields on the Lucene side, based on the field options. For
example, for the field “firstName”:

	field
	note

	firstName
	produced, if the option “index” was true; used explicitly in queries

	_facet_firstName
	produced, if the option “facet” was true; used implicitly for facet search

	_sort_firstName
	produced, if the option “sort” was true; used implicitly for ordering connector results

The current version always produces a single Lucene field per field
definition in the configuration. This means that you have to create all
appropriate fields based on your needs. See more in
List of creation parameters.

Tip

To mimic the functionality of the old _sort_fieldName fields, you
can either create a non-analysed
Copy fields (for textual fields) or
just use the normal field (for non-textual fields).

GraphDB dev guide

	Reasoning

	Storage

	Full-text search

	Plugins

	Notifications

	Query behaviour

	Retain BIND position special graph

	Performance optimisations

Reasoning

What’s in this document?

	Logical formalism

	Rule format and semantics

	The ruleset file
	Prefixes

	Axioms

	Rules

	Rulesets
	Predefined rulesets

	Custom rulesets

	Inference
	Reasoner

	Rulesets execution

	Retraction of assertions

	How TO’s
	Operations on rulesets

	Reinferring

Hint

To get the full benefit from this section, you need some basic knowledge
of the two principle
Reasoning strategies for
rule-based inference - forward-chaining and backward-chaining.

GraphDB performs reasoning based on forward-chaining of entailment rules
defined using RDF triple patterns with variables. GraphDB’s reasoning
strategy is one of Total materialisation,
where the inference rules are applied repeatedly to the asserted
(explicit) statements until no further inferred (implicit) statements
are produced.

The GraphDB repository uses configured rulesets to compute all inferred
statements at load time. To some extent, this process increases the
processing cost and time taken to load a repository with a large amount
of data. However, it has the desirable advantage that subsequent query
evaluation can proceed extremely quickly.

Logical formalism

GraphDB uses a notation almost identical to R-Entailment defined by Horst.
RDFS inference is achieved via a set of axiomatic triples and
entailment rules. These rules allow the full set of valid inferences
using RDFS semantics to be determined.

Herman ter Horst defines RDFS extensions for more general rule support
and a fragment of OWL, which is more expressive than DLP and fully
compatible with RDFS. First, he defines R-entailment, which extends
RDFS-entailment in the following way:

	It can operate on the basis of any set of rules R (i.e., allows for
extension or replacement of the standard set, defining the semantics
of RDFS);

	It operates over so-called generalised RDF graphs, where blank nodes
can appear as predicates (a possibility disallowed in RDF);

	Rules without premises are used to declare axiomatic statements;

	Rules without consequences are used to detect inconsistencies
(integrity constraints).

Tip

To learn more, see OWL compliance.

Rule format and semantics

The rule format and the semantics enforced in GraphDB is analogous to
R-entailment with the following differences:

	Free variables in the head (without binding in the body) are treated
as blank nodes. This feature must be used with extreme caution because
custom rulesets can easily be created, which recursively infer an
infinite number of statements making the semantics intractable;

	Variable inequality constraints can be specified in addition to the
triple patterns (they can be placed after any premise or
consequence). This leads to less complexity compared to R-entailment;

	the cut operator can be associated with rule premises.
This is an optimisation that tells the rule compiler not to generate
a variant of the rule with the identified rule premise as the first
triple pattern;

	Context can be used for both rule premises and rule consequences
allowing more expressive constructions that utilise ‘intermediate’
statements contained within the given context URI;

	Consistency checking rules do not have consequences and will indicate
an inconsistency when the premises are satisfied;

	Axiomatic triples can be provided as a set of statements, although
these are not modelled as rules with empty bodies.

The ruleset file

GraphDB can be configured via rulesets - sets of axiomatic triples,
consistency checks and entailment rules, which determine the applied
semantics.

A ruleset file has three sections named Prefixes (sic), Axioms, and
Rules. All sections are mandatory and must appear sequentially in
this order. Comments are allowed anywhere and follow the Java
convention, i.e.,. "/* ... */" for block comments and "//" for end
of line comments.

For historic reasons, the way in which terms (variables, URLs and literals) are written differs from Turtle and SPARQL:

	URLs in Prefixes are written without angle brackets

	variables are written without ? or $ and can include multiple alphanumeric chars

	URLs are written in brackets, no matter if they are use prefix or are spelled in full

	datatype URLs are written without brackets, eg

a <owl:maxQualifiedCardinality> "1"^^xsd:nonNegativeInteger

See the examples below and be careful when writing terms.

Prefixes

This section defines the abbreviations for the namespaces used in the
rest of the file. The syntax is:

shortname : URI

The following is an example of how a typical prefixes section might look
like:

Prefixes
{
 rdf : <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
 rdfs : <http://www.w3.org/2000/01/rdf-schema#>
 owl : <http://www.w3.org/2002/07/owl#>
 xsd : <http://www.w3.org/2001/XMLSchema#>
}

Axioms

This section asserts axiomatic triples, which usually describe the
meta-level primitives used for defining the schema such as rdf:type,
rdfs:Class, etc. It contains a list of the (variable free) triples,
one per line.

For example, the RDF axiomatic triples are defined in the following way:

Axioms
{
 // RDF axiomatic triples
 <rdf:type> <rdf:type> <rdf:Property>
 <rdf:subject> <rdf:type> <rdf:Property>
 <rdf:predicate> <rdf:type> <rdf:Property>
 <rdf:object> <rdf:type> <rdf:Property>
 <rdf:first> <rdf:type> <rdf:Property>
 <rdf:rest> <rdf:type> <rdf:Property>
 <rdf:value> <rdf:type> <rdf:Property>
 <rdf:nil> <rdf:type> <rdf:List>
}

Note

Axiomatic statements are considered to be inferred for the purpose
of query-answering because they are a result of semantic
interpretation defined by the chosen ruleset.

Rules

This section is used to define entailment rules and consistency checks,
which share a similar format. Each definition consists of premises and
corollaries that are RDF statements defined with subject, predicate,
object and optional context components. The subject, predicate and
object can each be a variable, blank node, literal, full URI or the
short name for a URI. If given, the context must be a full URI or a
short name for a URI. Variables are alpha-numeric and must begin with a
letter.

If the context is provided, the statements produced as rule
consequences are not ‘visible’ during normal query answering. Instead,
they can only be used as input to this or other rules and only when the
rule premise explicitly uses the given context (see the example below).

Furthermore, inequality constraints can be used to state that the values
of the variables in a statement must not be equal to a specific full URI
(or its short name) or to the value of another variable within the same
rule. The behaviour of an inequality constraint depends on whether it is
placed in the body or the head of a rule. If it is placed in the body of a
rule, then the whole rule will not ‘fire’ if the constraint fails, i.e.,
the constraint can be next to any statement pattern in the body of a
rule with the same behaviour (the constraint does not have to be placed
next to the variables it references). If the constraint is in the head,
then its location is significant because a constraint that does not hold
will prevent only the statement it is adjacent to from being inferred.

Entailment rules

The syntax of a rule definition is as follows:

Id: <rule_name>
 <premises> <optional_constraints>

 <consequences> <optional_constraints>

where each premise and consequence is on a separate line.

The following example helps to illustrate the possibilities:

Rules
{
Id: rdf1_rdfs4a_4b
 x a y

 x <rdf:type> <rdfs:Resource>
 a <rdf:type> <rdfs:Resource>
 y <rdf:type> <rdfs:Resource>

Id: rdfs2
 x a y [Constraint a != <rdf:type>]
 a <rdfs:domain> z [Constraint z != <rdfs:Resource>]

 x <rdf:type> z

Id: owl_FunctProp
 p <rdf:type> <owl:FunctionalProperty>
 x p y [Constraint y != z, p != <rdf:type>]
 x p z [Constraint z != y] [Cut]

 y <owl:sameAs> z
}

The symbols p, x, y, z and a are variables. The
second rule contains two constraints that reduce the number of bindings
for each premise, i.e., they ‘filter out’ those statements where the
constraint does not hold.

In a forward-chaining inference step, a rule is interpreted as meaning
that for all possible ways of satisfying the premises, the bindings for
the variables are used to populate the consequences of the rule. This
generates new statements that will manifest themselves in the
repository, e.g., by being returned as query results.

The last rule contains an example of using the Cut operator,
which is an optimisation hint for the rule compiler. When rules are
compiled, a different variant of the rule is created for each premise,
so that each premise occurs as the first triple pattern in one of the
variants. This is done so that incoming statements can be efficiently
matched to appropriate inferences rules. However, when a rule contains
two or more premises that match identical triples patterns, but using
different variable names, the extra variant(s) are redundant and
better efficiency can be achieved by simply not creating the extra rule
variant(s).

In the above example, the rule owl_FunctProp would by default be
compiled in three variants:

p <rdf:type> <owl:FunctionalProperty>
x p y
x p z

y <owl:sameAs> z

x p y
p <rdf:type> <owl:FunctionalProperty>
x p z

y <owl:sameAs> z

x p z
p <rdf:type> <owl:FunctionalProperty>
x p y

y <owl:sameAs> z

Here, the last two variants are identical apart from the rotation of
variables y and z, so one of these variants are not needed. The
use of the Cut operator above tells the rule compiler to
eliminate this last variant, i.e., the one beginning with the premise x
p z.

The use of context in rule bodies and rule heads is also best explained
by an example. The following three rules implement the OWL2-RL property
chain rule prp-spo2 and are inspired by the Rule Interchange Format
(RIF) implementation:

Id: prp-spo2_1
 p <owl:propertyChainAxiom> pc
 start pc last [Context <onto:_checkChain>]

 start p last

Id: prp-spo2_2
 pc <rdf:first> p
 pc <rdf:rest> t [Constraint t != <rdf:nil>]
 start p next
 next t last [Context <onto:_checkChain>]

 start pc last [Context <onto:_checkChain>]

Id: prp-spo2_3
 pc <rdf:first> p
 pc <rdf:rest> <rdf:nil>
 start p last

 start pc last [Context <onto:_checkChain>]

The RIF rules that implement prp-spo2 use a relation (unrelated to the
input or generated triples) called _checkChain. The GraphDB
implementation maps this relation to the ‘invisible’ context of the same
name with the addition of [Context <onto:_checkChain>] to certain
statement patterns. Generated statements with this context can only be
used for bindings to rule premises when the exact same context is
specified in the rule premise. The generated statements with this
context will not be used for any other rules.

Same as optimisation

The built-in OWL property owl:sameAs indicates that two URI references actually refer to the same thing. The following lines express the transitive and symmetric semantics of the rule:

/**
Id: owl_sameAsCopySubj
// Copy of statement over owl:sameAs on the subject. The support for owl:sameAs
// is implemented through replication of the statements where the equivalent
// resources appear as subject, predicate, or object. See also the couple of
// rules below
//
x <owl:sameAs> y [Constraint x != y]
x p z //Constraint p [Constrain p != <owl:sameAs>]

y p z

Id: owl_sameAsCopyPred
// Copy of statement over owl:sameAs on the predicate
//
p <owl:sameAs> q [Constraint p != q]
x p y

x q y

Id: owl_sameAsCopyObj
// Copy of statement over owl:sameAs on the object
//
x <owl:sameAs> y [Constraint x != y]
z p x //Constraint p [Constrain p != <owl:sameAs>]

z p y
**/

So, all nodes in the transitive and symmetric chain make relations to all other nodes, i.e., the relation coincides with the Cartesian \(NxN\), hence the full closure contains \(N^2\) statements. GraphDB optimizes the generation of excessive links by nominating an equivalence class representative to represent all resources in the symmetric and transitive chain. By default, the owl:sameAs optimization is enabled in all rulesets except when the ruleset is empty. For addition information check Optimisation of owl:sameAs.

Consistency checks

Consistency checks are used to ensure that the data model is in a
consistent state and are applied whenever an update transaction is
committed. GraphDB supports consistency
violation checks using standard OWL2RL semantics. You can define rulesets that contain consistency rules. When creating a new repository,
set the check-for-inconsistencies configuration parameter to true. It is
false by default (for compatibility with the previous OWLIM
releases).

The syntax is similar to that of rules, except that Consistency
replaces the Id tag that introduces normal rules. Also, consistency
checks do not have any consequences and indicate an inconsistency
whenever their premises can be satisfied, e.g.:

Consistency: something_can_not_be_nothing
 x rdf:type owl:Nothing

Consistency: both_sameAs_and_differentFrom_is_forbidden
 x owl:sameAs y
 x owl:differentFrom y

Consistency checks features

	Materialisation and consistency mix: the rulesets support the
definition of a mixture of materialisation and consistency rules.
This follows the existing naming syntax id: and Consistency:

	Multiple named rulesets: GraphDB supports multiple named rulesets.

	No downtime deployment: The deployment of new/updated rulesets
can be done to a running instance.

	Update transaction ruleset: Each update transaction can specify
which named ruleset to apply. This is done by using ‘special’
RDF statements within the update transaction.

	Consistency violation exceptions: if a consistency rule is
violated, GraphDB throws exceptions. The exception includes
details such as which rule has been violated and to which RDF
statements.

	Consistency rollback: if a consistency rule is violated within an
update transaction, the transaction will be rolled back and no
statements will be committed.

In case of any consistency check(s) failure, when a transaction is
committed and consistency checking is switched on (by default it is
off), then:

	A message is logged with details of what consistency checks
failed;

	An exception is thrown with the same details;

	The whole transaction is rolled back.

Rulesets

GraphDB offers several predefined semantics by way of standard rulesets
(files), but can also be configured to use custom rulesets with
semantics better tuned to the particular domain. The required semantics
can be specified through the ruleset for each specific repository
instance. Applications that do not need the complexity of the most
expressive supported semantics can choose one of the less complex,
which will result in faster inference.

Note

Each ruleset defines both rules and some schema statements,
otherwise known as axiomatic triples. These (read-only) triples are
inserted into the repository at intialisation time and count towards
the total number of reported ‘explicit’ triples. The variation may
be up to the order of hundreds depending upon the ruleset.

Predefined rulesets

The pre-defined rulesets provided with GraphDB cover various well-known
knowledge representation formalisms and are layered in such a way that
each one extends the preceding one.

	Ruleset
	Description

	empty
	No reasoning, i.e., GraphDB operates as a plain RDF store.

	rdfs
	Supports the standard model-theoretic RDFS semantics.

	rdfs plus
	Optimized version of RDFS with the support of subClassOf and related type inference subPropertyOf, symmetric, inverse and transitive properties.

	owl-horst
	OWL dialect close to OWL Horst - essentially pD*

	owl-max
	RDFS and that part of OWL Lite that can be captured in rules (deriving functional and inverse functional properties, all-different, subclass by union/enumeration; min/max cardinality constraints, etc.).

	owl2-ql
	The OWL2 QL profile - a fragment of OWL2 Full designed so that sound and complete query answering is LOGSPACE with respect to the size of the data. This OWL2 profile is based on DL-LiteR, a variant of DL-Lite that does not require the unique name assumption.

	owl2-rl
	The OWL2 RL profile - an expressive fragment of OWL2 Full that is amenable for implementation on rule engines.

Note

Not all rulesets support data-type reasoning, which is the main
reason why OWL-Horst is not the same as pD*. The ruleset you
need to use for a specific repository is defined through the
ruleset parameter. There are optimised versions of all rulesets
that avoid some little used inferences.

OWL2 QL non-conformance

The implementation of OWL2 QL is non-conformant with the W3C OWL2
profiles recommendation as shown in the following table:

	Conformant behaviour
	Implemented behaviour

	Given a list of disjoint (data or object) properties and an entity that is related with these properties to objects {a, b, c, d,...}, infer an owl:AllDifferent restriction on an anonymous list of these objects.
	For each pair {p, q} (p != q) of disjoint (data or object) properties, infer the triple:
p owl:propertyDisjointWith q
Which is more likely to be useful for query answering.

	For each class C in the knowledge base, infer the existence of an anonymous class that is the union of a list of classes containing only C.
	Not supported. Even if this infinite expansion were possible in a forward-chaining rule-based implementation, the resulting statements are of no use during query evaluation.

	If a instance of C1, and b instance of C2, and C1 and C2 disjoint, infer:
a owl:differentFrom b
	Impractical for knowledge bases with many members of pairs of disjoint classes, e.g., Wordnet. Instead, this is implemented as a consistency check:
If x instance of C1 and C2, and C1 and C2 disjoint, then inconsistent.

Custom rulesets

GraphDB has an internal rule compiler that can be configured with a
custom set of inference rules and axioms. You may define a custom
ruleset in a .pie file (e.g., MySemantics.pie). The easiest way
to create a custom ruleset is to start modifying one of the .pie
files that were used to build the precompiled rulesets.

Note

All pre-defined .pie files are included in the GraphDB distribution.

If the code generation or compilation cannot be completed successfully,
a Java exception is thrown indicating the problem. It will state either
the Id of the rule or the complete line from the source file where
the problem is located. Line information is not preserved during the
parsing of the rule file.

You must specify the custom ruleset via the ruleset configuration parameter. There are optimised versions of all rulesets
. The value of the ruleset parameter is interpreted as a
filename and .pie is appended when not present. This file is processed
to create Java source code that is compiled using the compiler from the
Java Development Kit (JDK). The compiler is invoked using the mechanism
provided by the JDK version 1.6 (or later).

Therefore, a prerequisite for using custom rulesets is that you use the
Java Virtual Machine (JVM) from a JDK version 1.6 (or later) to run the
application. If all goes well, the class is loaded dynamically and
instantiated for further use by GraphDB during inference. The
intermediate files are created in the folder that is pointed by the
java.io.tmpdir system property. The JVM should have sufficient
rights to read and write to this directory.

Note

Using GraphDB, this is more difficult. It
will be necessary to export/backup all explicit statements and
recreate a new repository with the required ruleset. Once created,
the explicit statements exported from the old repository can be
imported to the new one.

Inference

Reasoner

The GraphDB reasoner requires a .pie file of each ruleset to be
compiled in order to instantiate. The process includes several steps:

	Generate a java code out of the .pie file contents using the built-in
GraphDB rule compiler.

	Compile the java code (it requires JDK instead of JRE, hence the java
compiler will be available through the standard java instrumentation
infrastructure).

	Instantiate the java code using a custom byte-code class loader.

Note

GraphDB supports dynamic extension of the reasoner with new rulesets.

Rulesets execution

	For each rule and each premise (triple pattern in the rule head), a
rule variant is generated. We call this the ‘leading premise’ of the variant.
If a premise has the Cut annotation, no variant is generated for it.

	Every incoming triple (inserted or inferred) is checked against the
leading premise of every rule variant.
Since rules are compiled to Java bytecode on startup, this checking is very fast.

	If the leading premise matches, the rest of the premises are checked.
This checking needs to access the repository, so it can be much slower.
	GraphDB first checks premises with the least number of unbound
variables.

	For premises that have the same number of unbound variables,
GraphDB follows the textual order in the rule.

	If all premises match, the conclusions of the rule are inferred.

	For each inferred statement:
	If it does not exist in the default graph, it is stored in the
repository and is queued for inference.

	If it exists in the default graph, no duplicate statement is
recorded.
However, its ‘inferred’ flag is still set, (see
How to manage explicit and implicit statements).

Retraction of assertions

GraphDB stores explicit and implicit statements, i.e., the statements
inferred (materialised) from the explicit statements. So, when explicit
statements are removed from the repository, any implicit statements that
rely on the removed statement must also be removed.

In the previous versions of GraphDB, this was achieved with a
re-computation of the full closure (minimal model), i.e., applying the
entailment rules to all explicit statements and computing the
inferences. This approach guarantees correctness, but does not scale -
the computation is increasingly slow and computationally expensive in
proportion to the number of explicit statements and the complexity of
the entailment ruleset.

Removal of explicit statements is now achieved in a more efficient
manner, by invalidating only the inferred statements that can no longer
be derived in any way.

One approach is to maintain track information for every statement -
typically the list of statements that can be inferred from this
statement. The list is built up during inference as the rules are
applied and the statements inferred by the rules are added to the lists
of all statements that triggered the inferences. The drawback of this
technique is that track information inflates more rapidly than the
inferred closure - in the case of large datasets up to 90% of the
storage is required just to store the track information.

Another approach is to perform backward-chaining. Backward-chaining does
not require track information, since it essentially re-computes the
tracks as required. Instead, a flag for each statement is used so that
the algorithm can detect when a statement has been previously visited
and thus avoid an infinite recursion.

The algorithm used in GraphDB works as follows:

	Apply a ‘visited’ flag to all statements (false by default).

	Store the statements to be deleted in the list L.

	For each statement in L that is not visited yet, mark it as visited
and apply the forward-chaining rules. Statements marked as visited
become invisible, which is why the statement must be first marked and
then used for forward-chaining.

	If there are no more unvisited statements in L, then END.

	Store all inferred statements in the list L1.

	For each element in L1 check the following:
	If the statement is a purely implicit statement (a statement can
be both explicit and implicit and if so, then it is not considered
purely implicit), mark it as deleted (prevent it from being
returned by the iterators) and check whether it is supported by
other statements. The isSupported() method uses queries that
contain the premises of the rules and the variables of the rules
are preliminarily bound using the statement in question. That is
to say, the isSupported() method starts from the projection of
the query and then checks whether the query will return results
(at least one), i.e., this method performs backward-chaining.

	If a result is returned by any query (every rule is represented by
a query) in isSupported(), then this statement can be still
derived from other statements in the repository, so it must not be
deleted (its status is returned to ‘inferred’).

	If all queries return no results, then this statement can no
longer be derived from any other statements, so its status remains
‘deleted’ and the number of statements counter is updated.

	L := L1 and GOTO 3.

Special care is taken when retracting owl:sameAs statements, so that
the algorithm still works correctly when modifying equivalence classes.

Note

One consequence of this algorithm is that deletion can still have
poor performance when deleting schema statements, due to the
(probably) large number of implicit statements inferred from them.

Note

The forward-chaining part of the algorithm terminates as soon as it
detects that a statement is read-only, because if it cannot be
deleted, there is no need to look for statements derived from it.
For this reason, performance can be greatly improved when all schema
statements are made read-only by importing ontologies (and OWL/RDFS
vocabularies) using the imports repository parameter.

Schema update transactions

When fast statement retraction is required, but it is also necessary to
update schemas, you can use a special statement pattern. By including an
insert for a statement with the following form in the update:

[] <http://www.ontotext.com/owlim/system#schemaTransaction> []

GraphDB will use the smooth-delete algorithm, but will also traverse
read-only statements and allow them to be deleted/inserted. Such
transactions are likely to be much more computationally expensive to
achieve, but are intended for the occasional, offline update to
otherwise read-only schemas. The advantage is that fast-delete can still
be used, but no repository export and import is required when making a
modification to a schema.

For any transaction that includes an insert of the above special
predicate/statement:

	Read-only (explicit or inferred) statements can be deleted;

	New explicit statements are marked as read-only;

	New inferred statements are marked:
	Read-only if all the premises that fired the rule are read-only;

	Normal otherwise.

Schema statements can be inserted or deleted using SPARQL UPDATE as
follows:

DELETE {
 [[schema statements to delete]]
}
INSERT {
 [] <http://www.ontotext.com/owlim/system#schemaTransaction> [] .
 [[schema statements to insert]]
}
WHERE { }

How TO’s

Operations on rulesets

All examples below use the sys: namespace, defined as:

prefix sys: <http://www.ontotext.com/owlim/system#>

Add a custom ruleset from .pie file

The predicate sys:addRuleset adds a custom ruleset from the specified .pie file.
The ruleset is named after the filename, without the .pie extension.

	Example 1

	This creates a new ruleset ‘test’. If the absolute path to the file resides on,
for example, /opt/rules/test.pie, it can be specified as <file:/opt/rules/test.pie>,
<file://opt/rules/test.pie>, or <file:///opt/rules/test.pie>, i. e., with 1, 2, or 3
slashes. Relative paths are specified without the slashes or with a dot between the
slashes: <file:opt/rules/test.pie>, <file:/./opt/rules/test.pie>,
<file://./opt/rules/test.pie>, or even <file:./opt/rules/test.pie> (with a dot
in front of the path). Relative paths can be used if you know the work directory
of the Java process in which GraphDB runs.

INSERT DATA {
 _:b sys:addRuleset <file:c:/graphdb/test-data/test.pie>
}

	Example 2

	Same as above but creates a ruleset called ‘custom’ out of the test.pie file
found in the given absolute path.

INSERT DATA {
 <:custom> sys:addRuleset <file:c:/graphdb/test-data/test.pie>
}

	Example 3

	Retrieves the .pie file from the given URL. Again, you can use <:custom> to change
the name of the ruleset to “custom” or as necessary.

INSERT DATA {
 _:b sys:addRuleset <http://example.com/test-data/test.pie>
}

Add a built-in ruleset

The predicate sys:addRuleset adds a built-in ruleset (one of the rulesets
that GraphDB supports natively).

	Example

	This adds the "owl-max" ruleset to the list of rulesets in the repository.

INSERT DATA {
 _:b sys:addRuleset "owl-max"
}

Add a custom ruleset with SPARQL INSERT

The predicate sys:addRuleset adds a custom ruleset from the specified .pie file.
The ruleset is named after the filename, without the .pie extension.

	Example

	This creates a new ruleset "custom".

INSERT DATA {
 <:custom> sys:addRuleset
 '''Prefixes { a : http://a/ }
 Axioms {}
 Rules
 {
 Id: custom
 a b c
 a <a:custom1> c

 b <a:custom1> a
 }'''
}

Note

Effects on the axiom set

When dealing with more than one ruleset, the result set of axioms is the UNION of all axioms of rulesets added so far. There is a special kind of statements that behave much like axioms in the sense that they can never be removed: <P rdf:type rdf:Property>, <P rdfs:subPropertyOf P>, <X rdf:type rdfs:Resource>.
These statements enter the repository just once - at the moment the property or resource is met for the first time, and remain in the repository forever, even if there are no more nodes related to that particular property or resource. (See GraphDB ruleset usage optimisation)

List all rulesets

The predicate sys:listRulesets lists all ruleset available in the repository.

	Example

	SELECT ?state ?ruleset {
 ?state sys:listRulesets ?ruleset
}

Explore a ruleset

The predicate sys:exploreRuleset explores a ruleset.

	Example

	SELECT * {
 ?content sys:exploreRuleset "test"
}

Set a default ruleset

The predicate sys:defaultRuleset switches the default ruleset to the one
specified in the object literal.

	Example

	This sets the default ruleset to “test”. All transactions use this ruleset,
unless they specify another ruleset as a first operation in the transaction.

INSERT DATA {
 _:b sys:defaultRuleset "test"
}

Rename a ruleset

The predicate sys:renameRuleset renames the ruleset from “custom” to “test”.
Note that “custom” is specified as the subject URI in the default namespace.

	Example

	This renames the ruleset “custom” to “test”.

INSERT DATA {
 <:custom> sys:renameRuleset "test"
}

Delete a ruleset

The predicate sys:removeRuleset deletes the ruleset "test", specified
in the object literal.

	Example

	INSERT DATA {
 _:b sys:removeRuleset "test"
}

Note

Effects on the axiom set when removing a ruleset

When removing a ruleset, we just remove the mapping from the ruleset name to the corresponding inferencer.
The axioms stay untouched.

Consistency check

The predicate sys:consistencyCheckAgainstRuleset checks if the repository
is consistent with the specified ruleset.

	Example

	INSERT DATA {
 _:b sys:consistencyCheckAgainstRuleset "test"
}

Reinferring

Statements are inferred only when you insert new statements. So, if
reconnected to a repository with a different ruleset, it does not take
effect immediately. However, you can cause reinference with an Update
statement such as:

INSERT DATA { [] <http://www.ontotext.com/owlim/system#reinfer> [] }

This removes all inferred statements and reinfers from scratch using the current ruleset. If a
statement is both explicitly inserted and inferred, it is not removed.
Statements of type <P rdf:type rdf:Property>, <P rdfs:subPropertyOf P>, <X rdf:type rdfs:Resource> and the axioms from all rulesets will stay untouched.

Tip

To learn more, see
How to manage explicit and implicit statements.

Storage

What’s in this document?

	What is GraphDB’s persistence strategy

	GraphDB’s indexing options
	Transaction control

	Predicate lists

	Context indices

	Literal index

	Handling of explicit and implicit statements

What is GraphDB’s persistence strategy

GraphDB stores all of its data (statements, indexes, entity pool, etc.) in files in the configured
storage directory, usually called storage. The content and names of
these files is not defined and is subject to change between versions.

There are several types of indices available, all of which apply to all
triples, whether explicit or implicit. These indices are maintained
automatically.

In general, the index structures used in GraphDB are chosen and
optimised to allow for efficient:

	handling of billions of statements under reasonable RAM constraints;

	query optimisation;

	transaction management.

GraphDB maintains two main indices on statements for use in inference
and query evaluation: the predicate-object-subject (POS) index and the
predicate-subject-object (PSO) index. There are many other additional
data structures that are used to enable the efficient manipulation of
RDF data, but these are not listed, since these internal mechanisms
cannot be configured.

GraphDB’s indexing options

There are indexing options that offer considerable advantages for
specific datasets, retrieval patterns and query loads. Most of them are
disabled by default, so you need to enable them as necessary.

Note

Unless stated otherwise, GraphDB allows you to switch indices on and
off against an already populated repository. The repository has to
be shut down before the change of the configuration is specified.
The next time the repository is started, GraphDB will create or
remove the corresponding index. If the repository is already loaded
with a large volume of data, switching on a new index can lead to
considerable delays during initialisation – this is the time
required for building the new index.

Transaction control

Transaction support is exposed via RDF4J’s RepositoryConnection
interface. The three methods of this interface that give you control
when updates are committed to the repository are as follows:

	Method
	Effect

	void begin()
	Begins a transaction. Subsequent changes effected through update operations will only become permanent after commit() is called.

	void commit()
	Commits all updates that have been performed through this connection since the last call to begin().

	void rollback()
	Rolls back all updates that have been performed through this connection since the last call to begin().

GraphDB supports the so called ‘read committed’ transaction isolation
level, which is well-known to relational database management systems -
i.e., pending updates are not visible to other connected users, until
the complete update transaction has been committed. It guarantees that
changes will not impact query evaluation before the entire transaction
they are part of is successfully committed. It does not guarantee that
execution of a single transaction is performed against a single state of
the data in the repository. Regarding concurrency:

	Multiple update/modification/write transactions can be initiated and
stay open simultaneously, i.e., one transaction does not need to be
committed in order to allow another transaction to complete;

	Update transactions are processed internally in sequence, i.e.,
GraphDB processes the commits one after another;

	Update transactions do not block read requests in any way, i.e.,
hundreds of SPARQL queries can be evaluated in parallel (the
processing is properly multi-threaded) while update transactions are
being handled on separate threads.

Note

GraphDB performs materialisation, ensuring that all statements that
can be inferred from the current state of the repository are indexed
and persisted (except for those compressed due to the
Optimisation of owl:sameAs). When the
commit method is completed, all reasoning activities related to the
changes in the data introduced by the corresponding transaction will
have already been performed.

Note

An uncommitted transaction will not affect the ‘view’ of the
repository through any connection, including the connection used to
do the modification. This is perhaps not in keeping with most
relational database implementations. However, committing a
modification to a semantic repository involves considerably more
work, specifically the computation of the changes to the inferred
closure resulting from the addition or removal of explicit
statements. This computation is only carried out at the point where
the transaction is committed and so to be consistent, neither the
inferred statements nor the modified statements related to the
transaction are ‘visible’.

Predicate lists

Certain datasets and certain kinds of query activities, for example,
queries that use wildcard patterns for predicates, benefit from another
type of index called a ‘predicate list’, i.e.:

	subject-predicate (SP)

	object-predicate (OP)

This index maps from entities (subject or object) to their predicates.
It is not switched on by default (see
the enablePredicateList configuration parameter), because it is not always
necessary. Indeed, for most datasets and query loads, the performance of
GraphDB without such an index is good enough even with
wildcard-predicate queries, and the overhead of maintaining this index
is not justified. You should consider using this index for datasets that
contain a very large number (greater than around 1000) of different
predicates.

Context indices

There are two more optional indices that can be used to speed up query
evaluation when searching statements via their context identifier. These
indices are the PCSO and the PCOS indices and they are switched on
together (see the enable-context-index configuration parameter).

Literal index

GraphDB automatically builds a literal index allowing faster look-ups of
numeric and date/time object values. The index is used during query
evaluation only if a query or a subquery (e.g., union) has a filter that
is comprised of a conjunction of literal constraints using comparisons
and equality (not negation or inequality), e.g., FILTER(?x = 100 && ?y <=
5 && ?start > "2001-01-01"^^xsd:date).

Other patterns will not use the index, i.e., filters will not be re-written into usable patterns.

For example, the following FILTER patterns will all make use of the
literal index:

FILTER(?x = 7)
FILTER(3 < ?x)
FILTER(?x >= 3 && ?y <= 5)
FILTER(?x > "2001-01-01"^^xsd:date)

whereas these FILTER patterns will not:

FILTER(?x > (1 + 2))
FILTER(?x < 3 || ?x > 5)
FILTER((?x + 1) < 7)
FILTER(! (?x < 3))

The decision of the query-optimiser whether to make use of this index is
statistics-based. If the estimated number of matches for a filter
constraint is large relative to the rest of the query, e.g., a constraint
with large or one-sided range, then the index might not be used at all.

To disable this index during query evaluation, use the enable-literal-index configuration
parameter. The default value is true.

Note

Because of the way the literals are stored, the index with dates far
in the future and far in the past (approximately 200,000,000 years)
as well as numbers beyond the range of 64-bit floating-point
representation (i.e., above approximately 1e309 and below -1e309) will not work properly.

Handling of explicit and implicit statements

As already described, GraphDB applies the
inference rules at load time in order to compute the full closure.
Therefore, a repository will contain some statements that are explicitly
asserted and other statements that exist through implication. In most
cases, clients will not be concerned with the difference, however there
are some scenarios when it is useful to work with only explicit or only
implicit statements. These two groups of statements can be isolated
during programmatic statement retrieval using the RDF4J API and during
(SPARQL) query evaluation.

Retrieving statements with the RDF4J API

The usual technique for retrieving statements is to use the
RepositoryConnection method:

RepositoryResult<Statement> getStatements(
 Resource subj,
 URI pred,
 Value obj,
 boolean includeInferred,
 Resource... contexts)

The method retrieves statements by ‘triple pattern’, where any or all of
the subject, predicate and object parameters can be null to indicate
wildcards.

To retrieve explicit and implicit statements, the includeInferred
parameter must be set to true. To retrieve only explicit statements,
the includeInferred parameter must be set to false.

However, the RDF4J API does not provide the means to enable only the
retrieval of implicit statements. In order to allow clients to do this,
GraphDB allows the use of the special ‘implicit’ pseudo-graph with this
API, which can be passed as the context parameter.

The following example shows how to retrieve only implicit statements:

RepositoryResult<Statement> statements =
 repositoryConnection.getStatements(
 null, null, null, true,
 SimpleValueFactory.getInstance().createIRI("http://www.ontotext.com/implicit"));

while (statements.hasNext()) {
 Statement statement = statements.next();
 // Process statement
}
statements.close();

The above example uses wildcards for subject, predicate and object and
will therefore return all implicit statements in the repository.

SPARQL query evaluation

GraphDB also provides mechanisms to differentiate between explicit and
implicit statements during query evaluation. This is achieved by
associating statements with two pseudo-graphs (explicit and implicit)
and using special system URIs to identify these graphs.

Tip

To learn more, see Query behaviour.

Full-text search

What’s in this document?

	RDF search
	Usage

	Parameters

	Creating an index

	Incremental update

Hint

Apache Lucene [http://lucene.apache.org] is a high-performance,
full-featured text search engine written entirely in Java. GraphDB
supports FTS capabilities using Lucene with a variety of indexing
options and the ability to simultaneously use multiple, differently
configured indices in the same query.

Full-text search (FTS) concerns retrieving text documents out of a large
collection by keywords or, more generally, by tokens (represented as
sequences of characters). Formally, the query represents an unordered
set of tokens and the result is a set of documents, relevant to the
query. In a simple FTS implementation, relevance is Boolean: a document
is either relevant to the query, if it contains all the query tokens, or
not. More advanced FTS implementations deal with a degree of relevance
of the document to the query, usually judged on some sort of measure of
the frequency of appearance of each of the tokens in the document,
normalised, versus the frequency of their appearance in the entire
document collection. Such implementations return an ordered list of
documents, where the most relevant documents come first.

FTS and structured queries, like these in database management systems
(DBMS), are different information access methods based on a different
query syntax and semantics, where the results are also displayed in a
different form. FTS systems and databases usually require different
types of indices, too. The ability to combine these two types of
information access methods is very useful for a wide range of
applications. Many relational DBMS support some sort of FTS (which is
integrated in the SQL syntax) and maintain additional indices that
allow efficient evaluation of FTS constraints.

Typically, a relational DBMS allows you to define a query, which
requires specific tokens to appear in a specific column of a specific
table. In SPARQL, there is no standard way for the specification of FTS
constraints. In general, there is neither a well-defined nor
commonly accepted concept for FTS in RDF data. Nevertheless, some semantic
repository vendors offer some sort of FTS in their engines.

RDF search

The GraphDB FTS implementation, called ‘RDF Search’, is based on Lucene. It
enables GraphDB to perform complex queries against character data, which
significantly speeds up the query process. RDF Search allows for
efficient extraction of RDF resources from huge datasets, where ordering
of the results by relevance is crucial.

Its main features are:

	FTS query form - List of tokens (with Lucene query extensions);

	Result form - Ordered list of URIs;

	Textual Representation - Concatenation of text representations of
nodes from the so called ‘molecule’ (1-step neighbourhood in a graph) of
the URI;

	Relevance - Vector-space model, reflecting the degree of relevance of
the text and the RDF rank of the URI;

	Implementation - The Lucene engine is integrated and used for
indexing and search.

Usage

In order to use the FTS in GraphDB, first a Lucene index must be
computed. Before it is created, each index can be parametrised in a
number of ways, using SPARQL ‘control’ updates.

This provides the ability to:

	select what kinds of nodes are indexed (URIs/literals/blank-nodes);

	select what is included in the ‘molecule’ associated with each node;

	select literals with certain language tags;

	choose the size of the RDF ‘molecule’ to index;

	choose whether to boost the relevance of the nodes using RDF Rank values;

	select alternative analysers;

	select alternative scorers.

In order to use the indexing behaviour of Lucene, a text document must
be created for each node in the RDF graph to be indexed. This text
document is called an ‘RDF molecule’ and is made up of other nodes
reachable via the predicates that connect the nodes to each other. Once a
molecule has been created for each node, Lucene generates an index over
these molecules. During search (query answering), Lucene identifies the
matching molecules and GraphDB uses the associated nodes as variables
substitutions, when evaluating the enclosing SPARQL query.

The scope of an RDF molecule includes the starting node and its
neighbouring nodes, which are reachable via the specified number of
predicate arcs. For each Lucene index, it can be specified what type of nodes are indexed and what type of nodes
are included in the molecule. Furthermore, the size of the molecule can be controlled by specifying
the number of allowed traversals of predicate arcs starting from the
molecule centre (the node being indexed).

[image: _images/rdf-search.png]

Note

Blank nodes are never included in the molecule. If a
blank node is encountered, the search is extended via any predicate
to the next nearest entity and so on. Therefore, even when the
molecule size is 1, entities reachable via several intermediate
predicates can still be included in the molecule if all the
intermediate entities are blank nodes.

Parameters

Exclude

Predicate: http://www.ontotext.com/owlim/lucene#exclude

Default: <none>

Description: Provides a regular expression to identify nodes, which will be excluded from the molecule.

Note that for literals and URI local names the regular expression is case-sensitive.

The example given below will cause matching URIs (e.g., <http://example.com/uri#helloWorld>)
and literals (e.g., "hello world!") not to be included.

Example:

PREFIX luc: <http://www.ontotext.com/owlim/lucene#>
INSERT DATA {
luc:exclude luc:setParam "hello.*"
}

Exclude entities

Predicate: http://www.ontotext.com/owlim/lucene#excludeEntities

Default: <none>

Description: A comma/semi-colon/white-space separated list of entities that will NOT be included in an RDF molecule. The example below includes any URI in a molecule, except the two listed.

Example:

PREFIX luc: <http://www.ontotext.com/owlim/lucene#>
INSERT DATA {
 luc:excludeEntities luc:setParam
 "http://www.w3.org/2000/01/rdf-schema#Class http://www.example.com/dummy#E1"
}

Exclude Predicates

Predicate: http://www.ontotext.com/owlim/lucene#excludePredicates

Default: <none>

Description: A comma/semi-colon/white-space separated list of properties that will NOT be traversed
in order to build an RDF molecule. The example below prevents any entities being added to an RDF molecule,
if they can only be reached via the two given properties.

Example:

PREFIX luc: <http://www.ontotext.com/owlim/lucene#>
INSERT DATA {
 luc:excludePredicates luc:setParam
 "http://www.w3.org/2000/01/rdf-schema#subClassOf http://www.example.com/dummy#p1"
}

Include

Predicate: http://www.ontotext.com/owlim/lucene#include

Default: "literals"

Description: Indicates what kinds of nodes are to be included in the molecule. The value can be a list
of values from: URI, literal, centre (the plural forms are also allowed: URIs, literals, centres).
The value of centre causes the node for which the molecule is built to be added to the molecule
(provided it is not a blank node). This can be useful, for example, when indexing URI nodes with
molecules that contain only literals, but the local part of the URI should also be searchable.

Example:

PREFIX luc: <http://www.ontotext.com/owlim/lucene#>
INSERT DATA {
 luc:include luc:setParam "literal uri"
}

Include entities

Predicate: http://www.ontotext.com/owlim/lucene#includeEntities

Default: <none>

Description: A comma/semi-colon/white-space separated list of entities that can be included in an RDF molecule.
Any other entities are ignored. The example below builds molecules that only contain the two entities.

Example:

PREFIX luc: <http://www.ontotext.com/owlim/lucene#>
INSERT DATA {
 luc:includeEntities luc:setParam
 "http://www.w3.org/2000/01/rdf-schema#Class http://www.example.com/dummy#E1"
}

Include predicates

Predicate: http://www.ontotext.com/owlim/lucene#includePredicates

Default: <none>

Description: A comma/semi-colon/white-space separated list of properties that can be traversed in order to build an RDF molecule.
The example below allows any entities to be added to an RDF molecule,
but only if they can be reached via the two given properties.

Example:

PREFIX luc: <http://www.ontotext.com/owlim/lucene#>
INSERT DATA {
 luc:includePredicates luc:setParam
 "http://www.w3.org/2000/01/rdf-schema#subClassOf http://www.example.com/dummy#p1"
}

Index

Predicate: http://www.ontotext.com/owlim/lucene#index

Default: "literals"

Description: Indicates what kinds of nodes are to be indexed. The value can be a list of values from: URI, literal, bnode (the plural forms are also allowed: URIs, literals, bnodes).

Example:

PREFIX luc: <http://www.ontotext.com/owlim/lucene#>
INSERT DATA {
 luc:index luc:setParam "literals, bnodes"
}

Languages

Predicate: http://www.ontotext.com/owlim/lucene#languages

Default: "" (which is used to indicate that literals with any language tag are used, including those with no language tag)

Description: A comma separated list of language tags. Only literals with the indicated language tags are included in the index.
To include literals that have no language tag, use the special value none.

Example:

PREFIX luc: <http://www.ontotext.com/owlim/lucene#>
INSERT DATA {
 luc:languages luc:setParam "en,fr,none"
}

Molecule size

Predicate: http://www.ontotext.com/owlim/lucene#moleculeSize

Default: 0

Description: Sets the size of the molecule associated with each entity. A value of zero indicates that only the entity
 itself should be indexed. A value of 1 indicates that the molecule will contain all entities reachable
 by a single ‘hop’ via any predicate (predicates not included in the molecule). Note that blank nodes
are never included in the molecule. If a blank node is encountered, the search is extended
 via any predicate to the next nearest entity and so on. Therefore, even when the molecule size is 1,
 entities reachable via several intermediate predicates can still be included in the molecule,
 if all the intermediate entities are blank nodes. Molecule sizes of 2 and more are allowed,
 but with large datasets it can take a very long time to create the index.

Example:

PREFIX luc: <http://www.ontotext.com/owlim/lucene#>
INSERT DATA {
 luc:moleculeSize luc:setParam "1"
}

useRDFRank

Predicate: http://www.ontotext.com/owlim/lucene#useRDFRank

Default: "no"

Description: Indicates whether the RDF weights (if they have been already computed) associated with each entity
should be used as boosting factors when computing the relevance of a given Lucene query.
Allowable values are no, yes and squared. The last value indicates that the square
of the RDF Rank value is to be used.

Example:

PREFIX luc: <http://www.ontotext.com/owlim/lucene#>
INSERT DATA {
 luc:useRDFRank luc:setParam "yes"
}

analyser

Predicate: http://www.ontotext.com/owlim/lucene#analyzer

Default: <none>

Description: Sets an alternative analyser for processing text to produce terms to index. By default,
this parameter has no value and the default analyser used is: org.apache.lucene.analysis.standard.StandardAnalyzer
An alternative analyser must be derived from: org.apache.lucene.analysis.Analyzer.
To use an alternative analyser, use this parameter to identify the name of a Java factory class
that can instantiate it. The factory class must be available on the Java virtual machine’s
classpath and must implement this interface: com.ontotext.trree.plugin.lucene.AnalyzerFactory.

Example:

PREFIX luc: <http://www.ontotext.com/owlim/lucene#>
INSERT DATA {
 luc:analyzer luc:setParam "com.ex.MyAnalyserFactory"
}

Detailed example: In this example, we create two Java classes (Analyzer and Factory) and then create a Lucene index, using the custom analyser. This custom analyser filters the accents (diacritics), so a search for “Beyonce” finds labels “Beyoncé”.

public class CustomAnalyzerFactory implements com.ontotext.trree.plugin.lucene.AnalyzerFactory {
 @Override
 public Analyzer createAnalyzer() {
 CustomAnalyzer ret = new CustomAnalyzer(Version.LUCENE_36);
 return ret;
 }

 @Override
 public boolean isCaseSensitive() {
 return false;
 }
}

public class CustomAnalyzer extends StopwordAnalyzerBase {
 public CustomAnalyzer(Version matchVersion){
 super(matchVersion, StandardAnalyzer.STOP_WORDS_SET);
 }

 @Override
 protected TokenStreamComponents createComponents(String fieldName, Reader reader) {
 final Tokenizer source = new StandardTokenizer(matchVersion, reader);
 TokenStream tokenStream = source;
 tokenStream = new StandardFilter(matchVersion, tokenStream);
 tokenStream = new LowerCaseFilter(tokenStream);
 tokenStream = new StopFilter(matchVersion, tokenStream, getStopwordSet());
 tokenStream = new ASCIIFoldingFilter(tokenStream);
 return new TokenStreamComponents(source, tokenStream);
 }
}

Create the index:

	Put the two classes in a .jar file, e.g., “com.example”

	Put the .jar file in the plugins folder (specified by -Dregister-external-plugins=..., which by default is under <TOMCAT-WEBAPPS>/graphdb-server/WEB-INF/classes/plugins). There has to be some data in the repository.

	Put the .jar file in the plugins folder (specified by -Dregister-external-plugins=..., which by default is under <TOMCAT-WEBAPPS>grapgdb-workbench/WEB-INF/classes/plugins.

	Create the index.

PREFIX luc: <http://www.ontotext.com/owlim/lucene#>
INSERT DATA {
 luc:analyzer luc:setParam "com.example.CustomAnalyzerFactory" .
 luc:index luc:setParam "uris".
 luc:moleculeSize luc:setParam "1".
 luc:myIndex luc:createIndex "true".
}

scorer

Predicate: http://www.ontotext.com/owlim/lucene#scorer

Default: <none>

Description: Sets an alternative scorer that provides boosting values, which adjust the relevance
(and hence the ordering) of results to a Lucene query. By default, this parameter has
no value and no additional scoring takes place, however, if the useRDFRank parameter
is set to true, then the RDF Rank scores are used. An alternative scorer must implement this interface: com.ontotext.trree.plugin.lucene.Scorer. In order to use an alternative scorer,
use this parameter to identify the name of a Java factory class that can instantiate it.
The factory class must be available on the Java virtual machine’s classpath and must
implement this interface: com.ontotext.trree.plugin.lucene.ScorerFactory.

Example:

PREFIX luc: <http://www.ontotext.com/owlim/lucene#>
INSERT DATA {
 luc:scorer luc:setParam "com.ex.MxScorerFactory"
}

Creating an index

Once you have set the parameters for an index, you create and name the index by committing a SPARQL update of this form, where the index name
appears as the subject in the triple pattern:

PREFIX luc: <http://www.ontotext.com/owlim/lucene#>
INSERT DATA { luc:myIndex luc:createIndex "true" . }

The index name must have the http://www.ontotext.com/owlim/lucene#
namespace and the local part can contain only alphanumeric characters
and underscores.

Creating an index can take some time, although usually no more than a
few minutes when the molecule size is 1 or less. During this process,
for each node in the repository, its surrounding molecule is computed.
Then, each such molecule is converted into a single string document (by
concatenating the textual representation of all the nodes in the
molecule) and this document is indexed by Lucene. If the RDF Rank
weights are used (or an alternative scorer is specified), then the
computed values are stored in the Lucene index as a boosting factor that
will later on influence the selection order.

To use a custom Lucene index in a SPARQL query, use the index’s name as
the predicate in a statement pattern, with the Lucene query as the
object using the full Lucene
query [http://lucene.apache.org/core/3_0_3/queryparsersyntax.html]
vocabulary.

The following query produces bindings for ?s from entities in the
repository, where the RDF molecule associated with this entity (for the
given index) contains terms that begin with “United”. Furthermore, the
bindings are ordered by relevance (with any boosting factor):

PREFIX luc: <http://www.ontotext.com/owlim/lucene#>
SELECT ?s
WHERE { ?s luc:myIndex "United*" . }

The Lucene score for a bound entity for a particular query can be
exposed using a special predicate:

http://www.ontotext.com/owlim/lucene#score

This can be useful when the Lucene query results are ordered in a manner
based on but different from the original Lucene score.

For example, the following query orders the results by a combination of
the Lucene score and some ontology defined importance value:

PREFIX luc: <http://www.ontotext.com/owlim/lucene#>
PREFIX ex: <http://www.example.com/myontology#>
SELECT * {
 ?node luc:myIndex "lucene query string" .
 ?node ex:importance ?importance .
 ?node luc:score ?score .
} ORDER BY (?score + ?importance)

The luc:score predicate works only on bound variables. There is no
problem disambiguating multiple indices because each variable is bound
from exactly one Lucene index and hence its score.

The combination of ranking RDF molecules together with FTS provides a
powerful mechanism for querying/analysing datasets, even when the schema
is not known. This allows for keyword-based search over both literals
and URIs with the results ordered by importance/interconnectedness.

You can see an example of such ‘RDF Search’ in
FactForge [http://factforge.net].

Detailed example

The following example configuration shows how to index URIs using
literals attached to them by a single, named predicate - in this case
rdfs:label.

	Assume the following starting data:

PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>
PREFIX ex:<http://example.com#>
INSERT DATA {
 ex:astonMT rdfs:label "Aston McTalisker" .
 ex:astonMartin ex:link "Aston Martin" .
 <http://www1.aston.ac.uk/> rdfs:label "Aston University"@EN .
}

	Set up the configuration - index URIs by including, in their RDF
molecule, all literals that can be reached via a single statement using
the rdfs:label predicate:

PREFIX luc: <http://www.ontotext.com/owlim/lucene#>
INSERT DATA {
 luc:index luc:setParam "uris" .
 luc:include luc:setParam "literals" .
 luc:moleculeSize luc:setParam "1" .
 luc:includePredicates luc:setParam "http://www.w3.org/2000/01/rdf-schema#label" .
}

	Create a new index called luc:myTestIndex - note that the index
name must be in the <http://www.ontotext.com/owlim/lucene#> namespace:

PREFIX luc: <http://www.ontotext.com/owlim/lucene#>
INSERT DATA {
 luc:myTestIndex luc:createIndex "true" .
}

	Use the index in a query - find all URIs indexed using the
luc:myTestIndex index that match the Lucene query “ast*”:

PREFIX luc: <http://www.ontotext.com/owlim/lucene#>
SELECT * {
 ?id luc:myTestIndex "ast*"
}

The results of this query are:

	?id

	http://example.com#astonMT

	http://www1.aston.ac.uk/

showing that ex:astonMartin is not returned, because it does not
have an rdfs:label linking it to the appropriate text.

Incremental update

Each Lucene-based FTS index must be recreated from time to time as the
indexed data changes. Due to the complex nature of the structure of RDF
molecules, rebuilding an index is a relatively expensive operation.
Still, indices can be updated incrementally on a per resource basis as
directed by the user.

The following control update:

PREFIX luc: <http://www.ontotext.com/owlim/lucene#>
INSERT DATA { <index-name> luc:addToIndex <resource> . }

updates the FTS index for the given resource and the given index.

Note

Each index stores the values of the parameters used to define it,
e.g., the value of luc:includePredicates, therefore there is no
need to set them before requesting an incremental update.

The following control update:

PREFIX luc: <http://www.ontotext.com/owlim/lucene#>
INSERT DATA { <index-name> luc:updateIndex _:b1 . }

causes all resources not currently indexed by <index-name> to get
indexed. It is a shorthand way of batching together index updates for
several (new) resources.

Plugins

	Plugin API

	RDF rank

	Geo-spatial extensions

Plugin API

What’s in this document?

	What is the GraphDB Plugin API

	Description of a GraphDB plugin

	The life-cycle of a plugin

	Repository internals (Statements and Entities)

	Request-processing phases
	Pre-processing

	Pattern interpretation

	Post-processing

	Update processing

	Putting it all together: an example plugin

	Making a plugin configurable

	Accessing other plugins

What is the GraphDB Plugin API

The GraphDB Plugin API is a framework and a set of public classes and
interfaces that allow developers to extend GraphDB in many useful ways.
These extensions are bundled into plugins, which GraphDB discovers
during its initialisation phase and then uses to delegate parts of its
query processing tasks. The plugins are given low-level access to the
GraphDB repository data, which enables them to do their job efficiently.
They are discovered via the Java service discovery mechanism, which
enables dynamic addition/removal of plugins from the system without
having to recompile GraphDB or change any configuration files.

Description of a GraphDB plugin

A GraphDB plugin is a java class that implements the
com.ontotext.trree.sdk.Plugin interface. All public classes and
interfaces of the plugin API are located in this java package, i.e.,
com.ontotext.trree.sdk. Here is what the plugin interface looks like in
an abbreviated form:

public interface Plugin extends Service {
 void setStatements(Statements statements);

 void setEntities(Entities entities);

 void setOptions(SystemOptions options);

 void setDataDir(File dataDir);

 void setLogger(Logger logger);

 void initialize(InitReason reason);

 void setFingerprint(long fingerprint);

 long getFingerprint();

 void precommit(GlobalViewOnData view);

 void shutdown(ShutdownReason reason);
}

As it derives from the Service interface, the plugin is
automatically discovered at run-time, provided that the following
conditions also hold:

	The plugin class is located in the classpath;

	It is mentioned in a
META-INF/services/com.ontotext.trree.sdk.Plugin file in the
classpath or in a .jar that is in the classpath. The full class
signature has to be written on a separate line in such a file.

The only method introduced by the Service interface is
getName(), which provides the plugin’s (service’s) name. This name
must be unique within a particular GraphDB repository and it serves as
a plugin identifier, which can be used at any time to retrieve a
reference to the plugin instance.

There are a lot more functions (interfaces) that a plugin could
implement, but these are all optional and are declared in separate
interfaces. Implementing any such complementary interface is the means
to announce to the system what this particular plugin can do in
addition to its mandatory plugin responsibilities. It is then
automatically used as appropriate.

The life-cycle of a plugin

A plugin’s life-cycle consists of several phases:

	Discovery - this phase is executed at repository initialisation.
GraphDB searches for all plugin services in the CLASSPATH registered in the
META-INF/services/com.ontotext.trree.sdk.Plugins service registry
files and constructs a single instance of each plugin found.

	Configuration - every plugin instance discovered and constructed
during the previous phase is then configured. During this phase,
plugins are injected with a Logger object, which they use for
logging (setLogger(Logger logger)), and the path to their own
data directory (setDataDir(File dataDir)), which they create, if
needed, and then use to store their data. If a plugin does not need
to store anything to the disk, it can skip the creation of its data
directory. However, if it needs to use it, it is guaranteed that this
directory will be unique and available only to the particular plugin
that it was assigned to. The plugins also inject Statements and
Entities instances (Repository internals (Statements and Entities)), and
a SystemOptions instance, which gives the plugins access to the
system-wide configuration options and settings.

	Initialisation - after a plugin has been configured, the
framework calls its initialize(InitReason reason) method so it gets the chance to
do whatever initialisation work it needs to do. It is important at
this point that the plugin has received all its configuration and
low-level access to the repository data
(Repository internals (Statements and Entities)).

	Request - the plugin participates in the request processing.
This phase is optional for the plugins. It is divided into several
subphases and each plugin can choose to participate in any or none
of these. The request phase not only includes the evaluation of,
for instance SPARQL queries, but also SPARQL/Update requests and
getStatements calls. Here are the subphases of the request
phase:
	Pre-processing - plugins are given the chance to modify the
request before it is processed. In this phase, they could also
initialise a context object, which will be visible till the end of
the request processing (Pre-processing);

	Pattern interpretation - plugins can choose to provide
results for requested statement patterns
(Pattern interpretation);

	Post-processing - before the request results are returned to
the client, plugins are given a chance to modify them, filter
them out or even insert new results
(Post-processing);

	Shutdown - during repository shutdown, each plugin is prompted
to execute its own shutdown routines, free resources, flush data to
disk, etc. This must be done in the shutdown(ShutdownReason reason) method.

Repository internals (Statements and Entities)

In order to enable efficient request processing, plugins are given
low-level access to the repository data and internals. This is done
through the Statements and Entities interfaces.

The Entities interface represents a set of RDF objects (URIs, blank
nodes and literals). All such objects are termed entities and are
given unique long identifiers. The Entities instance is
responsible for resolving these objects from their identifiers and
inversely for looking up the identifier of a given entity. Most plugins
process entities using their identifiers, because dealing with integer
identifiers is a lot more efficient than working with the actual RDF
entities they represent. The Entities interface is the single entry
point available to plugins for entity management. It supports the
addition of new entities, entity replacement, look-up of entity type and
properties, resolving entities, listening for entity change events, etc.

It is possible in a GraphDB repository to declare two RDF objects to be
equivalent, e.g., by using owl:sameAs optimisation. In order to provide a way to
use such declarations, the Entities interface assigns a class
identifier to each entity. For newly created entities, this class
identifier is the same as the entity identifier. When two entities are
declared equivalent, one of them adopts the class identifier of the
other, and thus they become members of the same equivalence class. The
Entities interface exposes the entity class identifier for plugins
to determine which entities are equivalent.

Entities within an Entities instance have a certain scope. There
are three entity scopes:

	Default - entities are persisted on the disk and can be used in statements that are also physically stored on disk.
These entities have positive (no-zero) identifiers and are often
referred to as physical entities.

	System - system entities have negative identifiers and are not
persisted on the disk. They can be used, for example, for system (or
magic) predicates. They are available throughout the whole
repository lifetime, but after restart, they have to be re-created again.

	Request - entities are not persisted on disk and have negative identifiers. They only live in the scope of a particular request and are
not visible to other concurrent requests. These entities disappear immediately
after the request processing finishes. The request scope is useful for
temporary entities such as literal values that are not expected to
occur often (e.g. numerical values) and do not appear inside a
physical statement.

The Statements interface represents a set of RDF statements, where
‘statement’ means a quadruple of subject, predicate, object and
context RDF entity identifiers. Statements can be added, removed and
searched for. Additionally, a plugin can subscribe to receive statement
event notifications:

	transaction started;

	statement added;

	statement deleted;

	transaction completed.

An important abstract class, which is related to GraphDB internals, is
StatementIterator. It has a method boolean next(), which
attempts to scroll the iterator onto the next available statement and
returns true only if it succeeds. In case of success, its subject,
predicate, object and context fields are initialised with
the respective components of the next statement. Furthermore, some
properties of each statement are available via the following methods:

	boolean isReadOnly() - returns true if the statement is in the Axioms
part of the rule-file or is imported at initialisation;

	boolean isExplicit() - returns true if the statement is explicitly
asserted;

	boolean isImplicit() - returns true if the statement is produced by
the inferencer (raw statements can be both explicit and implicit).

Here is a brief example that puts Statements, Entities and
StatementIterator together, in order to output all literals that are
related to a given URI:

// resolve the URI identifier
long id = entities.resolve(SimpleValueFactory.getInstance().createIRI("http://example/uri"));

// retrieve all statements with this identifier in subject position
StatementIterator iter = statements.get(id, 0, 0, 0);
while (iter.next()) {
 // only process literal objects
 if (entities.getType(iter.object) == Entities.Type.LITERAL) {
 // resolve the literal and print out its value
 Value literal = entities.get(iter.object);
 System.out.println(literal.stringValue());
 }
}

Request-processing phases

As already mentioned, a plugin’s interaction with each of the
request-processing phases is optional. The plugin declares if it plans
to participate in any phase by implementing the appropriate interface.

Pre-processing

A plugin willing to participate in request pre-processing must
implement the Preprocessor interface. It looks like this:

public interface Preprocessor {
 RequestContext preprocess(Request request);
}

The preprocess() method receives the request object and returns a
RequestContext instance. The Request instance passed as the
parameter is a different class instance, depending on the type of the
request (e.g., SPARQL/Update or “get statements”). The plugin changes
the request object in the necessary way, initialises and returns its
context object, which is passed back to it in every other method during
the request processing phase. The returned request context may be
null, but whatever it is, it is only visible to the plugin that
initialises it. It can be used to store data, visible for (and only for)
this whole request, e.g. to pass data related to two different
statement patterns recognised by the plugin. The request context gives
further request processing phases access to the Request object
reference. Plugins that opt to skip this phase do not have a request
context and are not able to get access to the original Request
object.

Pattern interpretation

This is one of the most important phases in the lifetime of a plugin.
In fact, most plugins need to participate in exactly this phase. This
is the point where request statement patterns need to get evaluated and
statement results are returned.

For example, consider the following SPARQL query:

SELECT * WHERE {
 ?s <http://example/predicate> ?o
}

There is just one statement pattern inside this query:
?s <http://example/predicate> ?o. All plugins that have implemented
the PatternInterpreter interface (thus declaring that they intend to
participate in the pattern interpretation phase) are asked if they can
interpret this pattern. The first one to accept it and return results
will be used. If no plugin interprets the pattern, it will be
looked for using the repository’s physical statements, i.e., the ones
persisted on the disk.

Here is the PatternInterpreter interface:

public interface PatternInterpreter {
 double estimate(long subject, long predicate, long object, long context, Statements statements,
 Entities entities, RequestContext requestContext);

 StatementIterator interpret(long subject, long predicate, long object, long context,
 Statements statements, Entities entities, RequestContext requestContext);
}

The estimate() and interpret() methods take the same arguments
and are used in the following way:

	Given a statement pattern (e.g., the one in the SPARQL query
above), all plugins that implement PatternInterpreter are asked
to interpret() the pattern. The subject, predicate,
object and context values are either the identifiers of the
values in the pattern or 0, if any of them is an unbound variable. The
statements and entities objects represent respectively the
statements and entities that are available for this particular
request. For instance, if the query contains any
FROM <http://some/graph> clauses, the statements object will
only provide access to the statements in the defined named graphs.
Similarly, the entities object contains entities that might be
valid only for this particular request. The plugin’s interpret()
method must return a StatementIterator if it intends to interpret
this pattern, or null if it refuses.

	In case the plugin signals that it will interpret the given
pattern (returns non-null value), GraphDB’s query optimiser will
call the plugin’s estimate() method, in order to get an estimate
on how many results will be returned by the StatementIterator
returned by interpret(). This estimate does not need to be precise. But
the more precise it is, the more likely the optimiser will make an efficient
optimisation. There is a slight difference in the values that will be
passed to estimate(). The statement components (e.g., subject)
might not only be entity identifiers, but they can also be set to 2
special values:
	Entities.BOUND - the pattern component is said to be bound,
but its particular binding is not yet known;

	Entities.UNBOUND - the pattern component will not be bound.
These values must be treated as hints to the estimate() method
to provide a better approximation of the result set size, although its
precise value cannot be determined before the query is actually run.

	After the query has been optimised, the interpret() method of
the plugin might be called again should any variable become bound due
to the pattern reordering applied by the optimiser. Plugins must be
prepared to expect different combinations of bound and unbound
statement pattern components, and return appropriate iterators.

The requestContext parameter is the value returned by the
preprocess() method if one exists, or null otherwise.

The plugin framework also supports the interpretation of an extended
type of a list pattern.

Consider the following SPARQL query:

SELECT * WHERE {
 ?s <http://example/predicate> (?o1 ?o2)
}

If a plugin wants to handle such list patterns, it has to implement an
interface very similar to the PatternInterpreter interface -
ListPatternInterpreter:

public interface ListPatternInterpreter {
 double estimate(long subject, long predicate, long[] objects, long context, Statements statements,
 Entities entities, RequestContext requestContext);

 StatementIterator interpret(long subject, long predicate, long[] objects, long context,
 Statements statements, Entities entities, RequestContext requestContext);
}

It only differs by having multiple objects passed as an array of
long, instead of a single long object. The semantics of both
methods is equivalent to the one in the basic pattern interpretation
case.

Post-processing

There are cases when a plugin would like to modify or otherwise filter
the final results of a request. This is where the Postprocessor
interface comes into play:

public interface Postprocessor {

 boolean shouldPostprocess(RequestContext requestContext);

 BindingSet postprocess(BindingSet bindingSet, RequestContext requestContext);

 Iterator<BindingSet> flush(RequestContext requestContext);
}

The postprocess() method is called for each binding set that is to
be returned to the repository client. This method may modify the binding
set and return it, or alternatively, return null, in which case the
binding set is removed from the result set. After a binding set is
processed by a plugin, the possibly modified binding set is passed to
the next plugin having post-processing functionality enabled. After the
binding set is processed by all plugins (in the case where no plugin
deletes it), it is returned to the client. Finally, after all results
are processed and returned, each plugin’s flush() method is called
to introduce new binding set results in the result set. These in turn
are finally returned to the client.

Update processing

As well as query/read processing, plugins are able to process update
operations for statement patterns containing specific predicates. In
order to intercept updates, a plugin must implement the
UpdateInterpreter interface. During initialisation, the
getPredicatesToListenFor is called once by the framework, so that
the plugin can indicate which predicates it is interested in.

From then onwards, the plugin framework filters updates for
statements using these predicates and notifies the plugin. Filtered
updates are not processed further by GraphDB, so if the insert or delete
operation must be persisted, the plugin must handle this by using the
Statements object passed to it.

/**
 * An interface that must be implemented by the plugins that want to be
 * notified for particular update events. The getPredicatesToListenFor()
 * method should return the predicates of interest to the plugin. This
 * method will be called once only immediately after the plugin has been
 * initialised. After that point the plugin's interpretUpdate() method
 * will be called for each inserted or deleted statement sharing one of the
 * predicates of interest to the plugin (those returned by
 * getPredicatesToListenFor()).
 */
public interface UpdateInterpreter {
 /**
 * Returns the predicates for which the plugin needs to get notified
 * when statement is added or removed and contains the predicates in
 * question
 *
 * @return array of predicates
 */
 long[] getPredicatesToListenFor();

 /**
 * Hook that handles updates that this interpreter is registered for
 *
 * @param subject subject value of the updated statement
 * @param predicate predicate value of the updated statement
 * @param object object value of the updated statement
 * @param context context value of the updated statement
 * @param isAddition true if the statement was added, false if it was removed
 * @param isExplicit true if the updated statement was explicit one
 * @param statements Statements instance that contains the updated statement
 * @param entities Entities instance for the request
 */
 void interpretUpdate(long subject, long predicate, long object, long context,
 boolean isAddition, boolean isExplicit,
 Statements statements, Entities entities);
}

Putting it all together: an example plugin

The following example plugin has two responsibilities:

	It interprets patterns such as ?s <http://example.com/time> ?o and
binds their object component to a literal, containing the repository
local date and time.

	If a FROM <http://example.com/time> clause is detected in the
query, the result is a single binding set in which all projected
variables are bound to a literal containing the repository local date
and time.

For the first part, it is clear that the plugin implements the
PatternInterpreter interface. A date/time literal is stored as a
request-scope entity to avoid cluttering the repository with extra
literals.

For the second requirement, the plugin must first take part in the
pre-processing phase, in order to inspect the query and detect the
FROM clause. Then, the plugin must hook into the post-processing
phase where, if the pre-processing phase detects the desired FROM
clause, it deletes all query results (in postprocess() and returns
a single result (in flush()) containing the binding set specified by
the requirements. Again, request-scoped literals are created.

The plugin implementation extends the PluginBase class that
provides a default implementation of the Plugin methods:

public class ExamplePlugin extends PluginBase {
 private static final IRI PREDICATE = SimpleValueFactory.getInstance().createIRI("http://example.com/time");
 private long predicateId;

 @Override
 public String getName() {
 return "example";
 }

 @Override
 public void initialize(InitReason reason) {
 predicateId = entities.put(PREDICATE, Entities.Scope.SYSTEM);
 }
}

In this basic implementation, the plugin name is defined and during
initialisation, a single system-scope predicate is registered.

Note

It is important not to forget to register the plugin in the
META-INF/services/com.ontotext.trree.sdk.Plugin file in the
classpath.

The next step is to implement the first of the plugin’s requirements -
the pattern interpretation part:

public class ExamplePlugin extends PluginBase implements PatternInterpreter {

 // ...

 @Override
 public StatementIterator interpret(long subject, long predicate, long object, long context,
 Statements statements, Entities entities, RequestContext requestContext) {
 // ignore patterns with predicate different than the one we recognize
 if (predicate != predicateId)
 return null;

 // create the date/time literal
 long literalId = createDateTimeLiteral();

 // return a StatementIterator with a single statement to be iterated
 return StatementIterator.create(subject, predicate, literalId, 0);
 }

 private long createDateTimeLiteral() {
 Value literal = SimpleValueFactory.getInstance().createLiteral(new Date().toString());
 return entities.put(literal, Scope.REQUEST);
 }

 @Override
 public double estimate(long subject, long predicate, long object, long context,
 Statements statements, Entities entities, RequestContext requestContext) {
 return 1;
 }
}

The interpret() method only processes patterns with a predicate
matching the desired predicate identifier. Further on, it simply creates
a new date/time literal (in the request scope) and places its identifier
in the object position of the returned single result. The estimate()
method always returns 1, because this is the exact size of the result
set.

Finally, to implement the second requirement concerning the
interpretation of the FROM clause:

public class ExamplePlugin extends PluginBase implements PatternInterpreter, Preprocessor,
 Postprocessor {
 private static class Context implements RequestContext {
 private Request theRequest;
 private BindingSet theResult;

 public Context(BindingSet result) {
 theResult = result;
 }
 @Override
 public Request getRequest() {
 return theRequest;
 }
 @Override
 public void setRequest(Request request) {
 theRequest = request;
 }
 public BindingSet getResult() {
 return theResult;
 }
 }

 // ...

 @Override
 public RequestContext preprocess(Request request) {
 if (request instanceof QueryRequest) {
 QueryRequest queryRequest = (QueryRequest) request;
 Dataset dataset = queryRequest.getDataset();
 if ((dataset != null && dataset.getDefaultGraphs().contains(PREDICATE))) {
 // create a date/time literal
 long literalId = createDateTimeLiteral();
 Value literal = entities.get(literalId);
 // prepare a binding set with all projected variables set
 // to the date/time literal value
 MapBindingSet result = new MapBindingSet();
 if (queryRequest.getTupleExpr() instanceof Projection) {
 Projection projection = (Projection) queryRequest.getTupleExpr();
 for (String bindingName : projection.getBindingNames()) {
 result.addBinding(bindingName, literal);
 }
 }
 return new Context(result);
 }
 }
 return null;
 }

 @Override
 public BindingSet postprocess(BindingSet bindingSet, RequestContext requestContext) {
 // if we have found the special FROM clause we filter out all results
 return requestContext != null ? null : bindingSet;
 }

 @Override
 public Iterator<BindingSet> flush(RequestContext requestContext) {
 // if we have found the special FROM clause we return the special binding set
 BindingSet result = ((Context) requestContext).getResult();
 return requestContext != null ? new SingletonIterator<BindingSet>(result) : null;
 }
}

The plugin provides the custom implementation of the RequestContext
interface, which can hold a reference to the desired single
BindingSet with the date/time literal, bound to every variable name
in the query projection. The postprocess() method filters out all
results if the requestContext is non-null (i.e., if the FROM
clause is detected by preprocess()). Finally, flush() returns a
singleton iterator, containing the desired binding set in the required
case or does not return anything.

Making a plugin configurable

Plugins are expected to require configuring. There are two ways for
GraphDB plugins to receive their configuration. The first practice is
to define magic system predicates that can be used to pass some
configuration values to the plugin through a query at run-time. This
approach is appropriate whenever the configuration changes from one
plugin usage scenario to another, i.e., when there are no globally valid
parameters for the plugin. However, in many cases the plugin behaviour
has to be configured ‘globally’ and then the plugin framework provides
a suitable mechanism through the Configurable interface.

A plugin implements the Configurable interface to announce its
configuration parameters to the system. This allows it to read parameter
values during initialisation from the repository configuration and have
them merged with all other repository parameters (accessible through the
SystemOptions instance passed during the configuration phase).

This is the Configurable interface:

public interface Configurable {
 public String[] getParameters();
}

The plugin needs to enumerate its configuration parameter names. The
example plugin is extended with the ability to define the name of the
special predicate it uses. The parameter is called predicate-uri and
accepts a URI value.

public class ExamplePlugin extends PluginBase implements PatternInterpreter, Preprocessor,
 Postprocessor, Configurable {
 private static final String DEFAULT_PREDICATE = "http://example.com/time";
 private static final String PREDICATE_PARAM = "predicate-uri";

 // ...

 @Override
 public String[] getParameters() {
 return new String[] { PREDICATE_PARAM };
 }

 // ...

 @Override
 public void initialize(InitReason reason) {
 // get the configured predicate URI, falling back to our default if none was found
 String predicate = options.getParameter(PREDICATE_PARAM, DEFAULT_PREDICATE);

 predicateId = entities.put(SimpleValueFactory.getInstance().createIRI(predicate), Entities.Scope.SYSTEM);
 }

 // ...
}

Now that the plugin parameter has been declared, it can be configured
either by adding the
http://www.ontotext.com/trree/owlim#predicate-uri parameter to the
GraphDB configuration, or by setting a Java system property using
-Dpredicate-uri parameter for the JVM running GraphDB.

Accessing other plugins

Plugins can make use of the functionality of other plugins. For
example, the Lucene-based full-text search plugin can make use of the
rank values provided by the RDFRank plugin, to facilitate query result
scoring and ordering. This is not a matter of re-using program code
(e.g., in a .jar with common classes), but rather it is about re-using
data. The mechanism to do this allows plugins to obtain references to
other plugin objects by knowing their names. To achieve this, they only
need to implement the PluginDependency interface:

public interface PluginDependency {
 public void setLocator(PluginLocator locator);
}

They are then injected into an instance of the PluginLocator
interface (during the configuration phase), which does the actual
plugin discovery for them:

public interface PluginLocator {
 public Plugin locate(String name);
}

Having a reference to another plugin is all that is needed to call its
methods directly and make use of its services.

RDF rank

What’s in this document?

	What is RDF Rank

	Parameters

	Full computation

	Incremental updates

	Exporting RDF Rank values

What is RDF Rank

RDF Rank is an algorithm that identifies the more important or more
popular entities in the repository by examining their
interconnectedness. The popularity of entities can then be used to order
the query results in a similar way to the internet search engines, the way
Google orders search results using PageRank [https://en.wikipedia.org/wiki/PageRank].

The RDF Rank component computes a numerical weighting for all nodes in
the entire RDF graph stored in the repository, including URIs, blank
nodes and literals. The weights are floating point numbers with values
between 0 and 1 that can be interpreted as a measure of a node’s
relevance/popularity.

[image: _images/RDF_rank.png]
Since the values range from 0 to 1, the weights can be used for sorting
a result set (the lexicographical order works fine even if the rank
literals are interpreted as plain strings).

Here is an example SPARQL query that uses the RDF rank for sorting results
by their popularity:

PREFIX rank: <http://www.ontotext.com/owlim/RDFRank#>
PREFIX opencyc-en: <http://sw.opencyc.org/2008/06/10/concept/en/>
SELECT * WHERE {
 ?Person a opencyc-en:Entertainer .
 ?Person rank:hasRDFRank ?rank .
}
ORDER BY DESC(?rank) LIMIT 100

As seen in the example query, RDF Rank weights are made available via a
special system predicate. GraphDB handles triple patterns with the
predicate http://www.ontotext.com/owlim/RDFRank#hasRDFRank in a
special way, where the object of the statement pattern is bound to a
literal containing the RDF Rank of the subject.

In order to use this mechanism, the RDF ranks for the whole repository
must be computed in advance. This is done by committing a series of
SPARQL updates that use special vocabulary to parameterise the weighting
algorithm, followed by an update that triggers the computation itself.

Parameters

	Parameter
	Maximum iterations

	Predicate
	http://www.ontotext.com/owlim/RDFRank#maxIterations

	Description
	Sets the maximum number of iterations of the algorithm over all entities in the repository.

	Default
	20

	Example
	
PREFIX rank: <http://www.ontotext.com/owlim/RDFRank#>

INSERT DATA { rank:maxIterations rank:setParam “16” . }

	Parameter
	Epsilon

	Predicate
	http://www.ontotext.com/owlim/RDFRank#epsilon

	Description
	Terminates the weighting algorithm early when the total change of all RDF Rank scores has fallen below this value.

	Default
	0.01

	Example
	
PREFIX rank: <http://www.ontotext.com/owlim/RDFRank#>

INSERT DATA { rank:epsilon rank:setParam “0.05” . }

Full computation

To trigger the computation of the RDF Rank values for all resources, use
the following update:

PREFIX rank: <http://www.ontotext.com/owlim/RDFRank#>
INSERT DATA { _:b1 rank:compute _:b2. }

Incremental updates

The full computation of RDF Rank values for all resources can be
relatively expensive. When new resources have been added to the
repository after a previous full computation of the RDF Rank values, you can
either have a full re-computation for all resources (see above) or compute only
the RDF Rank values for the new resources (an incremental
update).

The following control update:

PREFIX rank: <http://www.ontotext.com/owlim/RDFRank#>
INSERT DATA {_:b1 rank:computeIncremental "true"}

computes RDF Rank values for the resources that do not have an
associated value, i.e., the ones that have been added to the repository
since the last full RDF Rank computation.

Note

The incremental computation uses a different algorithm, which is
lightweight (in order to be fast), but is not as accurate as the
proper ranking algorithm. As a result, ranks assigned by the proper
and the lightweight algorithms will be slightly different.

Exporting RDF Rank values

The computed weights can be exported to an external file using an update
of this form:

PREFIX rank: <http://www.ontotext.com/owlim/RDFRank#>
INSERT DATA { _:b1 rank:export "/home/user1/rdf_ranks.txt" . }

If the export fails, the update throws an exception and an error message
is recorded in the log file.

Geo-spatial extensions

What’s in this document?

	What are geo-spatial extensions

	How to create a geo-spatial index

	Geo-spatial query syntax

	Extension query functions

	Implementation details

What are geo-spatial extensions

GraphDB provides support for 2-dimensional geo-spatial data that uses
the WGS84 Geo Positioning RDF vocabulary (World Geodetic System
1984) [http://www.w3.org/2003/01/geo/wgs84_pos]. Specialised indexes can
be used for this type of data, which allow efficient evaluation of query
forms and extension functions for finding locations:

	within a certain distance of a point, i.e. within a specified
circle on the surface of a sphere (Earth), using the nearby(...)
construction;

	within rectangles and polygons, where the vertices are defined by
spherical polar coordinates, using the within(...) construction.

[image: _images/geo-spatial-extensions.png]
The WGS84 ontology [http://www.w3.org/2003/01/geo/wgs84_pos] contains several classes
and predicates:

	Element
	Description

	SpatialThing
	A class for representing anything with a spatial extent, i.e., size, shape or position.

	Point
	A class for representing a point (relative to Earth) defined by latitude, longitude (and altitude).
subClassOf http://www.w3.org/2003/01/geo/wgs84_pos#SpatialThing

	location
	The relation between a thing and where it is.
Range SpatialThing
subPropertyOf http://xmlns.com/foaf/0.1/based_near

	lat
	The WGS84 latitude of a SpatialThing (decimal degrees).
domain http://www.w3.org/2003/01/geo/wgs84_pos#SpatialThing

	long
	The WGS84 longitude of a SpatialThing (decimal degrees).
domain http://www.w3.org/2003/01/geo/wgs84_pos#SpatialThing

	lat_long
	A comma-separated representation of a latitude, longitude coordinate.

	alt
	The WGS84 altitude of a SpatialThing (decimal meters above the local reference ellipsoid).
domain http://www.w3.org/2003/01/geo/wgs84_pos#SpatialThing

How to create a geo-spatial index

Execute the following INSERT query:

PREFIX ontogeo: <http://www.ontotext.com/owlim/geo#>
INSERT DATA { _:b1 ontogeo:createIndex _:b2. }

If all geo-spatial data is indexed successfully, the above update query will succeed. If there is an error, you will get a notification about
a failed transaction and an error will be registered in the GraphDB log files.

Note

If there is no geo-spatial data in the repository, i.e., no
statements describing resources with latitude and longitude
properties, this update query will fail.

Geo-spatial query syntax

The Geo-spatial query syntax is the SPARQL RDF Collections
syntax [http://www.w3.org/TR/rdf-sparql-query/#collections]. It uses
round brackets as a shorthand for the statements, which connect a list of
values using rdf:first and rdf:rest predicates with terminating
rdf:nil. Statement patterns that use custom geo-spatial predicates,
supported by GraphDB are treated differently by the query engine.

The following special syntax is supported when evaluating SPARQL
queries. All descriptions use the namespace: omgeo: <http://www.ontotext.com/owlim/geo#>

	Construct
	Nearby (lat long distance)

	Syntax
	?point omgeo:nearby(?lat ?long ?distance)

	Description
	This statement pattern will evaluate to true, if the following constraints hold:

	?point geo:lat ?plat .

	?point geo:long ?plong .

	Shortest great circle distance from (?plat, ?plong) to (?lat, ?long) <= ?distance

Such a construction uses the geo-spatial indexes to find bindings for ?point, which lie within the defined circle.
Constants are allowed for any of ?lat ?long ?distance, where latitude and longitude are specified in decimal degrees and distance is specified in either kilometers (‘km’ suffix) or miles (‘mi’ suffix). If the units are not specified, then ‘km’ is assumed.

	Restrictions
	Latitude is limited to the range -90 (South) to 90 (North).
Longitude is limited to the range -180 (West) to +180 (East).

	Examples
	Find the names of airports within 50 miles of Seoul:

PREFIX geo-pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX geo-ont: <http://www.geonames.org/ontology#>

PREFIX omgeo: <http://www.ontotext.com/owlim/geo#>

SELECT distinct ?airport

WHERE {

 ?base geo-ont:name "Seoul" .

 ?base geo-pos:lat ?latBase .

 ?base geo-pos:long ?longBase .

 ?link omgeo:nearby(?latBase ?longBase "50mi") .

 ?link geo-ont:name ?airport .

 ?link geo-ont:featureCode geo-ont:S.AIRP .

}

	Construct
	Within (rectangle)

	Syntax
	?point omgeo:within(?lat1 ?long1 ?lat2 ?long2)

	Description
	This statement pattern is used to test/find points that lie within the rectangle specified by diagonally opposite corners ?lat1 ?long1 and ?lat2 ?long2. The corners of the rectangle must be either constants or bound values.

It will evaluate to true, if the following constraints hold:

	?point geo:lat ?plat .

	?point geo:long ?plong .

	?lat1 <= ?plat <= ?lat2

	?long1 <= ?plong <= ?long2

Note that the most westerly and southerly corners must be specified first and the most northerly and easterly ones - second. Constants are allowed for any of ?lat1 ?long1 ?lat2 ?long2, where latitude and longitude are specified in decimal degrees. If ?point is unbound, then bindings for all points within the rectangle will be produced.

Rectangles that span across the +/-180 degree meridian might produce incorrect results.

	Restrictions
	Latitude is limited to the range -90 (South) to +90 (North).
Longitude is limited to the range -180 (West) to +180 (East).
Rectangle vertices must be specified in the order lower-left followed by upper-right.

	Examples
	Find tunnels lying within a rectangle enclosing Tirol, Austria:

PREFIX geo-pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX geo-ont: <http://www.geonames.org/ontology#>

PREFIX omgeo: <http://www.ontotext.com/owlim/geo#>

SELECT ?feature ?lat ?long

WHERE {

 ?link omgeo:within(45.85 9.15 48.61 13.18) .

 ?link geo-ont:featureCode geo-ont:R.TNL .

 ?link geo-ont:name ?feature .

 ?link geo-pos:lat ?lat .

 ?link geo-pos:long ?long .

}

	Construct
	Within (polygon)

	Syntax
	?point omgeo:within(?lat1 ?long1 ... ?latN ?longN)

	Description
	This statement pattern is used to test/find points that lie within the polygon whose vertices are specified by three or more latitude/longitude pairs.

The values of the vertices must be either constants or bound values.

It will evaluate to true, if the following constraints hold:

	?point geo:lat ?plat .

	?point geo:long ?plong .

	the position ?plat ?plong is enclosed by the polygon

The polygon is closed automatically if the first and last vertices do not coincide.
The vertices must be constants or bound values. Coordinates are specified
in decimal degrees. If ?point is unbound, then bindings for all points
within the polygon will be produced.

	Restrictions
	Latitude is limited to the range -90 (South) to +90 (North).
Longitude is limited to the range -180 (West) to +180 (East).

	Examples
	Find caves in the sides of cliffs lying within a polygon approximating the shape of England:

PREFIX geo-pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>
PREFIX geo-ont: <http://www.geonames.org/ontology#>
PREFIX omgeo: <http://www.ontotext.com/owlim/geo#>
SELECT ?feature ?lat ?long
WHERE {
?link omgeo:within("51.45" "-2.59"
 "54.99" "-3.06"
 "55.81" "-2.03"
 "52.74" "1.68"
 "51.17" "1.41") .
 ?link geo-ont:featureCode geo-ont:S.CAVE .
 ?link geo-ont:name ?feature .
 ?link geo-pos:lat ?lat .
 ?link geo-pos:long ?long .
}

Extension query functions

At present, there is just one SPARQL extension function:

	Function
	Distance function

	Syntax
	double omgeo:distance(?lat1, ?long1, ?lat2, ?long2)

	Description
	This SPARQL extension function computes the distance between two points
in kilometers and can be used in FILTER and ORDER BY clauses.

	Restrictions
	Latitude is limited to the range -90 (South) to +90 (North).
Longitude is limited to the range -180 (West) to +180 (East).

	Examples
	Find caves in the sides of cliffs lying within a polygon approximating the shape of England:

PREFIX geo-pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>
PREFIX geo-ont: <http://www.geonames.org/ontology#>
PREFIX omgeo: <http://www.ontotext.com/owlim/geo#>

SELECT distinct ?airport_name
WHERE {
 ?a1 geo-ont:name "Bournemouth" .
 ?a1 geo-pos:lat ?lat1 .
 ?a1 geo-pos:long ?long1 .
 ?airport omgeo:nearby(?lat1 ?long1 "80mi") .
 ?airport geo-ont:name ?airport_name .
 ?airport geo-ont:featureCode geo-ont:S.AIRP .
 ?airport geo-pos:lat ?lat2 .
 ?airport geo-pos:long ?long2 .
 ?a2 geo-ont:name "Brize Norton" .
 ?a2 geo-pos:lat ?lat3 .
 ?a2 geo-pos:long ?long3 .
 FILTER(omgeo:distance(?lat2, ?long2, ?lat3, ?long3) < 80)
}
ORDER BY ASC(omgeo:distance(?lat2, ?long2, ?lat3, ?long3))

Implementation details

Knowing the implementation’s algorithms and assumptions allow you
to make the best use of the GraphDB geo-spatial extensions.

The following aspects are significant and can affect the expected behaviour during query answering:

	Spherical Earth - the current implementation treats the Earth as a perfect sphere with a 6371.009km radius;

	Only 2-dimensional points are supported, i.e., there is no special handling of geo:alt (metres above the reference surface of the Earth);

	All latitude and longitude values must be specified using decimal degrees, where East and North are positive and -90 <= latitude <= +90 and -180 <= longitude <= +180;

	Distances must be in units of kilometers (suffix ‘km’) or statute miles (suffix ‘mi’). If the suffix is omitted, kilometers are assumed;

	omgeo:within(rectangle) construct uses a ‘rectangle’ whose edges are lines of latitude and longitude, so the north-south distance is constant, and the rectangle described forms a band around the Earth, which starts and stops at the given longitudes;

	omgeo:within(polygon) joins vertices with straight lines on a cylindrical projection of the Earth tangential to the equator. A straight line starting at the point under test and continuing East out of the polygon is examined to see how many polygon edges it intersects. If the number of intersections is even, then the point is outside the polygon. If the number of intersections is odd, the point is inside the polygon. With the current algorithm, the order of vertices is not relevant (clockwise or anticlockwise);

	omgeo:within() may not work correctly when the region (polygon or rectangle) spans the +/-180 meridian;

	omgeo:nearby() uses the great circle distance between points.

Notifications

What’s in this document?

	What are GraphDB local notifications
	How to register for local notifications

	What are GraphDB remote notifications
	How to use remote notifications

What are GraphDB local notifications

Notifications are a publish/subscribe mechanism for registering and
receiving events from a GraphDB repository, whenever triples matching a
certain graph pattern are inserted or removed.

The RDF4J API provides such a mechanism, where a
RepositoryConnectionListener can be notified of changes to a
NotifiyingRepositoryConnection. However, the GraphDB notifications
API works at a lower level and uses the internal raw entity IDs for
subject, predicate and object instead of Java objects. The benefit of this
is that a much higher performance is possible. The downside is that the
client must do a separate lookup to get the actual entity values and
because of this, the notification mechanism works only when the client
is running inside the same JVM as the repository instance.

How to register for local notifications

To receive notifications, register by providing a SPARQL query.

Note

The SPARQL query is interpreted as a plain graph pattern by ignoring
all more complicated SPARQL constructs such as FILTER, OPTIONAL,
DISTINCT, LIMIT, ORDER BY, etc. Therefore, the SPARQL query is
interpreted as a complex graph pattern involving triple patterns
combined by means of joins and unions at any level. The order of the
triple patterns is not significant.

Here is an example of how to register for notifications based on a given
SPARQL query:

AbstractRepository rep =
 ((OwlimSchemaRepository)owlimSail).getRepository();
EntityPool ent = ((OwlimSchemaRepository)owlimSail).getEntities();
String query = "SELECT * WHERE { ?s rdf:type ?o }";
SPARQLQueryListener listener =
 new SPARQLQueryListener(query, rep, ent) {
 public void notifyMatch(int subj, int pred, int obj, int context) {
 System.out.println("Notification on subject: " + subj);
 }
 }
rep.addListener(listener); // start receiving notifications
...
rep.removeListener(listener); // stop receiving notifications

In the example code, the caller will be asynchronously notified about
incoming statements matching the pattern ?s rdf:type ?o.

Note

In general, notifications are sent for all incoming triples, which
contribute to a solution of the query. The integer parameters in the
notifyMatch method can be mapped to values using the
EntityPool object. Furthermore, any statements inferred from
newly inserted statements are also subject to handling by the
notification mechanism, i.e., clients are notified also of new implicit statements when the requested triple pattern matches.

Note

The subscriber should not rely on any particular order or
distinctness of the statement notifications. Duplicate statements
might be delivered in response to a graph pattern subscription in an
order not even bound to the chronological order of the statements
insertion in the underlying triplestore.

Tip

The purpose of the notification services is to enable the efficient
and timely discovery of newly added RDF data. Therefore, it should
be treated as a mechanism for giving the client a hint that certain
new data is available and not as an asynchronous SPARQL evaluation
engine.

What are GraphDB remote notifications

GraphDB’s remote notification mechanism provides filtered statement
add/remove and transaction begin/end notifications for a local or a
remote GraphDB repository. Subscribers for this mechanism use patterns
of subject, predicate and object (with wildcards) to filter the
statement notifications. JMX is used internally as a transport
mechanism.

How to use remote notifications

To register / deregister for notifications, use the
NotifyingOwlimConnection class, which is located in the
graphdb-notifications-<version>.jar in the lib folder of the
distribution .zip file. This class wraps a RepositoryConnection
object connected to a GraphDB repository and provides an API to
add/remove notification listeners of the type
RepositoryNotificationsListener.

Here is a simple example of how to use the API when the GraphDB repository
is initialised in the same JVM that runs the example (local repository):

RepositoryConnection conn = null;
// initialize repository connection to GraphDB ...

RepositoryNotificationsListener listener = new RepositoryNotificationsListener() {
 @Override
 public void addStatement(Resource subject, URI predicate,
 Value object, Resource context, boolean isExplicit, long tid) {
 System.out.println("Added: " + subject + " " + predicate + " " + object);
 }
 @Override
 public void removeStatement(Resource subject, URI predicate,
 Value object, Resource context, boolean isExplicit, long tid) {
 System.out.println("Removed: " + subject + " " + predicate + " " + object);
 }
 @Override
 public void transactionStarted(long tid) {
 System.out.println("Started transaction " + tid);
 }
 @Override
 public void transactionComplete(long tid) {
 System.out.println("Finished transaction " + tid);
 }
};

NotifyingOwlimConnection nConn = new NotifyingOwlimConnection(conn);
IRI ex = SimpleValueFactory.getInstance().createIRI("http://example.com/");

// subscribe for statements with 'ex' as subject
nConn.subscribe(listener, ex, null, null);

// note that this could be any other connection to the same repository
conn.add(ex, ex, ex);
conn.commit();
// statement added should have been printed out

// stop listening for this pattern
nConn.unsubscribe(listener);

Note

The transactionStarted() and transactionComplete() events are not
bound to any statement. They are dispatched to all subscribers, no
matter what they are subscribed for. This means that pairs of
start/complete events can be detected by the client without
receiving any statement notifications in between.

To use a remote repository (e.g., HTTPRepository), the notifying
repository connection should be initialised differently:

NotifyingOwlimConnection nConn =
 new NotifyingOwlimConnection(conn, host, port);

where host (String) and port (int) are the host name of the
remote machine, in which the repository resides and the port number of
the JMX service in the repository JVM. The other part of the above
example is also valid for a remote repository.

How to configure remote notifications

For remote notifications, where the subscriber and the repository are
running in different JVM instances (possibly on different hosts), a JMX
remote service should be configured in the repository JVM.

This is done by adding the following parameters to the JVM command line:

-Dcom.sun.management.jmxremote.port=1717
-Dcom.sun.management.jmxremote.authenticate=false
-Dcom.sun.management.jmxremote.ssl=false

If the repository is running inside a servlet container, these
parameters must be passed to the JVM that runs the container and
GraphDB. For Tomcat, this can be done using the JAVA_OPTS or
CATALINA_OPTS environment variable.

The port number used should be exactly the port number that is passed to
the NotifyingOwlimConnection constructor (as in the example above). You
have to make sure that the specified port (e.g., 1717) is accessible
remotely, i.e., no firewalls or NAT redirection prevent access to it.

Query behaviour

What’s in this document?

	What are named graphs
	The default SPARQL dataset

	How to manage explicit and implicit statements

	How to query explicit and implicit statements

	How to specify the dataset programmatically

	How to access internal identifiers for entities
	Examples

	How to use RDF4J ‘direct hierarchy’ vocabulary

	Other special GraphDB query behaviour

What are named graphs

Hint

GraphDB supports the following SPARQL specifications:

	SPARQL 1.1 Protocol for
RDF [http://www.w3.org/TR/sparql11-protocol/]

	SPARQL 1.1 Query [http://www.w3.org/TR/sparql11-query/]

	SPARQL 1.1 Update [http://www.w3.org/TR/sparql11-update/]

	SPARQL 1.1
Federation [http://www.w3.org/TR/sparql11-federated-query/]

	SPARQL 1.1 Graph Store HTTP
Protocol [http://www.w3.org/TR/sparql11-http-rdf-update/]

An RDF database can store collections of RDF statements (triples) in
separate graphs identified (named) by a URI. A group of statements with
a unique name is called a ‘named graph’. An RDF database has one more
graph, which does not have a name, and it is called the ‘default graph’.

The SPARQL query syntax provides a means to execute queries across
default and named graphs using FROM and FROM NAMED clauses. These
clauses are used to build an RDF dataset, which identifies what
statements the SPARQL query processor will use to answer a query. The
dataset contains a default graph and named graphs and is constructed as
follows:

	FROM <uri> - brings statements from the database graph, identified
by URI, to the dataset’s default graph, i.e., the statements ‘lose’
their graph name.

	FROM NAMED <uri> - brings the statements from the database graph,
identified by URI, to the dataset, i.e., the statements keep their
graph name.

If either FROM or FROM NAMED are used, the database’s default graph is
no longer used as input for processing this query. In effect, the
combination of FROM and FROM NAMED clauses exactly defines the dataset.
This is somewhat bothersome, as it precludes the possibility, for
instance, of executing a query over just one named graph and the default
graph. However, there is a programmatic way to get around this
limitation as described below.

The default SPARQL dataset

Note

The SPARQL specification does not define what happens when no FROM
or FROM NAMED clauses are present in a query, i.e., it does not
define how a SPARQL processor should behave when no dataset is
defined. In this situation, implementations are free to construct
the default dataset as necessary.

GraphDB constructs the default dataset as follows:

	The dataset’s default graph contains the merge of the database’s
default graph AND all the database named graphs;

	The dataset contains all named graphs from the database.

This means that if a statement ex:x ex:y ex:z exists in the database in
the graph ex:g, then the following query patterns will behave as
follows:

	Query
	Bindings

	SELECT * { ?s ?p ?o }
	?s=ex:x ?p=ex:y ?o=ex:z

	SELECT * { GRAPH ?g { ?s ?p ?o } }
	?s=ex:x ?p=ex:y ?o=ex:z ?g=ex:g

In other words, the triple ex:x ex:y ex:z will appear to be in both the
default graph and the named graph ex:g.

There are two reasons for this behaviour:

	It provides an easy way to execute a triple pattern query over all
stored RDF statements.

	It allows all named graph names to be discovered, i.e., with this
query: SELECT ?g { GRAPH ?g { ?s ?p ?o } }.

How to manage explicit and implicit statements

GraphDB maintains two flags for each statement:

	Explicit: the statement is inserted in the database by the user,
using SPARQL UPDATE, the RDF4J API or the imports configuration parameter configuration
parameter. The same explicit statement can exist in the database’s
default graph and in each named graph.

	Implicit: the statement is created as a result of inference, by
either Axioms or Rules. Inferred
statements are ALWAYS created in the database’s default graph.

These two flags are not mutually exclusive. The following sequences of
operations are possible:

	For the operations, use the names ‘insert/delete’ for explicit,
and ‘infer/retract’ for implicit (retract means that all premises of
the statement are deleted or retracted).

	To show the results after each operation, use tuples <statement graph flags> :
	<s G EI> means statement s in graph G having both
flags Explicit and Implicit;

	<s _ EI> means statement s in the default graph having
both flags Explicit and Implicit;

	<_ G _> means the statement is deleted from graph G.

First, let’s consider operations on statement s in the default
graph only:

	insert <s _ E>, infer <s _ EI>, delete <s _ I>, retract
<_ _ _>;

	insert <s _ E>, infer <s _ EI>, retract <s _ E>, delete
<_ _ _>;

	infer <s _ I>, insert <s _ EI>, delete <s _ I>, retract
<_ _ _>;

	infer <s _ I>, insert <s _ EI>, retract <s _ E>, delete
<_ _ _>;

	insert <s _ E>, insert <s _ E>, delete <_ _ _>;

	infer <s _ I>, infer <s _ I>, retract <_ _ _> (if the two
inferences are from the same premises).

This does not show all possible sequences, but it shows the principles:

	No duplicate statement can exist in the default graph;

	Delete/retract clears the appropriate flag;

	The statement is deleted only after both flags are cleared;

	Deleting an inferred statement has no effect (except to clear the
I flag, if any);

	Retracting an inserted statement has no effect (except to clear the
E flag, if any);

	Inserting the same statement twice has no effect: insert is
idempotent;

	Inferring the same statement twice has no effect: infer is
idempotent, and
I is a flag, not a counter, but the Retraction algorithm ensures I
is cleared only after all premises of s are retracted.

Now, let’s consider operations on statement
s in the named graph G, and inferred statement s in the default
graph:

	insert <s G E>, infer <s _ I> <s G E>, delete <s _ I>,
retract <_ _ _>;

	insert <s G E>, infer <s _ I> <s G E>, retract <s G E>,
delete <_ _ _>;

	infer <s _ I>, insert <s G E> <s _ I>, delete <s _ I>,
retract <_ _ _>;

	infer <s _ I>, insert <s G E> <s _ I>, retract <s G E>,
delete <_ _ _>;

	insert <s G E>, insert <s G E>, delete <_ _ _>;

	infer <s _ I>, infer <s _ I>, retract <_ _ _> (if the two
inferences are from the same premises).

The additional principles here are:

	The same statement can exist in several graphs - as explicit in graph
G and implicit in the default graph;

	Delete/retract works on the appropriate graph.

Note

In order to avoid a proliferation of duplicate statements, it is
recommended not to insert inferable statements in named graphs.

How to query explicit and implicit statements

The database’s default graph can contain a mixture of explicit and
implicit statements. The RDF4J API provides a flag called
‘includeInferred’, which is passed to several API methods and when set
to false causes only explicit statements to be iterated or
returned. When this flag is set to true, both explicit and implicit
statements are iterated or returned.

GraphDB provides extensions for more control over the
processing of explicit and implicit statements. These extensions allow
the selection of explicit, implicit or both for query answering and also
provide a mechanism for identifying which statements are explicit and
which are implicit. This is achieved by using some ‘pseudo-graph’ names
in FROM and FROM NAMED clauses, which cause certain flags to be set.

The details are as follows:

	FROM <http://www.ontotext.com/explicit>

	The dataset’s default graph includes only explicit statements from the database’s default graph.

	FROM <http://www.ontotext.com/implicit>

	The dataset’s default graph includes only inferred statements from the database’s default graph.

	FROM NAMED <http://www.ontotext.com/explicit>

	The dataset contains a named graph http://www.ontotext.com/explicit that includes only explicit
statements from the database’s default graph, i.e., quad patterns such as GRAPH ?g {?s ?p ?o}
rebind explicit statements from the database’s default graph to a graph named http://www.ontotext.com/explicit.

	FROM NAMED <http://www.ontotext.com/implicit>

	The dataset contains a named graph http://www.ontotext.com/implicit that includes only implicit
statements from the database’s default graph.

Note

These clauses do not affect the construction of the default dataset
in the sense that using any combination of the above will still
result in a dataset containing all named graphs from the database.
All it changes is which statements appear in the dataset’s default
graph and whether any extra named graphs (explicit or implicit)
appear.

How to specify the dataset programmatically

The RDF4J API provides an interface Dataset and an implementation
class DatasetImpl for defining the dataset for a query by providing
the URIs of named graphs and adding them to the default graphs and named
graphs members. This permits null to be used to identify the default
database graph (or null context to use RDF4J terminology).

DatasetImpl dataset = new DatasetImpl();
dataset.addDefaultGraph(null);
dataset.addNamedGraph(valueFactory.createURI("http://example.com/g1"));

This dataset can then be passed to queries or updates, e.g.:

TupleQuery query = connection.prepareTupleQuery(QueryLanguage.SPARQL, queryString);
query.setDataset(dataset);

How to access internal identifiers for entities

Internally, GraphDB uses integer identifiers (IDs) to index all entities
(URIs, blank nodes and literals). Statement indices are made up of these
IDs and a large data structure is used to map from ID to entity value
and back. There are occasions (e.g., when interfacing to an application
infrastructure) when having access to these internal IDs can improve the
efficiency of data structures external to GraphDB by allowing them to be
indexed by an integer value rather than a full URI.

Here, we introduce a special GraphDB predicate and function that
provide access to the internal IDs. The datatype of the internal IDs is
<http://www.w3.org/2001/XMLSchema#long>.

	Predicate
	<http://www.ontotext.com/owlim/entity#id>

	Description
	A map between an entity and an internal ID

	Example
	Select all entities and their IDs:

PREFIX ent: <http://www.ontotext.com/owlim/entity#>
SELECT * WHERE {
?s ent:id ?id
} ORDER BY ?id

	Function
	<http://www.ontotext.com/owlim/entity#id>

	Description
	Return an entity’s internal ID

	Example
	Select all statements and order them by the internal ID of the object values:

PREFIX ent: <http://www.ontotext.com/owlim/entity#>
SELECT * WHERE {
?s ?p ?o .
} order by ent:id(?o)

Examples

	Enumerate all entities and bind the nodes to ?s and their IDs to ?id,
order by ?id:

select * where {
 ?s <http://www.ontotext.com/owlim/entity#id> ?id
} order by ?id

	Enumerate all non-literals and bind the nodes to ?s and their IDs to
?id, order by ?id:

SELECT * WHERE {
 ?s <http://www.ontotext.com/owlim/entity#id> ?id .
 FILTER (!isLiteral(?s)) .
} ORDER BY ?id

	Find the internal IDs of subjects of statements with specific
predicate and object values:

SELECT * WHERE {
 ?s <http://test.org#Pred1> "A literal".
 ?s <http://www.ontotext.com/owlim/entity#id> ?id .
} ORDER BY ?id

	Find all statements where the object has the given internal ID by
using an explicit, untyped value as the ID (the "115" is used as
object in the second statement pattern):

SELECT * WHERE {
 ?s ?p ?o.
 ?o <http://www.ontotext.com/owlim/entity#id> "115" .
}

	As above, but using an xsd:long datatype for the constant within a
FILTER condition:

SELECT * WHERE {
 ?s ?p ?o.
 ?o <http://www.ontotext.com/owlim/entity#id> ?id .
 FILTER (?id="115"^^<http://www.w3.org/2001/XMLSchema#long>) .
} ORDER BY ?o

	Find the internal IDs of subject and object entities for all
statements:

SELECT * WHERE {
 ?s ?p ?o.
 ?s <http://www.ontotext.com/owlim/entity#id> ?ids.
 ?o <http://www.ontotext.com/owlim/entity#id> ?ido.
}

	Retrieve all statements where the ID of the subject is equal to
"115"^^xsd:long, by providing an internal ID value within a filter
expression:

SELECT * WHERE {
 ?s ?p ?o.
 FILTER ((<http://www.ontotext.com/owlim/entity#id>(?s))
 = "115"^^<http://www.w3.org/2001/XMLSchema#long>).
}

	Retrieve all statements where the string-ised ID of the subject is
equal to "115", by providing an internal ID value within a filter
expression:

SELECT * WHERE {
 ?s ?p ?o.
 FILTER (str(<http://www.ontotext.com/owlim/entity#id>(?s)) = "115").
}

How to use RDF4J ‘direct hierarchy’ vocabulary

GraphDB supports the RDF4J specific vocabulary for determining ‘direct’
subclass, subproperty and type relationships. The special vocabulary
used and their definitions are shown below. The
three predicates are all defined using the namespace definition:

PREFIX sesame: <http://www.openrdf.org/schema/sesame#>

	Predicate
	Definition

	A sesame:directSubClassOf B
	Class A is a direct subclass of B if:

	A is a subclass of B and;

	A and B are not equal and;

	there is no class C (not equal to A or B) such that A is a subclass of C and C of B.

	P sesame:directSubPropertyOf Q
	Property P is a direct subproperty of Q if:

	P is a subproperty of Q and;

	P and Q are not equal and;

	there is no property R (not equal to P or Q) such that P is a subproperty of R and R of Q.

	I sesame:directType T
	Resource I is a direct type of T if:

	I is of type T and

	There is no class U (not equal to T) such that:
	U is a subclass of T and;

	I is of type U.

Other special GraphDB query behaviour

There are several more special graph URIs in GraphDB, which are used for
controlling query evaluation.

	FROM / FROM NAMED <http://www.ontotext.com/disable-sameAs>

	Switch off the enumeration of equivalence classes produced by the Optimisation of owl:sameAs.
By default, all owl:sameAs URIs are returned by triple pattern matching. This clause reduces
the number of results to include a single representative from each owl:sameAs class.
For more details, see Not enumerating sameAs.

	FROM / FROM NAMED <http://www.ontotext.com/count>

	Used for triggering the evaluation of the query, so that it gives a single result in which
all variable bindings in the projection are replaced with a plain literal, holding the value
of the total number of solutions of the query. In the case of a CONSTRUCT query in which
the projection contains three variables (?subject, ?predicate, ?object), the subject
and the predicate are bound to <http://www.ontotext.com/> and the object holds
the literal value. This is because there cannot exist a statement with a literal in
the place of the subject or predicate. This clause is deprecated in favor of using
the COUNT aggregate of SPARQL 1.1.

	FROM / FROM NAMED <http://www.ontotext.com/skip-redundant-implicit>

	Used for triggering the exclusion of implicit statements when there is an explicit
one within a specific context (even default). Initially implemented to allow for filtering
of redundant rows where the context part is not taken into account and which leads to
‘duplicate’ results.

	FROM <http://www.ontotext.com/distinct>

	Using this special graph name in DESCRIBE and CONSTRUCT queries will cause only distinct
triples to be returned. This is useful when several resources are being described, where the same
triple can be returned more than once, i.e., when describing its subject and its object.
This clause is deprecated in favor of using the DISTINCT clause of SPARQL 1.1.

Retain BIND position special graph

The default behavior of the GraphDB query optimiser is to try and
reposition BIND clauses so that all the variables within its EXPR part
(on the left side of ‘AS’) are bound to have valid bindings for all of
the variables referred within it.

If you look at the following data:

INSERT DATA {
 <urn:q> <urn:pp1> 1 .
 <urn:q> <urn:pp2> 2 .
 <urn:q> <urn:pp3> 3 .
}

and try to evaluate a SPARQL query such as the one below (without any
rearrangement of the statement patterns):

SELECT ?r {
 ?q <urn:pp1> ?x .
 ?q <urn:pp2> ?y .
 BIND (?x + ?y + ?z AS ?r) .
 ?q <urn:pp3> ?z .
}

the ‘correct’ result would be:

1 result: r=UNDEF

because the expression that sums several variables will not produce any
valid bindings for ?r.

But if you rearrange the statement patterns in the same query so that you
have bindings for all of the variables used within the sum expression of
the BIND clause:

SELECT ?r {
 ?q <urn:pp1> ?x .
 ?q <urn:pp2> ?y .
 ?q <urn:pp3> ?z .
 BIND (?x + ?y + ?z AS ?r) .
}

the query would return a single result and now the value bound to ?r
will be 6:

1 result: r=6

By default, the GraphDB query optimiser tries to move the BIND after
the last statement pattern, so that all the variables referred
internally have a binding. However, that behavior can be modified by
using a special ‘system’ graph within the dataset section of the query
(e.g., as FROM clause) that has the following URI:

<http://www.ontotext.com/retain-bind-position>.

In this case, the optimiser retains the relative position of the
BIND operator within the group in which it appears, so that if you
evaluate the following query against the GraphDB repository:

SELECT ?r
FROM <http://www.ontotext.com/retain-bind-position> {
 ?q <urn:pp1> ?x .
 ?q <urn:pp2> ?y .
 BIND (?x + ?y + ?z AS ?r) .
 ?q <urn:pp3> ?z .
}

you will get the following result:

1 result: r=UNDEF

Still, the default evaluation without the special ‘system’ graph
provides a more useful result:

1 result: r="6"

Performance optimisations

The best performance is typically measured by the shortest load time and the fastest query answering. Here are all the factors that affect GraphDB performance:

	Configure GraphDB memory

	Data loading & query optimisations
	Dataset loading

	GraphDB’s optional indices

	Cache/index monitoring and optimisations

	Query optimisations

	Explain Plan

	Inference optimisations
	Delete optimisations

	Rules optimisations

	Optimisation of owl:sameAs

	RDFS and OWL support optimisations

Data loading & query optimisations

What’s in this document?

	Dataset loading
	Normal operation

	GraphDB’s optional indices
	Predicate lists

	Context indices

	Cache/index monitoring and optimisations

	Query optimisations
	Caching literal language tags

	Not enumerating sameAs

The life-cycle of a repository instance typically starts with the
initial loading of datasets, followed by the processing of queries and
updates. The loading of a large dataset can take a long time - up to 12
hours for a billion statements with inference. Therefore, during
loading, it is often helpful to use a different configuration than the one
for a normal operation.

Furthermore, if you frequently load a certain dataset, since it gradually
changes over time, the loading configuration can evolve as you
become more familiar with the GraphDB behaviour towards this dataset. Many
dataset properties only become apparent after the initial load
(such as the number of unique entities) and this information can be used
to optimise the loading step for the next round or to improve the
configuration for a normal operation.

Dataset loading

The following is a typical initialisation life-cycle:

	Configure a repository for best loading performance with many estimated parameters.

	Load data.

	Examine dataset properties.

	Refine loading configuration.

	Reload data and measure improvement.

Unless the repository has to answer queries during the initialisation
phase, it can be configured with the minimum number of options and
indices:

enablePredicateList = false (unless the dataset has a large number of predicates)
enable-context-index = false
in-memory-literal-properties = false

Normal operation

The size of the data structures used to index entities is directly
related to the number of unique entities in the loaded dataset. These
data structures are always kept in memory. In order to get an upper
bound on the number of unique entities loaded and to find the actual
amount of RAM used to index them, it is useful to know the contents of the
storage folder.

The total amount of memory needed to index entities is equal to the sum
of the sizes of the files entities.index and entities.hash. This
value can be used to determine how much memory is used and therefore how
to divide the remaining memory between the cache-memory, etc.

An upper bound on the number of unique entities is given by the size of
entities.hash divided by 12 (memory is allocated in pages and
therefore the last page will likely not be full).

The file entities.index is used to look up entries in the file
entities.hash and its size is equal to the value of the
entity-index-size parameter multiplied by 4. Therefore, the
entity-index-size parameter has less to do with efficient use of
memory and more with the performance of entity indexing and lookup. The
larger this value, the less collisions occur in the entities.hash
table. A reasonable size for this parameter is at least half the number
of unique entities. However, the size of this data structure is never
changed once the repository is created, so this knowledge can only be
used to adjust this value for the next clean load of the dataset with a
new (empty) repository.

The following parameters can be adjusted:

	entity-index-size

	Set to a large enough value.

	enablePredicateList

	Can speed up queries (and loading).

	enable-context-index

	To provide better performance when executing queries that use contexts.

	index-in-memory-literal-properties

	Whether to keep the properties of each literal in-memory.

Furthermore, the inference semantics can be adjusted by choosing a
different ruleset. However, this will require a reload of the whole
repository, otherwise some inferences can remain when they should not.

Note

The optional indices can be built at a later time when the
repository is used for query answering. You need to experiment using
typical query patterns from the user environment.

GraphDB’s optional indices

Predicate lists

Predicate lists are two indices (SP and OP) that can improve
performance in the following situations:

	When loading/querying datasets that have a large number of
predicates;

	When executing queries or retrieving statements that use a wildcard
in the predicate position, e.g., the statement pattern:
dbpedia:Human ?predicate dbpedia:Land.

As a rough guideline, a dataset with more than about 1000 predicates
will benefit from using these indices for both loading and query
answering. Predicate list indices are not enabled by default, but can be
switched on using the enablePredicateList configuration parameter.

Context indices

To provide better performance when executing queries that use contexts,
you can use two other indices - PCSO and PSOC. They are enabled
by using the enable-context-index configuration parameter.

Cache/index monitoring and optimisations

Statistics are kept for the main index data structures and include
information such as cache hits/misses, file reads/writes, etc. This
information can be used to fine-tune GraphDB memory configuration and
can be useful for ‘debugging’ certain situations, such as understanding
why load performance changes over time or with particular data sets.

[image: _images/global-cache-metrics.jpg]
For each index, there will be a CollectionStatistics MBean published,
which shows the cache and file I/O values updated in real-time:

	Package
	com.ontotext

	MBean name
	CollectionStatistics

The following information is displayed for each MBean/index:

	Attribute
	Description

	CacheHits
	The number of operations completed without accessing the storage system.

	CacheMisses
	The number of operations completed, which needed to access the storage system.

	FlushInvocations
	

	FlushReadItems
	

	FlushReadTimeAvarage
	

	FlushReadTimeTotal
	

	FlushWriteItems
	

	FlushWriteTimeAvarage
	

	FlushWriteTimeTotal
	

	PageDiscards
	The number of times a non-dirty page’s memory was reused to read in another page.

	PageSwaps
	The number of times a page was written to the disk, so its memory could be used to load another page.

	Reads
	The total number of times an index was searched for a statement or a range of statements.

	Writes
	The total number of times a statement was added to a collection.

The following operations are available:

	Operation
	Description

	resetCounters
	Resets all the counters for this index.

Ideally, the system should be configured to keep the number of cache
misses to a minimum. If the ratio of hits to misses is low,
consider increasing the memory available to the index (if other factors
permit this).

Page swaps tend to occur much more often during large scale data
loading. Page discards occur more frequently during query evaluation.

Query optimisations

GraphDB uses a number of query optimisation techniques by default. They
can be disabled by using the enable-optimization configuration
parameter set to false, however there is rarely any need to do this.
See GraphDB’s Explain Plan for a way to view query plans and applied
optimisations.

Caching literal language tags

This optimisation applies when the repository contains a large number of
literals with language tags and it is necessary to execute queries that
filter based on language, e.g., using the following SPARQL query
construct:

FILTER (lang(?name) = "ES")

In this situation, the in-memory-literal-properties configuration
parameters can be set to true, causing the data values with language
tags to be cached.

Not enumerating sameAs

During query answering, all URIs from each equivalence class produced by
the sameAs optimisation are enumerated. You can use the
onto:disable-sameAs pseudo-graph (see
Other special query behaviour) to significantly
reduce these duplicate results (by returning a single
representative from each equivalence class).

Consider these example queries executed against the
FactForge [http://factforge.net/] combined dataset. Here, the
default is to enumerate:

PREFIX dbpedia: <http://dbpedia.org/resource/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT * WHERE { ?c rdfs:subClassOf dbpedia:Airport}

producing many results:

dbpedia:Air_strip
http://sw.cyc.com/concept/Mx4ruQS1AL_QQdeZXf-MIWWdng
umbel-sc:CommercialAirport
opencyc:Mx4ruQS1AL_QQdeZXf-MIWWdng
dbpedia:Jetport
dbpedia:Airstrips
dbpedia:Airport
fb:guid.9202a8c04000641f800000000004ae12
opencyc-en:CommercialAirport

If you specify the onto:disable-sameAs pseudo-graph:

PREFIX onto: <http://www.ontotext.com/>
PREFIX dbpedia: <http://dbpedia.org/resource/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT * FROM onto:disable-sameAs
WHERE {?c rdfs:subClassOf dbpedia:Airport}

only two results are returned:

dbpedia:Air_strip
opencyc-en:CommercialAirport

The Expand results over equivalent URIs checkbox in the GraphDB
Workbench SPARQL editor plays a similar role, but the meaning is
reversed.

Warning

If the query uses a filter over the textual representation of a URI,
e.g., filter(strstarts(str(?x),"http://dbpedia.org/ontology")),
this may skip some valid solutions as not all URIs within an
equivalence class are matched against the filter.

Explain Plan

What’s in this document?

	What is GraphDB’s Explain Plan

	Activating the explain plan

	Simple explain plan

	Multiple triple patterns

	Wine queries
	First query with aggregation

What is GraphDB’s Explain Plan

GraphDB’s Explain Plan is a feature that explains how GraphDB executes a SPARQL query and also includes information about unique subject, predicate and object collection sizes. It can help you improve the query, leading to better execution performance.

Warning

For users of GraphDB versions 6.4.3 - 6.6.0, please note that from GraphDB version 6.6.1 on, the Experimental Explain Plan becomes GraphDB’s regular Explain Plan.

Activating the explain plan

To see the query explain plan, use the onto:explain pseudo-graph:

PREFIX onto: <http://www.ontotext.com/>
select * from onto:explain
...

Simple explain plan

For the simplest query explain plan possible (?s ?p ?o), execute the following query:

PREFIX onto: <http://www.ontotext.com/>
select * from onto:explain {
 ?s ?p ?o .
}

Depending on the number of triples that you have in the database, the results will vary, but you will get something like the following:

SELECT ?s ?p ?o
{

 { # ----- Begin optimization group 1 -----

 ?s ?p ?o . # Collection size: 108.0
 # Predicate collection size: 108.0
 # Unique subjects: 90.0
 # Unique objects: 55.0
 # Current complexity: 108.0

 } # ----- End optimization group 1 -----
 # ESTIMATED NUMBER OF ITERATIONS: 108.0

}

This is the same query, but with some estimations next to the statement pattern (1 in this case).

Note

The query might not be the same as the original one. See below the triple patterns in the order in which they are executed internally.

	----- Begin optimization group 1 ----- - indicates starting a group of statements, which most probably are part of a subquery (in the case of property paths, the group will be the whole path);

	Collection size - an estimation of the number of statements that match the pattern;

	Predicate collection size - the number of statements in the database for this particular predicate (in this case, for all predicates);

	Unique subjects - the number of subjects that match the statement pattern;

	Unique objects - the number of objects that match the statement pattern;

	Current complexity - the complexity (the number of atomic lookups in the index) the database will need to make so far in the optimisation group (most of the time a subquery). When you have multiple triple patterns, these numbers grow fast.

	----- End optimization group 1 ----- - the end of the optimisation group;

	ESTIMATED NUMBER OF ITERATIONS: 108.0 - the approximate number of iterations that will be executed for this group.

Multiple triple patterns

Note

The result of the explain plan is given in the exact order the engine is going to execute the query.

The following is an example where the engine reorders the triple patterns based on their complexity. The query is a simple join:

PREFIX onto: <http://www.ontotext.com/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

select *
from onto:explain
{
 ?o rdf:type ?o1 .
 ?o rdfs:subPropertyOf ?o2
}

and here is the output:

SELECT ?o ?o1 ?o2
{

 { # ----- Begin optimization group 1 -----

 ?o rdfs:subPropertyOf ?o2 . # Collection size: 20.0
 # Predicate collection size: 20.0
 # Unique subjects: 19.0
 # Unique objects: 18.0
 # Current complexity: 20.0
 ?o rdf:type ?o1 . # Collection size: 43.0
 # Predicate collection size: 43.0
 # Unique subjects: 34.0
 # Unique objects: 7.0
 # Current complexity: 860.0

 } # ----- End optimization group 1 -----
 # ESTIMATED NUMBER OF ITERATIONS: 25.294117647058822

}

Understanding the output:

	?o rdfs:subPropertyOf ?o1 has a lower collection size (20 instead of 43), so it will be executed first.

	?o rdf:type ?o1 has a bigger collection size (43 instead of 20), so it will be executed second (although it is written first in the original query).

	The current complexity grows fast because it multiplies. In this case, you can expect to get 20 results from the first statement pattern and then you have to join them with the results from the second triple pattern, which results in the complexity of 20 * 43 = 860.

	Although the complexity for the whole group is 860, the estimated number of iterations for this group is 25.3.

Wine queries

All of the following examples refer to our simple wine dataset (wine.ttl). The file is quite small, but here is some basic explanation about the data:

	There are different types of wine (Red, White, Rose).

	Each wine has a label.

	Wines are made from different types of grapes.

	Wines contain different levels of sugar.

	Wines are produced in a specific year.

First query with aggregation

A typical aggregation query contains a group with some aggregation function. Here, we have added an explain graph:

Retrieve the number of wines produced in each year along with the year
PREFIX onto: <http://www.ontotext.com/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX : <http://www.ontotext.com/example/wine#>
SELECT (count(?wine) as ?wines) ?year
from onto:explain
WHERE {
 ?wine rdf:type :Wine .
 optional {
 ?wine :hasYear ?year
 }
}
group by ?year
ORDER BY DESC(?wines)

When you execute the query on GraphDB, you get the following as an output (instead of the real results):

SELECT (COUNT(?wine) AS ?wines) ?year
{

 { # ----- Begin optimization group 1 -----

 ?wine rdf:type onto:example/wine#Wine . # Collection size: 5.0
 # Predicate collection size: 64.0
 # Unique subjects: 50.0
 # Unique objects: 12.0
 # Current complexity: 5.0

 } # ----- End optimization group 1 -----
 # ESTIMATED NUMBER OF ITERATIONS: 5.0

 OPTIONAL
 {

 { # ----- Begin optimization group 2 -----

 ?wine onto:example/wine#hasYear ?year . # Collection size: 5.0
 # Predicate collection size: 5.0
 # Unique subjects: 5.0
 # Unique objects: 2.0
 # Current complexity: 5.0

 } # ----- End optimization group 2 -----
 # ESTIMATED NUMBER OF ITERATIONS: 5.0

 }
}
GROUP BY ?year
ORDER BY DESC(?wines)
LIMIT 1000

Inference optimisations

	Delete optimisations

	Rules optimisations

	Optimisation of owl:sameAs

	RDFS and OWL support optimisations

Delete optimisations

What’s in this document?

	The algorithm

	Example

	Schema transactions

GraphDB’s inference policy is based on materialisation, where implicit statements are inferred from explicit statements as soon as they are inserted into the repository, using the specified semantics ruleset. This approach has the advantage of achieving query answering very quickly, since no inference needs to be done at query time.

However, no justification information is stored for inferred statements, therefore deleting a statement normally requires a full re-computation of all inferred statements, which can take a very long time for large datasets.

GraphDB uses a special technique for handling the deletion of explicit statements and their inferences, called ‘smooth delete‘. It allows fast delete operations as well as ensures that schemas can be changed when necessary.

The algorithm

The algorithm for identifying and removing the inferred statements that can no longer be derived by the explicit statements that have been deleted, is as follows:

	Use forward-chaining to determine what statements can be inferred from the statements marked for deletion.

	Use backward-chaining to see if these statements are still supported by other means.

	Delete explicit statements and the no longer supported inferred statements.

Note

We recommend that you mark the visited statements as read-only. Otherwise, as almost all delete operations follow inference paths that touch schema statements, which then lead to almost all other statements in the repository, the ‘smooth delete’ can take a very long time. However, since a read-only statement cannot be deleted, there is no reason to find what statements are inferred from it (such inferred statements might still get deleted, but they will be found by following other inference paths).

Statements are marked as read-only if they occur in the Axioms section of the ruleset files (standard or custom) or are loaded at initialisation time via the imports configuration parameter.

Note

When using ‘smooth delete’, we recommend that you load all ontology/schema/vocabulary statements using the imports configuration parameter.

Example

Consider the following statements:

Schema:
<foaf:name> <rdfs:domain> <owl:Thing> .
<MyClass> <rdfs:subClassOf> <owl:Thing> .

Data:
<wayne_rooney> <foaf:name> "Wayne Rooney" .
<Reviewer40476> <rdf:type> <MyClass> .
<Reviewer40478> <rdf:type> <MyClass> .
<Reviewer40480> <rdf:type> <MyClass> .
<Reviewer40481> <rdf:type> <MyClass> .

When using the owl-horst ruleset the removal of the statement:

<wayne_rooney> <foaf:name> "Wayne Rooney"

will cause the following sequence of events:

rdfs2:
x a y - (x=<wayne_rooney>, a=foaf:name, y="Wayne Rooney")
a rdfs:domain z (a=foaf:name, z=owl:Thing)

x rdf:type z - The inferred statement [<wayne_rooney> rdf:type owl:Thing] is to be removed.

rdfs3:
x a u - (x=<wayne_rooney>, a=rdf:type, u=owl:Thing)
a rdfs:range z (a=rdf:type, z=rdfs:Class)

u rdf:type z - The inferred statement [owl:Thing rdf:type rdfs:Class] is to be removed.

rdfs8_10:
x rdf:type rdfs:Class - (x=owl:Thing)

x rdfs:subClassOf x - The inferred statement [owl:Thing rdfs:subClassOf owl:Thing] is to be removed.

proton_TransitiveOver:
y q z - (y=owl:Thing, q=rdfs:subClassOf, z=owl:Thing)
p protons:transitiveOver q - (p=rdf:type, q=rdfs:subClassOf)
x p y - (x=[<Reviewer40476>, <Reviewer40478>, <Reviewer40480>, <Reviewer40481>], p=rdf:type, y=owl:Thing)

x p z - The inferred statements [<Reviewer40476> rdf:type owl:Thing], etc., are to be removed.

Statements such as [<Reviewer40476> rdf:type owl:Thing] exist because of the statements [<Reviewer40476> rdf:type <MyClass>] and [<MyClass> rdfs:subClassOf owl:Thing].

In large datasets, there are typically millions of statements [X rdf:type owl:Thing] and they are all visited by the algorithm.

The [X rdf:type owl:Thing] statements are not the only problematic statements considered for removal. Every class that has millions of instances leads to similar behaviour.

One check to see if a statement is still supported requires about 30 query evaluations with owl-horst, hence the slow removal.

If [owl:Thing rdf:type owl:Class] is marked as an axiom (because it is derived by statements from the schema, which must be axioms), then the process stops when reaching this statement. So, the schema (the system statements) must necessarily be imported through the imports configuration parameter in order to mark the schema statements as axioms.

Schema transactions

As mentioned above, ontologies and schemas imported at initialisation time using the imports configuration parameter configuration parameter are flagged as read-only. However, there are times when it is necessary to change a schema and this can be done inside a ‘system transaction’.

The user instructs GraphDB that the transaction is a system transaction by including a dummy statement with the special schemaTransaction predicate, i.e.:

_:b1 <http://www.ontotext.com/owlim/system#schemaTransaction> _:b2

This statement is not inserted into the database, but rather it serves as a flag telling GraphDB that the statements from this transaction are going to be inserted as read-only; all statements derived from them are also marked as read-only. When you delete statements in a system transaction, you can remove statements marked as read-only, as well as statements derived from them. Axiom statements and all statements derived from them stay untouched.

Rules optimisations

GraphDB 6 includes a useful new feature that allows you to debug rule performance.

What’s in this document?

	How to enable rule profiling
	Log file

	Excel format

	Investigating performance

	Hints on optimising GraphDB’s rulesets
	Know what you want to infer

	Minimise the number of rules

	Write your rules carefully

	Avoid duplicate statements

	Know the implications of ontology mapping

	Consider avoiding inverse statements

	Consider avoiding long transitive chains

	Consider specialised property constructs

How to enable rule profiling

To enable rule profiling, start GraphDB with the following Java option:

-Denable-debug-rules=true

This enables the collection of rule statistics (various counters).

Note

Rule profiling slows down the rule execution (the leading premise checking part) by 10-30%, so do not use it in production.

Log file

When rule profiling is enabled:

	Complete rule statistics are printed every 1M statements, every 5 minutes, or on shutdown (whichever comes first).

	They are written to graphdb-folder/logs/main-<date>.log after a line such as Rule statistics:

	They are cumulative (you only need to work with the last one).

	Rule variants are ordered by total time (descending).

For example, consider the following rule :

Id: ptop_PropRestr
 t <ptop:premise> p
 t <ptop:restriction> r
 t <ptop:conclusion> q
 t <rdf:type> <ptop:PropRestr>
 x p y
 x r y

 x q y

This is a conjunction of two props. It is declared with the axiomatic (A-Box) triples involving t. Whenever the premise p and restriction r hold between two resources, the rule infers the conclusion q between the same resources, i.e., p & r => q

The corresponding log for variant 4 of this rule may look like the following:

RULE ptop_PropRestr_4 invoked 163,475,763 times.
ptop_PropRestr_4:
e b f
a ptop_premise b
a rdf_type ptop_PropRestr
e c f
a ptop_restriction c
a ptop_conclusion d

e d f

a ptop_conclusion d invoked 1,456,793 times and took 1,814,710,710 ns.
a rdf_type ptop_PropRestr invoked 7,261,649 times and took 9,409,794,441 ns.
a ptop_restriction c invoked 1,456,793 times and took 1,901,987,589 ns.
e c f invoked 17,897,752 times and took 635,785,943,152 ns.
a ptop_premise b invoked 10,175,697 times and took 9,669,316,036 ns.
Fired 1,456,793 times and took 157,163,249,304 ns.
Inferred 1,456,793 statements.
Time overall: 815,745,001,232 ns.

Note

Variable names are renamed due to the compilation to Java bytecode.

Understanding the output:

	The premises are checked in the order given in RULE. (The premise statistics printed after the blank line are not in any particular order.)

	invoked is the number of times the rule variant or specific premise was checked successfully. Tracing through the rule:

	ptop_PropRestr_4 checked successfully 163M times: for each incoming triple, since the lead premise (e b f = x p y) is a free pattern.

	a ptop_premise b checked successfully 10M times: for each b=p that has an axiomatic triple involving ptop_premise.

This premise was selected because it has only 1 unbound variable a and it is first in the rule text.

	a rdf_type ptop_PropRestr checked successfully 7M times: for each ptop_premise that has type ptop_PropRestr.

This premise was selected because it has 0 unbound variables (after the previous premise binds a).

	The time to check each premise is printed in ns.

	fired is the number of times all premises matched, so the rule variant was fired.

	inferred is the number of inferred triples.

It may be more than “fired” if there are multiple conclusions.

It may be less then “fired” since a duplicate triple is not inferred a second time.

	time overall is the total time that this rule variant took.

Excel format

The log records detailed information about each rule and premise, which is indispensable when you are trying to understand which rule is spending too much time. However, it can still be overwhelming because of this level of detail.

Therefore, we have developed the script rule-stats.pl that outputs a TSV file such as the following:

	rule
	ver
	tried
	time
	patts
	checks
	time
	fired
	time
	triples
	speed

	ptop_PropChain
	4
	163475763
	776.3
	5
	117177482
	185.3
	15547176
	590.9
	9707142
	12505

Parameters:

	rule: the rule ID (name);

	ver: the rule version (variant) or “T” for overall rule totals;

	tried, time: the number of times the rule/variant was tried, the overall time in sec;

	patts: the number of triple patterns (premises) in the rule, not counting the leading premise;

	checks, time: the number of times premises were checked, time in sec;

	fired: the number of times all premises matched, so the rule was fired;

	triples: the number of inferred triples;

	speed: inference speed, triples/sec.

Run the script in the following way:

perl rule-stats.pl main-2014-07-28.log > main-2014-07-28.xls

Investigating performance

The following is an example of using the Excel format to investigate where time is spent during rule execution.

Download the example file time-spent-during-rule.xlsx and use it as a template.

[image: _images/main-2014-08-08.png]

Note

These formulas are dynamic and they refresh every time you change the filters.

To perform your investigation:

	Open the results in Excel.

	Set a filter “ver=T” (to first look at rules as a whole, not rule variants).

	Sort in a descending order by total “time” (third column).

	Check out which rules are highlighted in red (the rules that spend substantial time and whose speed is significantly lower than average).

	Pick up a rule (for example, PropRestr).

	Filter on “rule=PropRestr” and “ver<>T” to look at its variants.

[image: _images/main-PropRestr.png]

	Focus on a variant to investigate the reasons for time and speed performance.

In this example, first you have to focus on the variant ptop_PropRestr_5, which spends 30% of the time of this rule, and has
very low “speed”. The reason is that it fired 1.4M times but produced only 238 triples, so most of the inferred triples were duplicates.

You can find the definition of this variant in the log file:

RULE ptop_PropRestr_5 invoked 163,475,763 times.
ptop_PropRestr_5:
e c f
a ptop_restriction c
a rdf_type ptop_PropRestr
e b f
a ptop_premise b
a ptop_conclusion d

e d f

It is very similar to the productive variant ptop_PropRestr_4 (see Log file above):

	one checks e b f. a ptop_premise b first,

	the other checks e c f. a ptop_restriction c first.

Still, the function of these premises in the rule is the same and therefore the variant ptop_PropRestr_5 (which is checked after 4) is unproductive.

The most likely way to improve performance would be if you make the two premises use the same axiomatic triple ptop:premise (emphasising they have the same role), and introduce a Cut:

Id: ptop_PropRestr_SYM
 t <ptop:premise> p
 t <ptop:premise> r
 t <ptop:conclusion> q
 t <rdf:type> <ptop:PropRestr>
 x p y
 x r y [Cut]

 x q y

The Cut eliminates the rule variant with x r y as leading premise. It is legitimate to do this, since the two variants are the same, up to substitution p<->r.

Note

Introducing a Cut in the original version of the rule would not be legitimate:

Id: ptop_PropRestr_CUT
 t <ptop:premise> p
 t <ptop:restriction> r
 t <ptop:conclusion> q
 t <rdf:type> <ptop:PropRestr>
 x p y
 x r y [Cut]

 x q y

since it would omit some potential inferences (in the case above, 238 triples), changing the semantics of the rule (see the example below).

Assume these axiomatic triples:

:t_CUT a ptop:PropRestr; ptop:premise :p; ptop:restriction :r; ptop:conclusion :q. # for ptop_PropRestr_CUT
:t_SYM a ptop:PropRestr; ptop:premise :p; ptop:premise :r; ptop:conclusion :q. # for ptop_PropRestr_SYM

Now consider a sequence of inserted triples :x :p :y. :x :r :y.

	ptop_PropRestr_CUT will not infer :x :q :y since no variant is fired by the second incoming triple :x :r :y: it is matched against x p y, but there is no axiomatic triple t ptop:premise :r

	ptop_PropRestr_SYM will infer :x :q :y since the second incoming triple :x :r :y will match x p y and t ptop:premise :r, then the previously inserted :x :p :y will match t ptop:premise :p and the rule will fire.

Tip

Rule execution is often non-intuitive, therefore we recommend that you detailed the speed history and compare the performance after each change.

Hints on optimising GraphDB’s rulesets

The complexity of the ruleset has a large effect on the loading performance, the number of inferred statements and the overall size of the repository after inferencing. The complexity of the standard rulesets increases as follows:

	no inference (lowest complexity, best performance)

	rdfs-optimized

	rdfs

	rdfs-plus-optimized

	rdfs-plus

	owl-horst-optimized

	owl-horst

	owl-max-optimized

	owl-max

	owl2-ql-optimized

	owl2-ql

	owl2-rl-optimized

	owl2-rl (highest complexity, worst performance)

OWL RL and OWL QL do a lot of heavy work that is often not required by applications. For more details, see OWL compliance.

Know what you want to infer

Check the ‘expansion ratio’ (total/explicit statements) for your dataset and get an idea whether this is what you expect. If your ruleset infers, for example, 4 times more statements over a large number of explicit statements, this will take time, no matter how you try to optimise the rules.

Minimise the number of rules

The number of rules and their complexity affects inferencing performance, even for rules that never infer any new statements. This is because every incoming statement is passed through every variant of every rule to check whether something can be inferred. This often results in many checks and joins, even if the rule never fires.

So, start with a minimal ruleset and add only the additional rules that you require. The default ruleset (rdfs-plus-optimized) works for many people, but you could even consider starting from RDFS. For example, if you need owl:Symmetric and owl:inverseOf on top of RDFS, you can copy only these rules from OWL Horst to RDFS and leave the rest aside.

Conversely, you can start with a bigger standard ruleset and remove the rules that you do not need.

Note

To deploy a custom ruleset, set the ruleset configuration parameter to the full pathname of your custom .pie file.

Write your rules carefully

	Be careful with the recursive rules as they can lead to an explosion in the number of inferred statements.

	Always check your spelling:
	A misspelled variable in a premise leads to a Cartesian explosion of the number of triple joins to be considered by the rule.

	A misspelled variable in a conclusion (or use an unbound variable) causes new blank nodes to be created. This is almost never what you really want.

	Order premises by specificity. GraphDB first checks premises with the least number of unbound variables. But if there is a tie, it follows the order given by you. Since you may know the cardinalities of triples in your data, you may be in a better position to determine which premise has better specificity (selectivity).

	Use [Cut] for premises that have the same role (for an example, see Investigating performance), but be careful not to remove some needed inferences by mistake.

Avoid duplicate statements

Avoid inserting explicit statements in a named graph if the same statements are inferable. GraphDB always stores inferred statements in the default graph, so this will lead to duplicating statements. This will increase the repository size and will slow down query answering.

You can eliminate duplicates from query results using DISTINCT or FROM onto:skip-redundant-implicit (see Other special GraphDB query behaviour). But these are slow operations and it is better not to produce duplicate statements in the first place.

Know the implications of ontology mapping

People often use owl:equivalentProperty, owl:equivalentClass (and less often rdfs:subPropertyOf, rdfs:subClassOf) to map ontologies. But every such assertion means that many more statements are inferred
(owl:equivalentProperty works as a pair of rdfs:subPropertyOf, and owl:equivalentClass works as a pair of rdfs:subClassOf).

A good example is DCTerms (DCT): almost each DC property has a declared DCT subproperty and there is also a hierarchy amongst DCT properties, for instance:

dcterms:created rdfs:subPropertyOf dc:date, dcterms:date .
dcterms:date rdfs:subPropertyOf dc:date.

This means that every dcterms:created statement will expand to 3 statements. So, do not load the DC ontology unless you really need these inferred dc:date.

Consider avoiding inverse statements

Inverse properties (e.g., :p owl:inverseOf :q) offer some convenience in querying, but are never necessary:

	SPARQL natively has bidirectional data access: instead of ?x :q ?y, you can always query for ?y :p ?x.

	You can even invert the direction in a property path: instead of ?x :p1/:q ?y, use ?x :p1/(^:p) ?y

If an ontology defines inverses but you skip inverse reasoning, you have to check which of the two properties is used in a particular dataset, and write your queries carefully.

The Provenance Ontology (PROV-O) has considered this dilemma carefully and have abstained from defining inverses, to “avoid the need for OWL reasoning, additional code, and larger queries” (see http://www.w3.org/TR/prov-o/#inverse-names).

Consider avoiding long transitive chains

A chain of N transitive relations (e.g., rdfs:subClassOf) causes GraphDB to infer and store a further \((n^2 - n) / 2\) statements. If the relationship is also symmetric (e.g., in a family ontology with a predicate such as relatedTo), then there will be \(n^2 - n\) inferred statements.

Consider removing the transitivity and/or symmetry of relations that make long chains. Or if you must have them, consider the implementation of TransitiveProperty through step property, which can be faster than the standard implementation of owl:TransitiveProperty.

Consider specialised property constructs

While OWL2 has very powerful class constructs, its property constructs are quite weak. Some widely used OWL2 property constructs could be done faster.

See this draft [http://vladimiralexiev.github.io/pres/extending-owl2/] for some ideas and clear illustrations. Below we describe 3 of these ideas.

Tip

To learn more, see a detailed account of applying some of these ideas in a real-world setting.

PropChain

Consider 2-place PropChain instead of general owl:propertyChainAxiom.

owl:propertyChainAxiom needs to use intermediate nodes and edges in order to unroll the rdf:List representing the chain. Since most chains found in practice are 2-place chains (and a chain of any length can be implemented as a sequence of 2-place chains), consider a rule such as the following:

Id: ptop_PropChain
 t <ptop:premise1> p1
 t <ptop:premise2> p2
 t <ptop:conclusion> q
 t <rdf:type> <ptop:PropChain>
 x p1 y
 y p2 z

 x q z

It is used with axiomatic triples as in the following:

@prefix ptop: <http://www.ontotext.com/proton/protontop#>.
:t a ptop:PropChain; ptop:premise1 :p1; ptop:premise2 :p2; ptop:conclusion :q.

transitiveOver

ptop:transitiveOver has been part of Ontotext’s PROTON ontology since 2008. It is defined as follows:

Id: ptop_transitiveOver
 p <ptop:transitiveOver> q
 x p y
 y q z

 x p z

It is a specialised PropChain, where premise1 and conclusion coincide. It allows you to chain p with q on the right, yielding p. For example, the inferencing of types along the class hierarchy can be expressed as:

rdf:type ptop:transitiveOver rdfs:subClassOf

TransitiveProperty through step property

owl:TransitiveProperty is widely used and is usually implemented as follows:

Id: owl_TransitiveProperty
 p <rdf:type> <owl:TransitiveProperty>
 x p y
 y p z

 x p z

You may recognise this as a self-chain, thus a specialisation of ptop:transitiveOver, i.e.:

?p rdf:type owl:TransitiveProperty <=> ?p ptop:transitiveOver ?p

Most transitive properties comprise transitive closure over a basic ‘step’ property. For example, skos:broaderTransitive is based on skos:broader and is implemented as:

skos:broader rdfs:subPropertyOf skos:broaderTransitive.
skos:broaderTransitive a owl:TransitiveProperty.

Now consider a chain of N skos:broader between two nodes. The owl_TransitiveProperty rule has to consider every split of the chain, thus inferring the same closure between the two nodes N times, leading to quadratic inference complexity.

This can be optimised by looking for the step property s and extending the chain only at the right end:

Id: TransitiveUsingStep
 p <rdf:type> <owl:TransitiveProperty>
 s <rdfs:subPropertyOf> p
 x p y
 y s z

 x p z

However, this would not make the same inferences as owl_TransitiveProperty if someone inserts the transitive property
explicitly (which is a bad practice).

It is more robust to declare the step and transitive properties together using ptop:transitiveOver, for instance:

skos:broader rdfs:subPropertyOf skos:broaderTransitive.
skos:broaderTransitive ptop:transitiveOver skos:broader.

Optimisation of owl:sameAs

What’s in this document?

	Removing owl:sameAs statements

	Disabling the owl:sameAs support

	How disable-sameAs interferes with the different rulesets
	Example 1

	Example 2

	Example 3

	Example 4

	Example 5

The OWL same as optimisation uses the OWL owl:sameAs property to create an equivalence class between two nodes of an RDF graph. An equivalence class has the following properties:

	Reflexivity, i.e. A -> A

	Symmetricity, i.e. if A -> B then B -> A

	Transitivity, i.e. if A -> B and B -> C then A -> C

Instead of using simple rules and axioms for owl:sameAs (actually 2 axioms that state that it is Symmetric and Transitive), GraphDB offers an effective non-rule implementation, i.e. the owl:sameAs support is hard-coded. The rules are commented out in the PIE files and are left only as a reference.

In GraphDB, the equivalence class is represented with a single node, thus avoiding the explosion of all N^2 owl:sameAs statements and instead, storing the members of the equivalence class in a separate structure. In this way, the ID of the equivalence class can be used as an ordinary node, which eliminates the need to copy statements by subject, predicate and object. So, all these copies are replaced by a single statement.

There is no restriction how to chose this single statement that will represent the class as a whole. It is the first node that enters the class. After creating such a class, all statements with nodes from this class are altered to use the class representative. These statements also participate in the inference.

The equivalence classes may grow when more owl:sameAs statements containing nodes from the class are added to the repository. Every time you add a new owl:sameAs statement linking two classes, they merge into a single class.

During query evaluation, GraphDB uses a kind of backward-chaining by enumerating equivalent URIs, thus guaranteeing the completeness of the inference and query results. It takes special care to ensure that this optimization does not hinder the ability to distinguish between explicit and implicit statements.

Removing owl:sameAs statements

When removing owl:sameAs statements from the repository, some nodes may remain detached from the class they belong to, the class may split into two or more classes, or may disappear altogether. To determine the behaviour of the classes in each particular case, you should track what the original owl:sameAs statements were and which of them remain in the repository. All statements coming from the user (either through a SPARQL query or through the RDF4J API) are marked as explicit and every statement derived from them during inference is marked as inferred. So, by knowing which are the remaining explicit owl:sameAs statements, you can rebuild the equivalence classes.

Note

It is not necessary to rebuild all the classes but only the ones that were referred to by the removed owl:sameAs statements.

When nodes are removed from classes or when classes split or disappear, the new classes (or the removal of classes) yield new representatives. So, statements using the old representatives should be replaced with statements using the new ones. This is also achieved by knowing which statements are explicit. The representative statements (i.e., statements that use representative nodes) are flagged as a special type of statements that may cease to exist after making changes to the equivalence classes. In order to make new representative statements, you should use the explicit statements and the new state of the equivalence classes (e.g., it is not necessary to process all statements when only a single equivalence class has been changed). The specific thing here is that the representative statements, although being volatile, are visible to the SPARQL queries and to the inferencer, whereas the explicit statements that use nodes from the equivalence classes remain invisible and are only used for rebuilding the representative statements.

Disabling the owl:sameAs support

By default, the owl:sameAs support is enabled in all rulesets except for empty``(without inference). However, disabling the ``owl:sameAs behaviour may be beneficial in some cases. For example, it can save you time or you may want to visualize your data without the statements generated by owl:sameAs in queries or inferences of such statements.

To disable owl:sameAs, use:

	(for individual queries) FROM onto:disable-sameAs system graph;

	(for the whole repository) the disable-sameAs configuration parameter (boolean, defaults to ‘false’). This disables all inference.

Disabling owl:sameAs by query does not remove the inference that have taken place because of owl:sameAs.

Consider the following example:

PREFIX owl: <http://www.w3.org/2002/07/owl#>

INSERT DATA {
 <urn:A> owl:sameAs <urn:B> .
 <urn:A> a <urn:Class1> .
 <urn:B> a <urn:Class2> .
}

This leads to <urn:A> and <urn:B> being instances of the intersection of the two classes:

PREFIX : <http://test.com/>
PREFIX owl: <http://www.w3.org/2002/07/owl#>

INSERT DATA {
 :Intersection owl:intersectionOf (<urn:Class1> <urn:Class2>) .
}

If you query what instances the intersection has:

PREFIX : <http://test.com/>

SELECT * {
 ?s a :Intersection .
}

the response will be: <urn:A> and <urn:B>. Using FROM onto:disable-sameAs returns only the equivalence class representative (e.g., <urn:A>). But it does not disable the inference as a whole.

In contrast, when you set up a repository with the disable-sameAs repository parameter set to true, the inference <urn:A> a :Intersection will not take place. Then, if you query what instances the intersection has, it will return neither <urn:A>, nor <urn:B>.

Apart from this difference, which affects the scope of action, disabling owl:sameAs both as a repository parameter and a FROM clause in the query have the same behaviour.

How disable-sameAs interferes with the different rulesets

The following parameters can affect the owl:sameAs behaviour:

	ruleset – owl:sameAs support is enabled for all rulesets, except the empty ruleset. Switching to a non-empty ruleset (e.g., owl-horst-optimized) enables the inference and if it is launched again, the results show all inferred statements, as well as the ones generated by owl:sameAs. They do not include any <P a rdf:Property> and <X a rdfs:Resource> statements (see GraphDB ruleset usage optimisation).

	disable-sameAs: true + inference – disables the owl:sameAs expansion but still shows the other implicit statements. However, these results will be different from the ones retrieved by owl:sameAs + inference or when there is no inference.

	FROM onto:disable-sameAs – including this clause in a query produces different results with different rulesets.

	FROM onto:explicit – using only this clause (or with FROM onto:disable-sameAs) produces the same results as when the inferencer is disabled (as with the empty ruleset). This means that the ruleset and the disable-sameAs parameter do not affect the results.

	FROM onto:explicit + FROM onto:implicit – produces the same results as if both clauses are omitted.

	FROM onto:implicit – using this clause returns only the statements derived by the inferencer. Therefore, with the empty ruleset, it is expected to produce no results.

	FROM onto:implicit + FROM onto:disable-sameAs – shows all inferred statements (except for the ones generated by owl:sameAs).

The following examples illustrate this behaviour:

Example 1

If you use owl:sameAs with the following statements:

PREFIX : <http://test.com/>
PREFIX owl: <http://www.w3.org/2002/07/owl#>

INSERT DATA {
 :a :b :c .
 :a owl:sameAs :d .
 :d owl:sameAs :e .
}

and you want to retrieve data with this query:

PREFIX : <http://test.com/>
PREFIX onto: <http://www.ontotext.com/>

DESCRIBE :a :b :c :d :e

the result is the same as if you query for explicit statements when there is no inference or if you add FROM onto:explicit.

However, if you enable the inference, you will see a completely different picture. For example, if you use owl-horst-optimized, disable-sameAs=false, you will receive the following results:

:a :b :c .
:a owl:sameAs :a .
:a owl:sameAs :d .
:a owl:sameAs :e .
:b a rdf:Property .
:b rdfs:subPropertyOf :b .
:d owl:sameAs :a .
:d owl:sameAs :d .
:d owl:sameAs :e .
:e owl:sameAs :a .
:e owl:sameAs :d .
:e owl:sameAs :e .
:d :b :c .
:e :b :c .

Example 2

If you start with the empty ruleset, then switch to owl-horst-optimized:

PREFIX sys: <http://www.ontotext.com/owlim/system#>

INSERT DATA {
 _:b sys:addRuleset "owl-horst-optimized" .
 _:b sys:defaultRuleset "owl-horst-optimized" .
}

and compute the full inference closure:

PREFIX sys: <http://www.ontotext.com/owlim/system#>

INSERT DATA {
 _:b sys:reinfer _:b .
}

the same DESCRIBE query will return:

:a :b :c .
:a owl:sameAs :a .
:a owl:sameAs :d .
:a owl:sameAs :e .
:d owl:sameAs :a .
:d owl:sameAs :d .
:d owl:sameAs :e .
:e owl:sameAs :a .
:e owl:sameAs :d .
:e owl:sameAs :e .
:d :b :c .
:e :b :c .

i.e., without the <P a rdf:Property> and <P rdfs:subPropertyOf P> statements.

Example 3

If you start with owl-horst-optimized and set the disable-sameAs parameter to true or use FROM onto:disable-sameAs, you will receive:

:a :b :c .
:a owl:sameAs :d .
:b a rdf:Property .
:b rdfs:subPropertyOf :b .
:d owl:sameAs :e .

i.e., the explicit statements + <type Property>.

Example 4

This query:

PREFIX : <http://test.com/>
PREFIX onto: <http://www.ontotext.com/>

DESCRIBE :a :b :c :d :e
FROM onto:implicit
FROM onto:disable-sameAs

yields:

:b a rdf:Property .
:b rdfs:subPropertyOf :b .

because all owl:sameAs statements and the statements generated from them (<:d :b :c>, <:e :b :c>) will not be shown.

Note

The same is achieved with the disable-sameAs repository parameter set to true. However, if you start with the empty ruleset and then switch to a non-empty ruleset, the latter query will not return any results. If you start with owl-horst-optimized and then switch to empty, <type Property> will persist, i.e., the latter query will return some results.

Example 5

If you use named graphs, the results will look differently:

PREFIX : <http://test.com/>
PREFIX owl: <http://www.w3.org/2002/07/owl#>

INSERT DATA {
 GRAPH :graph {
 :a :b :c .
 :a owl:sameAs :d .
 :d owl:sameAs :e .
 }
}

Then the test query will be:

PREFIX : <http://test.com/>
PREFIX onto: <http://www.ontotext.com/>

SELECT DISTINCT *
{
 GRAPH ?g {
 ?s ?p ?o
 FILTER (
 ?s IN (:a, :b, :c, :d, :e, :graph) ||
 ?p IN (:a, :b, :c, :d, :e, :graph) ||
 ?o IN (:a, :b, :c, :d, :e, :graph) ||
 ?g IN (:a, :b, :c, :d, :e, :graph)
)
 }
}

If you have started with owl-horst-optimized, disable-sameAs=false, you will receive:

graph {
 :a :b :c .
 :a owl:sameAs :d .
 :d owl:sameAs :e .
}

because the statements from the default graph are not automatically included. This is the same as in the DESCRIBE query, where using both FROM onto:explicit and FROM onto:implicit nullifies them.

So, if you want to see all the statements, you should write:

PREFIX : <http://test.com/>
PREFIX onto: <http://www.ontotext.com/>

SELECT DISTINCT *
FROM NAMED onto:explicit
FROM NAMED onto:implicit
{
 GRAPH ?g {
 ?s ?p ?o
 FILTER (
 ?s IN (:a, :b, :c, :d, :e, :graph) ||
 ?p IN (:a, :b, :c, :d, :e, :graph) ||
 ?o IN (:a, :b, :c, :d, :e, :graph) ||
 ?g IN (:a, :b, :c, :d, :e, :graph)
)
 }
}
ORDER BY ?g ?s

Note that when querying quads, you should use the FROM NAMED clause and when querying triples - FROM. Using FROM NAMED with triples and FROM with quads has no effect and the query will return the following:

:graph {
 :a :b :c .
 :a owl:sameAs :d .
 :d owl:sameAs :e .
}
onto:implicit {
 :b a rdf:Property .
 :b rdfs:subPropertyOf :b .
}
onto:implicit {
 :a owl:sameAs :a .
 :a owl:sameAs :d .
 :a owl:sameAs :e .
 :d owl:sameAs :a .
 :d owl:sameAs :d .
 :d owl:sameAs :e .
 :e owl:sameAs :a .
 :e owl:sameAs :d .
 :e owl:sameAs :e .
}
onto:implicit {
 :d :b :c .
 :e :b :c .
}

In this case, the explicit statements <:a owl:sameAs :d> and <:d owl:sameAs :e> appear also as implicit. They do not appear twice when dealing with triples because the iterators return unique triples. When dealing with quads, however, you can see all statements.

Here, you have the same effects with FROM NAMED onto:explicit, FROM NAMED onto:impicit and FROM NAMED onto:disable-sameAs and the behaviour of the <type Property>.

RDFS and OWL support optimisations

There are several features in the RDFS and OWL specifications that lead to inefficient entailment rules and axioms, which can have a significant impact on the performance of the inferencer. For example:

	The consequence X rdf:type rdfs:Resource for each URI node in the RDF graph;

	The system should be able to infer that URIs are classes and properties, if they appear in schema-defining statements such as Xrdfs:subClassOf Y and X rdfs:subPropertyOf Y;

	The individual equality property in OWL is reflexive, i.e., the statement X owl:sameAs X holds for every OWL individual;

	All OWL classes are subclasses of owl:Thing and for all individuals X rdf:type owl:Thing should hold;

	C is inferred as being rdfs:Class whenever an instance of the class is defined: I rdf:type C.

Although the above inferences are important for formal semantics completeness, users rarely execute queries that seek such statements. Moreover, these inferences generate so many inferred statements that performance and scalability can be significantly degraded.

For this reason, optimised versions of the standard rulesets are provided. These have -optimized appended to the ruleset name, e.g., owl-horst-optimized.

The following optimisations are enacted in GraphDB:

	Optimisation
	Affects patterns

	Remove axiomatic triples
	
	<any> <any> <rdfs:Resource>

	<rdfs:Resource> <any> <any>

	<any> <rdfs:domain> <rdf:Property>

	<any> <rdfs:range> <rdf:Property>

	<owl:sameAs> <rdf:type> <owl:SymmetricProperty>

	<owl:sameAs> <rdf:type> <owl:TransitiveProperty>

	Remove rule conclusions
	
	<any> <any> <rdfs:Resource>

	Remove rule constraints
	
	[Constraint <variable> != <rdfs:Resource>]

Experimental features

	SPARQL-MM support

	Provenance plugin

	Nested repositories

	LVM-based backup and replication

SPARQL-MM support

What’s in this document?

	Usage examples
	Temporal Relations

	Temporal aggregation

	Spatial relations

	Spatial aggregation

	Combined aggregation

	Accessor method

SPARQL-MM is a multimedia-extension for SPARQL 1.1. The implementation is based on code by Thomas Kurz. It is implemented as a GraphDB plugin.

Usage examples

Temporal Relations

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX mm: <http://linkedmultimedia.org/sparql-mm/ns/1.0.0/function#>

SELECT ?t1 ?t2 WHERE {
 ?f1 rdfs:label ?t1.
 ?f2 rdfs:label ?t2.
 FILTER mm:precedes(?f1,?f2)
} ORDER BY ?t1 ?t2

Temporal aggregation

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX mm: <http://linkedmultimedia.org/sparql-mm/ns/1.0.0/function#>

SELECT ?f1 ?f2 (mm:temporalIntermediate(?f1,?f2) AS ?box) WHERE {
 ?f1 rdfs:label "a".
 ?f2 rdfs:label "b".
}

Spatial relations

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX mm: <http://linkedmultimedia.org/sparql-mm/ns/1.0.0/function#>

SELECT ?t1 ?t2 WHERE {
 ?f1 rdfs:label ?t1.
 ?f2 rdfs:label ?t2.
 FILTER mm:rightBeside(?f1,?f2)
} ORDER BY ?t1 ?t2

Spatial aggregation

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX mm: <http://linkedmultimedia.org/sparql-mm/ns/1.0.0/function#>

SELECT ?f1 ?f2 (mm:spatialIntersection(?f1,?f2) AS ?box) WHERE {
 ?f1 rdfs:label "a".
 ?f2 rdfs:label "b".
}

Combined aggregation

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX mm: <http://linkedmultimedia.org/sparql-mm/ns/1.0.0/function#>

SELECT ?f1 ?f2 (mm:boundingBox(?f1,?f2) AS ?box) WHERE {
 ?f1 rdfs:label "a".
 ?f2 rdfs:label "b".
}

Accessor method

PREFIX ma: <http://www.w3.org/ns/ma-ont#>
PREFIX mm: <http://linkedmultimedia.org/sparql-mm/ns/1.0.0/function#>

SELECT ?f1 WHERE {
 ?f1 a ma:MediaFragment.
} ORDER BY mm:duration(?f1)

Tip

For more information, see:

	The SPARQL-MM Specification [http://mayor2.dia.fi.upm.es/oeg-upm/files/eswc2014/Posters%20and%20Demonstrations/eswc2014pd_submission_65.pdf]

	List of SPARQL-MM functions [https://github.com/tkurz/sparql-mm/blob/master/ns/1.0.0/function/index.md]

Provenance plugin

What’s in this document?

	When to use the Provenance plugin

	Predicates

	Enabling the plugin

	Using the plugin - examples

When to use the Provenance plugin

The provenance plugin enables the generation of inference closure from a specific named graph at query time. This is useful in situations when you want to trace what the implicit statements generated from a specific graph are and the axiomatic triples part of the configured ruleset, i.e. the ones inserted with a special predicate sys:schemaTransaction. For more information, check Reasoning.

By default, the GraphDB’s forward-chaining inferencer materialises all implicit statements in the default graph. Therefore, it is impossible to trace which graphs these implicit statements are coming from. The provenance plugin provides the opposite approach. With the configured ruleset, the reasoner does forward-chaining over a specific named graph and generates all its implicit statements at query time.

Predicates

The plugin predicates gives you an easy access to the graph, which implicit statements you want to generate. The process is similar to the RDF reification. All plugin’s predicates start with <http://www.ontotext.com/provenance/>:

	Plugin predicates
	Semantics

	http://www.ontotext.com/provenance/derivedFrom
	Creates a request scope for the graph with the inference closure

	http://www.ontotext.com/provenance/subject
	Binds all subjects part of the inference closure

	http://www.ontotext.com/provenance/predicate
	Binds all predicates part of the inference closure

	http://www.ontotext.com/provenance/object
	Binds all objects part of the inference closure

Enabling the plugin

The plugin is disabled by default.

	Start the plugin by adding the parameter:

./graphdb -Dregister-plugins=com.ontotext.trree.plugin.provenance.ProvenancePlugin

	Check the startup log to validate that the plugin has started correctly.

[INFO] 2016-11-18 19:47:19,134 [http-nio-7200-exec-2 c.o.t.s.i.PluginManager] Initializing plugin 'provenance'

Using the plugin - examples

	Copy the TRIG file in the Import -> RDF -> Text area of the workbench:

@prefix food: <http://www.w3.org/TR/2003/PR-owl-guide-20031209/food#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix vin: <http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

food:Ontology {

 food:Fruit a owl:Class ;
 rdfs:label "fruit"@en ;
 rdfs:comment "In botany, a fruit is the seed-bearing structure in flowering plants formed from the ovary after flowering".

 food:Grape rdfs:label "grape"@en ;
 rdfs:comment "A grape is a fruiting berry of the deciduous woody vines of the botanical genus Vitis";
 rdfs:subClassOf food:Fruit.
}

vin:Ontology {

 vin:WineGrape rdfs:label "wine grape"@en ;
 rdfs:comment "Grape used for the wine production";
 rdfs:subClassOf food:Grape.

 vin:RedWineGrape rdfs:label "white wine"@en;
 rdfs:comment "Red grape used for wine production";
 rdfs:subClassOf vin:WineGrape.

 vin:CabernetSauvignon rdfs:label "Cabernet Sauvignon"@en ;
 rdfs:comment "Cabernet Sauvignon is one of the world's most widely recognized red wine grape varieties";
 rdfs:subClassOf vin:RedWineGrape.
}

	Example 1: Return all explicit and implicit statements

This example returns all explicit and implicit statements derived from the vin:Ontology graph. The ?ctx variable binds a new graph pr:derivedFrom the vin:Ontology graph, which includes all its implicit and explicit statements.

PREFIX pr: <http://www.ontotext.com/provenance/>
PREFIX vin: <http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#>

CONSTRUCT {
 ?subject ?predicate ?object
}
WHERE {
 vin:Ontology pr:derivedFrom ?ctx .
 ?ctx pr:subject ?subject .
 ?ctx pr:predicate ?predicate .
 ?ctx pr:object ?object .
}

The result set will not include statements in which vin:WineGrape is food:Grape or food:Fruit.

	Example 2: Return only implicit statements

The query below extends the previous example by excluding the explicit statements. It returns only the implicit statements materialised from vin:Ontology graph:

PREFIX pr: <http://www.ontotext.com/provenance/>
PREFIX vin: <http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#>

CONSTRUCT {
 ?subject ?predicate ?object
}
WHERE {
 vin:Ontology pr:derivedFrom ?ctx .
 ?ctx pr:subject ?subject .
 ?ctx pr:predicate ?predicate .
 ?ctx pr:object ?object .
 MINUS {
 GRAPH vin:Ontology {
 ?subject ?predicate ?object
 }
 }
}

	Example 3: Return all implicit statements from multiple graphs

The plugin accepts multiple graphs provided with a value keyword. The example returns all implicit statements derived from the vin:Ontology and food:Ontology graphs:

PREFIX pr: <http://www.ontotext.com/provenance/>
PREFIX vin: <http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#>
PREFIX food: <http://www.w3.org/TR/2003/PR-owl-guide-20031209/food#>

CONSTRUCT {
 ?subject ?predicate ?object
}
WHERE {
 VALUES ?graph {
 food:Ontology vin:Ontology
 }
 ?graph pr:derivedFrom ?ctx .
 ?ctx pr:subject ?subject .
 ?ctx pr:predicate ?predicate .
 ?ctx pr:object ?object .
 MINUS {
 GRAPH vin:Ontology {
 ?subject ?predicate ?object
 }
 }
}

Nested repositories

What’s in this document?

	What are nested repositories

	Inference, indexing and queries

	Configuration

	Initialisation and shut down

What are nested repositories

Nested repositories is a technique for sharing RDF data between multiple GraphDB repositories. It is most useful when several logically independent repositories need to make use of a large (reference) dataset, e.g., a combination of one or more LOD datasets (GeoNames, DBpedia, MusicBrainz, etc.), but where each repository adds its own specific data. This mechanism allows the data in the common repository to be logically included, or ‘nested’, within other repositories that extend it. A repository that is nested in another repository (possibly into more than one other repository) is called a ‘parent repository’ while a repository that nests a parent repository is called a ‘child repository’. The RDF data in the common repository is combined with the data in each child repository for inference purposes. Changes in the common repository are reflected across all child repositories and inferences are maintained to be logically consistent.

Results for queries against a child repository are computed from the contents of the child repository, as well as the nested repository. The following diagram illustrates the nested repositories concept:

[image: _images/nested_repositories_diagram1.jpg]

Note

When two child repositories extend the same nested repository, they remain logically separate. Only changes made to the common nested repository will affect any child repositories.

Inference, indexing and queries

A child repository ignores all values for its ruleset configuration parameter and automatically uses the same ruleset as its parent repository. Child repositories compute inferences based on the union of the explicit data stored in the child and parent repositories. Changes to either parent or child cause the set of inferred statements in the child to be updated.

Note

The child repository must be initialised (running) when updates to the parent repository take place, otherwise the child can become logically inconsistent.

When a parent repository is updated, before its transaction is committed, it updates every connected child repository by a set of statement INSERT/DELETE operations. When a child repository is updated, any new resources are recorded in the parent dictionary so that the same resource is indexed in the sibling child repositories using the
same internal identifier.

Note

A current limitation on the implementation is that no updates using the owl:sameAs predicate are permitted.

Queries executed on a child repository should perform almost as well as queries executed against a repository containing all the data (from both parent and child repositories).

Configuration

Both parent and child repositories must be deployed using Tomcat and they must deployed to the same instance on the same machine (same JVM).

Repositories that are configured to use the nesting mechanism must be created using specific RDF4J SAIL types:

	owlim:ParentSail - for parent (shared) repositories;

	owlim:ChildSail - for child repositories that extend parent repositories.

(Where the owlim namespace above maps to http://www.ontotext.com/trree/owlim#.)

Additional configuration parameters:

	owlim:id is used in the parent configuration to provide a nesting name;

	owlim:parent-id is used in the child configurations to identify the parent repository.

Once created, a child repository must not be reconfigured to use a different parent repository as this leads to inconsistent data.

Note

When setting up several GraphDB instances to run in the same Java Virtual Machine, i.e., the JVM used to host Tomcat, make sure that the configured memory settings take into account the other repositories. For example, if setting up 3 GraphDB instances, configure them as though each of them had only one third of the total Java heap space available.

Initialisation and shut down

To initialise nested repositories correctly, start the parent repository followed by each of its children.

As long as no further updates occur, the shutdown sequence is not strictly defined. However, we recommend that you shut down the children first followed by the parent.

LVM-based backup and replication

In essence, the Linux Logical Volume Management (LVM)-based Backup and Replication uses shell scripts to find out the logical volume and volume group where the repository storage folder resides and then creates a filesystem snapshot. Once the snapshot is created, the repository is available for reads and writes while the maintenance operation is still in-progress. When it finishes, the snapshot is removed and the changes are merged back to the filesystem.

What’s in this document?

	Prerequisites

	How it works

	Some further notes

Prerequisites

	Linux OS;

	The system property (JVM’s -D) named lvm-scripts should point to the folder with the above scripts;

	The folder you are about to backup or use for replication contains a file named owlim.properties;

	That folder DOES NOT HAVE a file named lock.

All of the above mean that the repository storage is ‘ready’ for maintenance.

How it works

By default, the LVM-based Backup and Replication feature is disabled.

To enable it:

	Get the scripts located in the lvmscripts folder of the distribution.

	Place them on each of the workers in a chosen folder.

	Set the system property (JVM’s -D) named lvm-scripts, e.g., -Dlvm-scripts=<folder-with-the-scripts>, to point to the folder with the scripts.

Note

GraphDB checks if the folder contains scripts named: create-snapshot.sh, release-snapshot.sh, and locatelvm.sh. This is done the first time you try to get the repository storage folder contents. For example, when you need to do backup or to perform full-replication.

GraphDB executes the script locatelvm.sh with a single parameter, which is the pathname of the storage folder from where you want to transfer the data (either to perform backup or to replicate it to another node). While invoking it, GraphDB captures the script standard and error output streams in order to get the logical volume, volume group, and the storage location, relative to the volume’s mount point.

GraphDB also checks the exit code of the script (MUST be 0) and fetches the locations by processing the script output, e.g., it must contain the logical volume (after, lv=), the volume group (vg=), and the relative path (local=) from the mount point of the folder supplied as a script argument.

If the storage folder is not located on a LVM2 managed volume, the script will fail with a different exit code (it relies on the exit code of the lvs command) and the whole operation will revert back to the ‘classical’ way of doing it (same as in the previous versions).

If it succeeds to find the volume group and the logical volume, the create-snapshot.sh script is executed, which then creates a snapshot named after the value of $BACKUP variable (see the config.sh script, which also defines where the snapshot will be mounted). When the script is executed, the logical volume and volume groups are passed as environment variables, named LV and VG preset by GraphDB.

If it passes without any errors (script exit code = 0), the node is immediately initialised in order to be available for further operations (reads and writes).

The actual maintenance operation will now use the data from the ‘backup’ volume instead from where it is mounted.

When the data transfer completes (either with an error, canceled or successfully), GraphDB invokes the .release-snapshot.sh script, which unmounts the backup volume and removes it. This way, the data changes are merged back with the original volume.

Some further notes

The scripts rely on a root access to do ‘mount’, and also to create and remove snapshot volumes. The SUDO_ASKPASS variable is set to point to the askpass.sh script from the same folder. All commands that need privilege are executed using sudo -A, which invokes the command pointed by the SUDO_ASKPASS variable. The latter simply spits out the required password to its standard output. You have to alter the askpass.sh accordingly.

During the LVM-based maintenance session, GraphDB will create two additional files (zero size) in the scripts folder, named
snapshot-lock, indicating that a session is started, and snapshot-created, indicating a successful completion of the
create-snapshot.sh script. They are used to avoid other threads or processes interfering with the maintenance operation that has been initiated and is still in progress.

References

	Introduction to the Semantic Web

	GraphDB feature comparison

	Repository configuration template - how it works

	Ontology mapping with owl:sameAs property

	Workbench User Interface

	SPARQL compliance

	OWL compliance

	Glossary

Introduction to the Semantic Web

What’s in this document?

	Resource Description Framework (RDF)
	Uniform Resource Identifiers (URIs)

	Statements: Subject-Predicate-Object Triples

	Properties

	Named graphs

	RDF Schema (RDFS)
	Describing classes

	Describing properties

	Sharing vocabularies

	Dublin Core Metadata Initiative

	Ontologies and knowledge bases
	Classification of ontologies

	Knowledge bases

	Logic and inference
	Logic programming

	Predicate logic

	Description logic

	The Web Ontology Language (OWL) and its dialects
	OWL DLP

	OWL Horst

	OWL2 RL

	OWL Lite

	OWL DL

	Query languages
	RQL, RDQL

	SPARQL

	SeRQL

	Reasoning strategies
	Total materialisation

	Semantic repositories

The Semantic Web represents a broad range of ideas and technologies that attempt to bring meaning to the vast amount of information available via the Web. The intention is to provide information in a structured form so that it can be processed automatically by machines. The combination of structured data and inferencing can yield much information not explicitly stated.

The aim of the Semantic Web is to solve the most problematic issues that come with the growth of the non-semantic (HTML-based or similar) Web that results in a high level of human effort for finding, retrieving and exploiting information. For example, contemporary search engines are extremely fast, but tend to be very poor at producing relevant results. Of the thousands of matches typically returned, only a few point to truly relevant content and some of this content may be buried deep within the identified pages. Such issues dramatically reduce the value of the information discovered as well as the ability to automate the consumption of such data. Other problems related to classification and generalisation of identifiers further confuse the landscape.

The Semantic Web solves such issues by adopting unique identifiers for concepts and the relationships between them. These identifiers, called Universal Resource Identifiers (URIs) (a “resource” is any ‘thing’ or ‘concept’) are similar to Web page URLs, but do not necessarily identify documents from the Web. Their sole purpose is to uniquely identify objects or concepts and the relationships between them.

The use of URIs removes much of the ambiguity from information, but the Semantic Web goes further by allowing concepts to be associated with hierarchies of classifications, thus making it possible to infer new information based on an individual’s classification and relationship to other concepts. This is achieved by making use of ontologies – hierarchical structures of concepts – to classify individual concepts.

Resource Description Framework (RDF)

The World-Wide Web has grown rapidly and contains huge amounts of information that cannot be interpreted by machines. Machines cannot understand meaning, therefore they cannot understand Web content. For this reason, most attempts to retrieve some useful pieces of information from the Web require a high degree of user involvement – manually retrieving information from multiple sources (different Web pages), ‘digging’ through multiple search engine results (where useful pieces of data are often buried many pages deep), comparing differently structured result sets (most of them incomplete), and so on.

For the machine interpretation of semantic content to become possible, there are two prerequisites:

	Every concept should be uniquely identified. (For example, if one and the same person owns a web site, authors articles on other sites, gives an interview on another site and has profiles in a couple of social media sites such as Facebook and LinkedIn, then the occurrences of his name/identifier in all these places should be related to one and the same unique identifier.)

	There must be a unified system for conveying and interpreting meaning that all automated search agents and data storage applications should use.

One approach for attaching semantic information to Web content is to embed the necessary machine-processable information through the use of special meta-descriptors (meta-tagging) in addition to the existing meta-tags that mainly concern the layout.

Within these meta tags, the resources (the pieces of useful information) can be uniquely identified in the same manner in which Web pages are uniquely identified, i.e., by extending the existing URL system into something more universal – a URI (Uniform Resource Identifier). In addition, conventions can be devised, so that resources can be described in terms of properties and values (resources can have properties and properties have values). The concrete implementations of
these conventions (or vocabularies) can be embedded into Web pages (through meta-descriptors again) thus effectively ‘telling’ the processing machines things like:

[resource] John Doe has a [property] web site which is [value] www.johndoesite.com

The Resource Description Framework (RDF) developed by the World Wide Web Consortium (W3C) makes possible the automated semantic processing of information, by structuring information using individual statements that consist of: Subject, Predicate, Object. Although frequently referred to as a ‘language’, RDF is mainly a data model. It is based on the idea that the things being described have properties, which have values, and that resources can be described by making statements. RDF prescribes how to make statements about resources, in particular, Web resources, in the form of subject-predicate-object expressions. The ‘John Doe’ example above is precisely this kind of statement. The statements are also referred to as triples, because they always have the subject-predicate-object structure.

The basic RDF components include statements, Uniform Resource Identifiers, properties, blank nodes and literals. They are discussed in the topics that follow.

Uniform Resource Identifiers (URIs)

A unique Uniform Resource Identifier (URI) is assigned to any resource or thing that needs to be described. Resources can be authors, books, publishers, places, people, hotels, goods, articles, search queries, and so on. In the Semantic Web, every resource has a URI. A URI can be a URL or some other kind of unique identifier. Unlike URLs, URIs do not necessarily enable access to the resource they describe, i.e, in most cases they do not represent actual web pages. For example, the string http://www.johndoesite.com/aboutme.htm, if used as a URL (Web link) is expected to take us to a Web page of the site providing information about the site owner, the person John Doe. The same string can however be used simply to identify that person on the Web (URI) irrespective of whether such a page exists or not.

Thus URI schemes can be used not only for Web locations, but also for such diverse objects as telephone numbers, ISBN numbers, and geographic locations. In general, we assume that a URI is the identifier of a resource and can be used as either the subject or the object of a statement. Once the subject is assigned a URI, it can be treated as a resource and further statements can be made about it.

This idea of using URIs to identify ‘things’ and the relations between them is important. This approach goes some way towards a global, unique naming scheme. The use of such a scheme greatly reduces the homonym problem that has plagued distributed data representation in the past.

Statements: Subject-Predicate-Object Triples

To make the information in the following sentence

“The web site www.johndoesite.com is created by John Doe.”

machine-accessible, it should be expressed in the form of an RDF statement, i.e., a subject-predicate-object triple:

“[subject] the web site www.johndoesite.com [predicate] has a creator [object] called John Doe.”

This statement emphasises the fact that in order to describe something, there has to be a way to name or identify a number of things:

	the thing the statement describes (Web site “www.johndoesite.com”);

	a specific property (“creator”) of the thing the statement describes;

	the thing the statement says is the value of this property (who the owner is).

The respective RDF terms for the various parts of the statement are:

	the subject is the URL “www.johndoesite.com”;

	the predicate is the expression “has creator”;

	the object is the name of the creator, which has the value “John Doe”.

Next, each member of the subject-predicate-object triple should be identified using its URI, e.g.:

	the subject is http://www.johndoesite.com;

	the predicate is http://purl.org/dc/elements/1.1/creator (this is according to a particular RDF Schema, namely, the Dublin Core Metadata Element Set);

	the object is http://www.johndoesite.com/aboutme (which may not be an actual web page).

Note that in this version of the statement, instead of identifying the creator of the web site by the character string “John Doe”, we used a URI, namely http://www.johndoesite.com/aboutme. An advantage of using a URI is that the identification of the statement’s subject can be more precise, i.e., the creator of the page is neither the character string “John Doe”, nor any of the thousands of other people with that name, but the particular John Doe associated with this URI (whoever created the URI defines the association). Moreover, since there is a URI to refer to John Doe, he is now a full-fledged resource and additional information can be recorded about him simply by adding additional RDF statements with John’s URI as the subject.

What we basically have now is the logical formula \(P(x, y)\), where the binary predicate \(P\) relates the object \(x\) to the object \(y\) – we may also think of this formula as written in the form \(x, P, y\). In fact, RDF offers only binary predicates (properties). If more complex relationships are to be defined, this is done through sets of multiple RDF triples. Therefore, we can describe the statement as:

<http://www.johndoesite.com> <http://purl.org/dc/elements/1.1/creator> <http://www.johndoesite.com/aboutme>

There are several conventions for writing abbreviated RDF statements, as used in the RDF specifications themselves. This shorthand employs an XML qualified name (or QName) without angle brackets as an abbreviation for a full URI reference. A QName contains a prefix that has been assigned to a namespace URI, followed by a colon, and then a local name. The full URI reference is formed from the QName by appending the local name to the namespace URI assigned to the prefix. So, for example, if the QName prefix foo is assigned to the namespace URI http://example.com/somewhere/, then the QName “foo:bar” is a shorthand for the URI http://example.com/somewhere/bar.

In our example, we can define the namespace jds for http://www.johndoesite.com and use the Dublin Core Metadata namespace dc for http://purl.org/dc/elements/1.1/.

So, the shorthand form for the example statement is simply:

jds: dc:creator jds:aboutme

Objects of RDF statements can (and very often do) form the subjects of other statements leading to a graph-like representation of knowledge. Using this notation, a statement is represented by:

	a node for the subject;

	a node for the object;

	an arc for the predicate, directed from the subject node to the object node.

So the RDF statement above could be represented by the following graph:

[image: _images/graphical_triple.png]
This kind of graph is known in the artificial intelligence community as a ‘semantic net’.

In order to represent RDF statements in a machine-processable way, RDF uses mark-up languages, namely (and almost exclusively) the Extensible Mark-up Language (XML). Because an abstract data model needs a concrete syntax in order to be represented and transmitted, RDF has been given a syntax in XML. As a result, it inherits the benefits associated with XML. However, it is important to understand that other syntactic representations of RDF, not based on XML, are also possible. XML-based syntax is not a necessary component of the RDF model. XML was designed to allow anyone to design their own document format and then write a document in that format. RDF defines a specific XML mark-up language, referred to as RDF/XML, for use in representing RDF information and for exchanging it between machines. Written in RDF/XML, our example will look as follows:

<?xml version="1.0" encoding="UTF-16"?>

<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:jds="http://www.johndoesite.com/">

 <rdf:Description rdf:about="http://www.johndoesite.com/">
 <dc:creator rdf:resource="jds:aboutme">
 </rdf:Description>
</rdf:RDF>

Note

RDF/XML uses the namespace mechanism of XML, but in an expanded way. In XML, namespaces are only used for disambiguation purposes. In RDF/XML, external namespaces are expected to be RDF documents defining resources, which are then used in the importing RDF document. This mechanism allows the reuse of resources by other people who may decide to insert additional features into these resources. The result is the emergence of large, distributed collections of knowledge.

Also observe that the rdf:about attribute of the element rdf:Description is equivalent in meaning to that of an ID attribute, but it is often used to suggest that the object about which a statement is made has already been ‘defined’ elsewhere. Strictly speaking, a set of RDF statements together simply forms a large graph, relating things to other things through properties, and there is no such concept as ‘defining’ an object in one place and referring to it elsewhere. Nevertheless, in the serialised XML syntax, it is sometimes useful (if only for human readability) to suggest that one location in the XML serialisation is the ‘defining’ location, while other locations state ‘additional’ properties about an object that has been ‘defined’ elsewhere.

Properties

Properties are a special kind of resource: they describe relationships between resources, e.g., written by, age, title, and so on. Properties in RDF are also identified by URIs (in most cases, these are actual URLs). Therefore, properties themselves can be used as the subject in other statements, which allows for an expressive ways to describe properties, e.g., by defining property hierarchies.

Named graphs

A named graph (NG) is a set of triples named by a URI. This URI can then be used outside or within the graph to refer to it. The ability to name a graph allows separate graphs to be identified out of a large collection of statements and further allows statements to be made about graphs.

Named graphs represent an extension of the RDF data model, where quadruples <s,p,o,ng> are used to define statements in an RDF multi-graph. This mechanism allows, e.g., the handling of provenance when multiple RDF graphs are integrated into a single repository.

From the perspective of GraphDB, named graphs are important, because comprehensive support for SPARQL requires NG support.

RDF Schema (RDFS)

While being a universal model that lets users describe resources using their own vocabularies, RDF does not make assumptions about any particular application domain, nor does it define the semantics of any domain. It is up to the user to do so using an RDF Schema (RDFS) vocabulary.

RDF Schema is a vocabulary description language for describing properties and classes of RDF resources, with a semantics for generalisation hierarchies of such properties and classes. Be aware of the fact that the RDF Schema is conceptually different from the XML Schema, even though the common term schema suggests similarity. The XML Schema constrains the structure of XML documents, whereas the RDF Schema defines the vocabulary used in RDF data models. Thus, RDFS makes semantic information machine-accessible, in accordance with the Semantic Web vision. RDF Schema is a primitive ontology language. It offers certain modelling primitives with fixed meaning.

RDF Schema does not provide a vocabulary of application-specific classes. Instead, it provides the facilities needed to describe such classes and properties, and to indicate which classes and properties are expected to be used together (for example, to say that the property JobTitle will be used in describing a class “Person”). In other words, RDF Schema provides a type system for RDF.

The RDF Schema type system is similar in some respects to the type systems of object-oriented programming languages such as Java. For example, RDFS allows resources to be defined as instances of one or more classes. In addition, it allows classes to be organised in a hierarchical fashion. For example, a class Dog might be defined as a subclass of Mammal, which itself is a subclass of Animal, meaning that any resource that is in class Dog is also implicitly in class Animal as well.

RDF classes and properties, however, are in some respects very different from programming language types. RDF class and property descriptions do not create a straight-jacket into which information must be forced, but instead provide additional information about the RDF resources they describe.

The RDFS facilities are themselves provided in the form of an RDF vocabulary, i.e., as a specialised set of predefined RDF resources with their own special meanings. The resources in the RDFS vocabulary have URIs with the prefix http://www.w3.org/2000/01/rdf-schema# (conventionally associated with the namespace prefix rdfs). Vocabulary descriptions (schemas) written in the RDFS language are legal RDF graphs. Hence, systems processing RDF information that do not understand the additional RDFS vocabulary can still interpret a schema as a legal RDF graph consisting of various resources and properties. However, such a system will be oblivious to the additional built-in meaning of the RDFS terms. To understand these additional meanings, the software that processes RDF information has to be extended to include these language features and to interpret their meanings in the defined way.

Describing classes

A class can be thought of as a set of elements. Individual objects that belong to a class are referred to as instances of that class. A class in RDFS corresponds to the generic concept of a type or category similar to the notion of a class in object-oriented programming languages such as Java. RDF classes can be used to represent any category of objects such as web pages, people, document types, databases or abstract concepts. Classes are described using the RDF Schema resources rdfs:Class and rdfs:Resource, and the properties rdf:type and rdfs:subClassOf. The relationship between instances and classes in RDF is defined using rdf:type.

An important use of classes is to impose restrictions on what can be stated in an RDF document using the schema. In programming languages, typing is used to prevent incorrect use of objects (resources) and the same is true in RDF imposing a restriction on the objects to which the property can be applied. In logical terms, this is a restriction on the domain of the property.

Describing properties

In addition to describing the specific classes of things they want to describe, user communities also need to be able to describe specific properties that characterise these classes of things (such as numberOfBedrooms to describe an apartment). In RDFS, properties are described using the RDF class rdf:Property, and the RDFS properties rdfs:domain, rdfs:range and rdfs:subPropertyOf.

All properties in RDF are described as instances of class rdf:Property. So, a new property, such as exterms:weightInKg, is defined with the following RDF statement:

exterms:weightInKg rdf:type rdf:Property .

RDFS also provides vocabulary for describing how properties and classes are intended to be used together. The most important information of this kind is supplied by using the RDFS properties rdfs:range and rdfs:domain to further describe application-specific properties.

The rdfs:range property is used to indicate that the values of a particular property are members of a designated class. For example, to indicate that the property ex:author has values that are instances of class ex:Person, the following RDF statements are used:

ex:Person rdf:type rdfs:Class .
ex:author rdf:type rdf:Property .
ex:author rdfs:range ex:Person .

These statements indicate that ex:Person is a class, ex:author is a property, and that RDF statements using the ex:author property have instances of ex:Person as objects.

The rdfs:domain property is used to indicate that a particular property is used to describe a specific class of objects. For example, to indicate that the property ex:author applies to instances of class ex:Book, the following RDF statements are used:

ex:Book rdf:type rdfs:Class .
ex:author rdf:type rdf:Property .
ex:author rdfs:domain ex:Book .

These statements indicate that ex:Book is a class, ex:author is a property, and that RDF statements using the ex:author property have instances of ex:Book as subjects.

Sharing vocabularies

RDFS provides the means to create custom vocabularies. However, it is generally easier and better practice to use an existing vocabulary created by someone else who has already been describing a similar conceptual domain. Such publicly available vocabularies, called ‘shared vocabularies’, are not only cost-efficient to use, but they also promote the shared understanding of the described domains.

Considering the earlier example, in the statement:

jds: dc:creator jds:aboutme .

the predicate dc:creator, when fully expanded into a URI, is an unambiguous reference to the creator attribute in the Dublin Core metadata attribute set, a widely used set of attributes (properties) for describing information of this kind. So this triple is effectively saying that the relationship between the website (identified by http://www.johndoesite.com/) and the creator of the site (a distinct person, identified by http://www.johndoesite.com/aboutme) is exactly the property identified by http://purl.org/dc/elements/1.1/creator. This way, anyone familiar with the Dublin Core vocabulary or those who find out what dc:creator means (say, by looking up its definition on the Web) will know what is meant by this relationship. In addition, this shared understanding based upon using unique URIs for identifying concepts is exactly the requirement for creating computer systems that can automatically process structured information.

However, the use of URIs does not solve all identification problems, because different URIs can be created for referring to the same thing. For this reason, it is a good idea to have a preference towards using terms from existing vocabularies (such as the Dublin Core) where possible, rather than making up new terms that might overlap with those of some other vocabulary. Appropriate vocabularies for use in specific application areas are being developed all the time, but even so, the sharing of these vocabularies in a common ‘Web space’ provides the opportunity to identify and deal with any equivalent terminology.

Dublin Core Metadata Initiative

An example of a shared vocabulary that is readily available for reuse is The Dublin Core [http://dublincore.org/], which is a set of elements (properties) for describing documents (and hence, for recording metadata). The element set was originally developed at the March 1995 Metadata Workshop in Dublin, Ohio, USA. Dublin Core has subsequently been modified on the basis of later Dublin Core Metadata workshops and is currently maintained by the Dublin Core Metadata Initiative [http://dublincore.org/].

The goal of Dublin Core is to provide a minimal set of descriptive elements that facilitate the description and the automated indexing of document-like networked objects, in a manner similar to a library card catalogue. The Dublin Core metadata set is suitable for use by resource discovery tools on the Internet, such as Web crawlers employed by search engines. In addition, Dublin Core is meant to be sufficiently simple to be understood and used by the wide range of authors and casual publishers of information to the Internet.

Dublin Core elements have become widely used in documenting Internet resources (the Dublin Core creator element was used in the earlier examples). The current elements of Dublin Core contain definitions for properties such as title (a name given to a resource), creator (an entity primarily responsible for creating the content of the resource), date (a date associated with an event in the life-cycle of the resource) and type (the nature or genre of the content of the resource).

Information using Dublin Core elements may be represented in any suitable language (e.g., in HTML meta elements). However, RDF is an ideal representation for Dublin Core information. The following example uses Dublin Core by itself to describe an audio recording of a guide to growing rose bushes:

<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/">

 <rdf:Description rdf:about="http://media.example.com/audio/guide.ra">
 <dc:creator>Mr. Dan D. Lion</dc:creator>
 <dc:title>A Guide to Growing Roses</dc:title>
 <dc:description>Describes planting and nurturing rose bushes.
 </dc:description>
 <dc:date>2001-01-20</dc:date>
 </rdf:Description>
</rdf:RDF>

The same RDF statements in Notation-3:

@prefix dc: <[http://purl.org/dc/elements/1.1/]> .
@prefix rdf: <[http://www.w3.org/1999/02/22-rdf-syntax-ns#]> .

<http://media.example.com/audio/guide.ra> dc:creator "Mr. Dan D. Lion" ;
 dc:title "A Guide to Growing Roses" ;
 dc:description "Describes planting and nurturing rose bushes." ;
 dc:date "2001-01-20" .

Ontologies and knowledge bases

In general, an ontology formally describes a (usually finite) domain of related concepts (classes of objects) and their relationships. For example, in a company setting, staff members, managers, company products, offices, and departments might be some important concepts. The relationships typically include hierarchies of classes. A hierarchy specifies a class C to be a subclass of another class C' if every object in C is also included in C'. For example, all managers are staff members.

Apart from subclass relationships, ontologies may include information such as:

	properties (X is subordinated Y);

	value restrictions (only managers may head departments);

	disjointness statements (managers and general employees are disjoint);

	specifications of logical relationships between objects (every department must have at least three staff members).

Ontologies are important because semantic repositories use ontologies as semantic schemata. This makes automated reasoning about the data possible (and easy to implement) since the most essential relationships between the concepts are built into the ontology.

Formal knowledge representation (KR) is about building models. The typical modelling paradigm is mathematical logic, but there are also other approaches, rooted in the information and library science. KR is a very broad term; here we only refer to the mainstream meaning of the world (of a particular state of affairs, situation, domain or problem), which allow for automated reasoning and interpretation. Such models consist of ontologies defined in a formal language. Ontologies can be used to provide formal semantics (i.e., machine-interpretable meaning) to any sort of information: databases, catalogues, documents, Web pages, etc. Ontologies can be used as semantic frameworks: the association of information with ontologies makes such information much more amenable to machine processing and interpretation. This is because ontologies are described using logical formalisms, such as OWL, which allow automatic inferencing over these ontologies and datasets that use them, i.e., as a vocabulary. An important role of ontologies is to serve as schemata or ‘intelligent’ views over information resources. This is also the role of ontologies in the Semantic Web. Thus, they can be used for indexing, querying, and reference purposes over non-ontological datasets and systems such as databases, document and catalogue management systems. Because ontological languages have formal semantics, ontologies allow a wider interpretation of data, i.e., inference of facts, which are not explicitly stated. In this way, they can improve the interoperability and the efficiency of using arbitrary datasets.

An ontology O can be defined as comprising the 4-tuple.

O = <C,R,I,A>

where

	C is a set of classes representing concepts from the domain we wish to describe (e.g., invoices, payments, products, prices, etc);

	R is a set of relations (also referred to as properties or predicates) holding between (instances of) these classes (e.g., Product hasPrice Price);

	I is a set of instances, where each instance can be a member of one or more classes and can be linked to other instances or to literal values (strings, numbers and other data-types) by relations (e.g., product23 compatibleWith product348 or product23 hasPrice €170);

	A is a set of axioms (e.g., if a product has a price greater than €200, then shipping is free).

Classification of ontologies

Ontologies can be classified as light-weight or heavy-weight according to the complexity of the KR language and the extent to which it is used. Light-weight ontologies allow for more efficient and scalable reasoning, but do not possess the highly predictive (or restrictive) power of more powerful KR languages. Ontologies can be further differentiated according to the sort of conceptualisation that they formalise: upper-level ontologies model general knowledge, while domain and application ontologies represent knowledge about a specific domain (e.g., medicine or sport) or a type of application, e.g., knowledge management systems.

Finally, ontologies can be distinguished according to the sort of semantics being modelled and their intended usage. The major categories from this perspective are:

	Schema-ontologies: ontologies that are close in purpose and nature to database and object-oriented schemata. They define classes of objects, their properties and relationships to objects of other classes. A typical use of such an ontology involves using it as a vocabulary for defining large sets of instances. In basic terms, a class in a schema ontology corresponds to a table in a relational database; a relation – to a column; an instance – to a row in the table for the corresponding class;

	Topic-ontologies: taxonomies that define hierarchies of topics, subjects, categories, or designators. These have a wide range of applications related to classification of different things (entities, information resources, files, Web-pages, etc). The most popular examples are library classification systems and taxonomies, which are widely used in the knowledge management field. Yahoo [https://www.yahoo.com/] and DMoz [http://www.dmoz.org/] are popular large scale incarnations of this approach. A number of the most popular taxonomies are listed as encoding schemata in Dublin Core [http://dublincore.org/documents/dces/];

	Lexical ontologies: lexicons with formal semantics that define lexical concepts. We use ‘lexical concept’ here as some kind of a formal representation of the meaning of a word or a phrase. In Wordnet, for example, lexical concepts are modelled as synsets (synonym sets), while word-sense is the relation between a word and a synset, word-senses and terms. These can be considered as semantic thesauri or dictionaries. The concepts defined in such ontologies are not instantiated, rather they are directly used for reference, e.g., for annotation of the corresponding terms in text. WordNet [http://wordnet.princeton.edu/] is the most popular general purpose (i.e., upper-level) lexical ontology.

Knowledge bases

Knowledge base (KB) is a broader term than ontology. Similar to an ontology, a KB is represented in a KR formalism, which allows automatic inference. It could include multiple axioms, definitions, rules, facts, statements, and any other primitives. In contrast to ontologies, however, KBs are not intended to represent a shared or consensual conceptualisation. Thus, ontologies are a specific sort of a KB. Many KBs can be split into ontology and instance data parts, in a way analogous to the splitting of schemata and concrete data in databases.

Proton

PROTON is a light-weight upper-level schema-ontology developed in the scope of the SEKT project, which we will use for ontology-related examples in this section. PROTON is encoded in OWL Lite and defines about 542 entity classes and 183 properties, providing good coverage of named entity types and concrete domains, i.e., modelling of concepts such as people, organisations, locations, numbers, dates, addresses, etc. A snapshot of the PROTON class hierarchy is shown below.

[image: _images/proton.png]

Logic and inference

The topics that follow take a closer look at the logic that underlies the retrieval and manipulation of semantic data and the kind of programming that supports it.

Logic programming

Logic programming involves the use of logic for computer programming, where the programmer uses a declarative language to assert statements and a reasoner or theorem-prover is used to solve problems. A reasoner can interpret sentences, such as IF A THEN B, as a means to prove B from A. In other words, given a collection of logical sentences, a reasoner will explore the solution space in order to find a path to justify the requested theory. For example, to determine the truth value of C given the following logical sentences

IF A AND B THEN C
B
IF D THEN A
D

a reasoner will interpret the IF..THEN statements as rules and determine that C is indeed inferred from the KB. This use of rules in logic programming has led to ‘rule-based reasoning’ and ‘logic programming’ becoming synonymous, although this is not strictly the case.

In LP, there are rules of logical inference that allow new (implicit) statements to be inferred from other (explicit) statements, with the guarantee that if the explicit statements are true, so are the implicit statements.

Because these rules of inference can be expressed in purely symbolic terms, applying them is the kind of symbol manipulation that can be carried out by a computer. This is what happens when a computer executes a logical program: it uses the rules of inference to derive new statements from the ones given in the program, until it finds one that expresses the solution to the problem that has been formulated. If the statements in the program are true, then so are the statements that the machine derives from them, and the answers it gives will be correct.

The program can give correct answers only if the following two conditions are met:

	The program must contain only true statements;

	The program must contain enough statements to allow solutions to be derived for all the problems that are of interest.

There must also be a reasonable time frame for the entire inference process. To this end, much research has been carried out to determine the complexity classes of various logical formalisms and reasoning strategies. Generally speaking, to reason with Web-scale quantities of data requires a low-complexity approach. A tractable solution is one whose algorithm requires finite time and space to complete.

Predicate logic

From a more abstract viewpoint, the subject of the previous topic is related to the foundation upon which logical programming resides, which is logic, particularly in the form of predicate logic (also known as ‘first order logic’). Some of the specific features of predicate logic render it very suitable for making inferences over the Semantic Web, namely:

	It provides a high-level language in which knowledge can be expressed in a transparent way and with high expressive power;

	It has a well-understood formal semantics, which assigns unambiguous meaning to logical statements;

	There are proof systems that can automatically derive statements syntactically from a set of premises. These proof systems are both sound (meaning that all derived statements follow semantically from the premises) and complete (all logical consequences of the premises can be derived in the proof system);

	It is possible to trace the proof that leads to a logical consequence. (This is because the proof system is sound and complete.) In this sense, the logic can provide explanations for answers.

The languages of RDF and OWL (Lite and DL) can be viewed as specialisations of predicate logic. One reason for such specialised languages to exist is that they provide a syntax that fits well with the intended use (in our case, Web languages based on tags). The other major reason is that they define reasonable subsets of logic. This is important because there is a trade-off between the expressive power and the computational complexity of certain logic: the more expressive the language, the less efficient (in the worst case) the corresponding proof systems. As previously stated, OWL Lite and OWL DL correspond roughly to description logic, a subset of predicate logic for which efficient proof systems exist.

Another subset of predicate logic with efficient proof systems comprises the so-called rule systems (also known as Horn logic or definite logic programs).

A rule has the form:

A1, ... , An → B

where Ai and B are atomic formulas. In fact, there are two intuitive ways of reading such a rule:

	If A1, ... , An are known to be true, then B is also true. Rules with this interpretation are referred to as ‘deductive rules’.

	If the conditions A1, ... , An are true, then carry out the action B. Rules with this interpretation are referred to as ‘reactive rules’.

Both approaches have important applications. The deductive approach, however, is more relevant for the purpose of retrieving and managing structured data. This is because it relates better to the possible queries that one can ask, as well as to the appropriate answers and their proofs.

Description logic

Description Logic (DL) has historically evolved from a combination of frame-based systems and predicate logic. Its main purpose is to overcome some of the problems with frame-based systems and to provide a clean and efficient formalism to represent knowledge. The main idea of DL is to describe the world in terms of ‘properties’ or ‘constraints’ that specific ‘individuals’ must satisfy. DL is based on the following basic entities:

	Objects - Correspond to single ‘objects’ of the real world such as a specific person, a table or a telephone. The main properties of an object are that it can be distinguished from other objects and that it can be referred to by a name. DL objects correspond to the individual constants in predicate logic;

	Concepts - Can be seen as ‘classes of objects’. Concepts have two functions: on one hand, they describe a set of objects and on the other, they determine properties of objects. For example, the class “table” is supposed to describe the set of all table objects in the universe. On the other hand, it also determines some properties of a table such as having legs and a flat horizontal surface that one can lay something on. DL concepts correspond to unary predicates in first order logic and to classes in frame-based systems;

	Roles - Represent relationships between objects. For example, the role ‘lays on’ might define the relationship between a book and a table, where the book lays upon the table. Roles can also be applied to concepts. However, they do not describe the relationship between the classes (concepts), rather they describe the properties of the objects that are members of that classes;

	Rules - In DL, rules take the form of “if condition x (left side), then property y (right side)” and form statements that read as “if an object satisfies the condition on the left side, then it has the properties of the right side”. So, for example, a rule can state something like ‘all objects that are male and have at least one child are fathers’.

The family of DL system consists of many members that differ mainly with respect to the constructs they provide. Not all of the constructs can be found in a single DL system.

The Web Ontology Language (OWL) and its dialects

In order to achieve the goal of a broad range of shared ontologies using vocabularies with expressiveness appropriate for each domain, the Semantic Web requires a scalable high-performance storage and reasoning infrastructure. The major challenge towards building such an infrastructure is the expressivity of the underlying standards: RDF, RDFS, OWL and OWL 2. Even though RDFS can be considered a simple KR language, it is already a challenging task to implement a repository for it, which provides performance and scalability comparable to those of relational database management systems (RDBMS). Even the simplest dialect of OWL (OWL Lite) is a description logic (DL) that does not scale due to reasoning complexity. Furthermore, the semantics of OWL Lite are incompatible with that of RDF(S).

[image: _images/owl_fragments_map.png]

Figure 1 - OWL Layering Map

OWL DLP

OWL DLP is a non-standard dialect, offering a promising compromise between expressive power, efficient reasoning, and compatibility. It is defined as the intersection of the expressivity of OWL DL and logic programming. In fact, OWL DLP is defined as the most expressive sublanguage of OWL DL, which can be mapped to Datalog. OWL DLP is simpler than OWL Lite. The alignment of its semantics to RDFS is easier, as compared to OWL Lite and OWL DL dialects. Still, this can only be achieved through the enforcement of some additional modelling constraints and transformations.

Horn logic and description logic are orthogonal (in the sense that neither of them is a subset of the other). OWL DLP is the ‘intersection’ of Horn logic and OWL; it is the Horn-definable part of OWL, or stated another way, the OWL-definable part of Horn logic.

DLP has certain advantages:

	From a modeller’s perspective, there is freedom to use either OWL or rules (and associated tools and methodologies) for modelling purposes, depending on the modeller’s experience and preferences.

	From an implementation perspective, either description logic reasoners or deductive rule systems can be used. This feature provides extra flexibility and ensures interoperability with a variety of tools.

Experience with using OWL has shown that existing ontologies frequently use very few constructs outside the DLP language.

OWL Horst

In “Combining RDF and Part of OWL with Rules: Semantics, Decidability, Complexity” ter Horst defines RDFS extensions towards rule support and describes a fragment of OWL, more expressive than DLP. He introduces the notion of R-entailment of one (target) RDF graph from another (source) RDF graph on the basis of a set of entailment rules R. R-entailment is more general than the D-entailment used by Hayes in defining the standard RDFS semantics. Each rule has a set of premises, which conjunctively define the body of the rule. The premises are ‘extended’ RDF statements, where variables can take any of the three positions.

The head of the rule comprises one or more consequences, each of which is, again, an extended RDF statement. The consequences may not contain free variables, i.e., which are not used in the body of the rule. The consequences may contain blank nodes.

The extension of R-entailment (as compared to D-entailment) is that it ‘operates’ on top of so-called generalised RDF graphs, where blank nodes can appear as predicates. R-entailment rules without premises are used to declare axiomatic statements. Rules without consequences are used to detect inconsistencies.

In this document, we refer to this extension of RDFS as “OWL Horst”. This language has a number of important characteristics:

	It is a proper (backward-compatible) extension of RDFS. In contrast to OWL DLP, it puts no constraints on the RDFS semantics. The widely discussed meta-classes (classes as instances of other classes) are not disallowed in OWL Horst. It also does not enforce the unique name assumption;

	Unlike DL-based rule languages such as SWRL, R-entailment provides a formalism for rule extensions without DL-related constraints;

	Its complexity is lower than SWRL and other approaches combining DL ontologies with rules.

In Figure 1, the pink box represents the range of expressivity of GraphDB, i.e., including OWL DLP, OWL Horst, OWL 2 RL, most of OWL Lite. However, none of the rulesets include support for the entailment of typed literals (D-entailment).

OWL Horst is close to what SWAD-Europe has intuitively described as OWL Tiny. The major difference is that OWL Tiny (like the fragment supported by GraphDB) does not support entailment over data types.

OWL2 RL

OWL 2 is a re-work of the OWL language family by the OWL working group. This work includes identifying fragments of the OWL 2 language that have desirable behavior for specific applications/environments.

The OWL 2 RL profile is aimed at applications that require scalable reasoning without sacrificing too much expressive power. It is designed to accommodate both OWL 2 applications that can trade the full expressivity of the language for efficiency, and RDF(S) applications that need some added expressivity from OWL 2. This is achieved by defining a syntactic subset of OWL 2, which is amenable to implementation using rule-based technologies, and presenting a partial axiomatisation of the OWL 2 RDF-Based Semantics in the form of first-order implications that can be used as the basis for such an implementation. The design of OWL 2 RL was inspired by Description Logic Programs and pD.

OWL Lite

The original OWL specification, now known as OWL 1, provides two specific subsets of OWL Full designed to be of use to implementers and language users. The OWL Lite subset was designed for easy implementation and to offer users a functional subset that provides an easy way to start using OWL.

OWL Lite is a sublanguage of OWL DL that supports only a subset of the OWL language constructs. OWL Lite is particularly targeted at tool builders, who want to support OWL, but who want to start with a relatively simple basic set of language features. OWL Lite abides by the same semantic restrictions as OWL DL, allowing reasoning engines to guarantee certain desirable properties.

OWL DL

The OWL DL (where DL stands for Description Logic) subset was designed to support the existing Description Logic business segment and to provide a language subset that has desirable computational properties for reasoning systems.

OWL Full and OWL DL support the same set of OWL language constructs. Their difference lies in the restrictions on the use of some of these features and on the use of RDF features. OWL Full allows free mixing of OWL with RDF Schema and, like RDF Schema, does not enforce a strict separation of classes, properties, individuals and data values. OWL DL puts constraints on mixing with RDF and requires disjointness of classes, properties, individuals and data values. The main reason for having the OWL DL sublanguage is that tool builders have developed powerful reasoning systems that support ontologies constrained by the restrictions required for OWL DL.

Query languages

In this section, we introduce some query languages for RDF. This may beg the question why we need RDF-specific query languages at all instead of using an XML query language. The answer is that XML is located at a lower level of abstraction than RDF. This fact would lead to complications if we were querying RDF documents with an XML-based language. The RDF query languages explicitly capture the RDF semantics in the language itself.

All the query languages discussed below have an SQL-like syntax, but there are also a few non-SQL-like languages like Versa and Adenine.

The query languages supported by RDF4J (which is the Java framework within which GraphDB operates) and therefore by GraphDB, are SPARQL and SeRQL.

RQL, RDQL

RQL (RDF Query Language) was initially developed by the Institute of Computer Science at Heraklion, Greece, in the context of the European IST project MESMUSES.3. RQL adopts the syntax of OQL (a query language standard for object-oriented databases), and, like OQL, is defined by means of a set of core queries, a set of basic filters, and a way to build new queries through functional composition and iterators.

The core queries are the basic building blocks of RQL, which give access to the RDFS-specific contents of an RDF triplestore. RQL allows queries such as Class (retrieving all classes), Property (retrieving all properties) or Employee (returning all instances of the class with name Employee). This last query, of course, also returns all instances of subclasses of Employee, as these are also instances of the class Employee by virtue of the semantics of RDFS.

RDQL (RDF Data Query Language) is a query language for RDF first developed for Jena models. RDQL is an implementation of the SquishQL RDF query language, which itself is derived from rdfDB. This class of query languages regards RDF as triple data, without schema or ontology information unless explicitly included in the RDF source.

Apart from RDF4J, the following systems currently provide RDQL (all these implementations are known to derive from the original grammar): Jena, RDFStore, PHP XML Classes, 3Store and RAP (RDF API for PHP).

SPARQL

SPARQL (pronounced “sparkle”) is currently the most popular RDF query language; its name is a recursive acronym that stands for “SPARQL Protocol and RDF Query Language”. It was standardised by the RDF Data Access Working Group (DAWG) of the World Wide Web Consortium, and is now considered a key Semantic Web technology. On 15 January 2008, SPARQL became an official W3C Recommendation.

SPARQL allows for a query to consist of triple patterns, conjunctions, disjunctions, and optional patterns. Several SPARQL implementations for multiple programming languages exist at present.

SeRQL

SeRQL (Sesame RDF Query Language, pronounced “circle”) is an RDF/RDFS query language developed by Sesame’s developer - Aduna - as part of Sesame (now RDF4J). It selectively combines the best features (considered by its creators) of other query languages (RQL, RDQL, N-Triples, N3) and adds some features of its own. As of this writing, SeRQL provides advanced features not yet available in SPARQL. Some of SeRQL’s most important features are:

	Graph transformation;

	RDF Schema support;

	XML Schema data-type support;

	Expressive path expression syntax;

	Optional path matching.

Reasoning strategies

There are two principle strategies for rule-based inference: Forward-chaining and Backward-chaining:

	Forward-chaining

	to start from the known facts (the explicit statements) and to perform inference in a deductive fashion. Forward-chaining involves applying the inference rules to the known facts (explicit statements) to generate new facts. The rules can then be re-applied to the combination of original facts and inferred facts to produce more new facts. The process is iterative and continues until no new facts can be generated. The goals of such reasoning can have diverse objectives, e.g., to compute the inferred closure, to answer a particular query, to infer a particular sort of knowledge (e.g., the class taxonomy), etc.

Advantages: When all inferences have been computed query answering can proceed extremely quickly.

Disadvantages: Initialisation costs (inference computed at load time) and space/memory usage (especially when the number of inferred facts is very large).

	Backward-chaining

	involves starting with a fact to be proved or a query to be answered. Typically, the reasoner examines the knowledge base to see if the fact to be proved is present and if not it examines the ruleset to see which rules could be used to prove it. For the latter case, a check is made to see what other ‘supporting’ facts would need to be present to ‘fire’ these rules. The reasoner searches for proofs of each of these ‘supporting’ facts in the same way and iteratively maps out a search tree. The process terminates when either all of the leaves of the tree have proofs or no new candidate solutions can be found. Query processing is similar, but only stops when all search paths have been explored. The purpose in query answering is to find not just one but all possible substitutions in the query expression.

Advantages: There are no inferencing costs at start-up and minimal space requirements.

Disadvantages: Inference must be done each and every time a query is answered and for complex search graphs this can be computationally expensive and slow.

As both strategies have advantages and disadvantages, attempts to overcome their weak points have led to the development of various hybrid strategies (involving partial forward- and backward-chaining), which have proven efficient in many contexts.

Total materialisation

Imagine a repository that performs total forward-chaining, i.e., it tries to make sure that after each update to the KB, the inferred closure is computed and made available for query evaluation or retrieval. This strategy is generally known as materialisation. In order to avoid ambiguity with various partial materialisation approaches, let us call such an inference strategy, taken together with the monotonic entailment. When new explicit facts (statements) are added to a KB (repository), new implicit facts will likely be inferred. Under a monotonic logic, adding new explicit statements will never cause previously inferred statements to be retracted. In other words, the addition of new facts can only monotonically extend the inferred closure. Assumption, total materialisation.

Advantages and disadvantages of the total materialisation:

	Upload/store/addition of new facts is relatively slow, because the repository is extending the inferred closure after each transaction. In fact, all the reasoning is performed during the upload;

	Deletion of facts is also slow, because the repository should remove from the inferred closure all the facts that can no longer be proved;

	The maintenance of the inferred closure usually requires considerable additional space (RAM, disk, or both, depending on the implementation);

	Query and retrieval are fast, because no deduction, satisfiability checking, or other sorts of reasoning are required. The evaluation of queries becomes computationally comparable to the same task for relation database management systems (RDBMS).

Probably the most important advantage of the inductive systems, based on total materialisation, is that they can easily benefit from RDBMS-like query optimisation techniques, as long as all the data is available at query time. The latter makes it possible for the query evaluation engine to use statistics and other means in order to make ‘educated’ guesses about the ‘cost’ and the ‘selectivity’ of a particular constraint. These optimisations are much more complex in the case of deductive query evaluation.

Total materialisation is adopted as the reasoning strategy in a number of popular Semantic Web repositories, including some of the standard configurations of RDF4J and Jena. Based on publicly available evaluation data, it is also the only strategy that allows scalable reasoning in the range of a billion of triples; such results are published by BBN (for DAML DB) and ORACLE (for RDF support in ORACLE 11g).

Semantic repositories

Over the last decade, the Semantic Web has emerged as an area where semantic repositories became as important as HTTP servers are today. This perspective boosted the development, under W3C driven community processes, of a number of robust metadata and ontology standards. These standards play the role, which SQL had for the development and spread of the relational DBMS. Although designed for the Semantic Web, these standards face increasing acceptance in areas such as Enterprise Application Integration and Life Sciences.

In this document, the term ‘semantic repository’ is used to refer to a system for storage, querying, and management of structured data with respect to ontologies. At present, there is no single well-established term for such engines. Weak synonyms are: reasoner, ontology server, metastore, semantic/triple/RDF store, database, repository, knowledge base. The different wording usually reflects a somewhat different approach to implementation, performance, intended application, etc. Introducing the term ‘semantic repository’ is an attempt to convey the core functionality offered by most of these tools.
Semantic repositories can be used as a replacement for database management systems (DBMS), offering easier integration of diverse data and more analytical power. In a nutshell, a semantic repository can dynamically interpret metadata schemata and ontologies, which define the structure and the semantics related to the data and the queries. Compared to the approach taken in a relational DBMS, this allows for easier changing and combining of data schemata and automated interpretation of the data.

GraphDB feature comparison

	Feature
	GraphDB Free
	GraphDB SE
	GraphDB EE

	Manage unlimited number of RDF statements
	✅
	✅
	✅

	Full SPARQL 1.1 support
	✅
	✅
	✅

	Deploy anywhere using Java
	✅
	✅
	✅

	100% compatible with RDF4J framework
	✅
	✅
	✅

	Ultra fast forward-chaining reasoning
	✅
	✅
	✅

	Efficient retraction of inferred statements upon update
	✅
	✅
	✅

	Full standard-compliant and optimised rulesets for RDFS, OWL 2 RL and QL
	✅
	✅
	✅

	Custom reasoning and consistency checking rulesets
	✅
	✅
	✅

	Plugin API for engine extension
	✅
	✅
	✅

	Support for Geo-spatial indexing & querying, plus GeoSPARQL
	✅
	✅
	✅

	Query optimizer allowing effective query execution
	✅
	✅
	✅

	Workbench interface to manage repositories, data, user accounts and access roles
	✅
	✅
	✅

	Lucene connector for full-text search
	✅
	✅
	✅

	Solr connector for full-text search
	❌
	❌
	✅

	Elasticsearch connector for full-text search
	❌
	❌
	✅

	High performance load, query and inference simultaneously
	Limited to two concurrent queries
	✅
	✅

	Automatic failover, synchronisation and load balancing to maximize cluster utilisation
	❌
	❌
	✅

	Scale out concurrent query processing allowing query throughput to scale proportionally to the number of cluster nodes
	❌
	❌
	✅

	Cluster elasticity remaining fully functional in the event of failing nodes
	❌
	❌
	✅

	Community support
	✅
	✅
	✅

	Commercial SLA
	❌
	✅
	✅

Repository configuration template - how it works

The diagram below provides an illustration of an RDF graph that
describes a repository configuration:

[image: _images/sesame_owlim_config.png]
Often, it is helpful to ensure that a repository starts with a
predefined set of RDF statements - usually one or more schema graphs.
This is possible by using the owlim:imports property. After start
up, these files are parsed and their contents are permanently added to
the repository.

In short, the configuration is an RDF graph, where the root node is of
rdf:type rep:Repository, and it must be connected through the
rep:RepositoryID property to a Literal that contains the human
readable name of the repository. The root node must be connected via the
rep:repositoryImpl property to a node that describes the
configuration.

The type of the repository is defined via the rep:repositoryType
property and its value must be graphdb:FreeSailRepository to allow for
custom Sail implementations (such as GraphDB) to be used in RDF4J 2.0.
Then, a node that specifies the Sail implementation to be instantiated
must be connected through the sr:sailImpl property. To instantiate
GraphDB, this last node must have a property sail:sailType with the
value graphdb:FreeSail - the RDF4J framework will locate the correct
SailFactory within the application classpath that will be used
to instantiate the Java implementation class.

The namespaces corresponding to the prefixes used in the above paragraph
are as follows:

rep: <http://www.openrdf.org/config/repository#>
sr: <http://www.openrdf.org/config/repository/sail#>
sail: <http://www.openrdf.org/config/sail#>
owlim: <http://www.ontotext.com/trree/owlim#>

All properties used to specify the GraphDB configuration parameters use the
owlim:prefix and the local names match up with the
Configuration parameters, e.g., the value of the
ruleset parameter can be specified using the
http://www.ontotext.com/trree/owlim#ruleset property.

Ontology mapping with owl:sameAs property

GraphDB owl:sameAs optimisation is used for mapping the same concepts from two or more datasets, where each of these concepts can have different features and relations to other concepts. In this way, making a union between such datasets provides more complete data. In RDF, concepts are represented with a unique resource name by using a namespace, which is different for every dataset. Therefore, it’s more useful to unify all names of a single concept, so that when querying data, you are able to work with concepts rather than names (i.e., IRIs).

For example, when merging 4 different datasets, you can use the following query on DBPedia to select everything about Sofia:

SELECT * {
 {
 <http://dbpedia.org/resource/Sofia> ?p ?o .
 }
 UNION
 {
 <http://data.nytimes.com/nytimes:N82091399958465550531> ?p ?o .
 }
 UNION
 {
 <http://sws.geonames.org/727011/> ?p ?o .
 }
 UNION
 {
 <http://rdf.freebase.com/ns/m/0ftjx> ?p ?o .
 }
}

Or you can even use a shorter one:

SELECT * {
 ?s ?p ?o
 FILTER (?s IN (
 <http://dbpedia.org/resource/Sofia>,
 <http://data.nytimes.com/nytimes:N82091399958465550531>,
 <http://sws.geonames.org/727011/>,
 <http://rdf.freebase.com/ns/m/0ftjx>))
}

As you can see, here Sofia appears with 4 different URIs, although they denote the same concept. Of course, this is a very simple query. Sofia has also relations to other entities in these datasets, such as Plovdiv, i.e., <[http://dbpedia.org/resource/Plovdiv]>, <[http://sws.geonames.org/653987/]>, <[http://rdf.freebase.com/ns/m/1aihge]>.

What’s more, not only the different instances of one concept have multiple names but their properties also appear with many names. Some of them are specific for a given dataset (e.g., GeoNames has longitude and latitude, while DBPedia provides wikilinks) but there are class hierarchies, labels and other common properties used by most of the datasets.

This means that even for the simplest query you may have to write the following:

SELECT * {
 ?s ?p1 ?x .
 ?x ?p2 ?o .
 FILTER (?s IN (
 <http://dbpedia.org/resource/Sofia>,
 <http://data.nytimes.com/nytimes:N82091399958465550531>,
 <http://sws.geonames.org/727011/>,
 <http://rdf.freebase.com/ns/m/0ftjx>))
 FILTER (?p1 IN (
 <http://dbpedia.org/property/wikilink>,
 <http://sws.geonames.org/p/relatesTo>))
 FILTER (?p2 IN (
 <http://dbpedia.org/property/wikilink>,
 <http://sws.geonames.org/p/relatesTo>))
 FILTER (?o IN (<http://dbpedia.org/resource/Plovdiv>,
 <http://sws.geonames.org/653987/>,
 <http://rdf.freebase.com/ns/m/1aihge>))
}

But if you can say through rules and assertions that given URIs are the same, then you can simply write:

SELECT * {
 <http://dbpedia.org/resource/Sofia> <http://sws.geonames.org/p/relatesTo> ?x .
 ?x <http://sws.geonames.org/p/relatesTo> <http://dbpedia.org/resource/Plovdiv> .
}

If you link two nodes with owl:sameAs, the statements that appear with the first node’s subject, predicate and object will be copied, replacing respectively the subject, predicate and the object that appear with the second node.

For example, given that <[http://dbpedia.org/resource/Sofia]> owl:sameAs <[http://data.nytimes.com/N82091399958465550531]> and also that:

<http://dbpedia.org/resource/Sofia> a <http://dbpedia.org/resource/Populated_place> .
<http://data.nytimes.com/N82091399958465550531> a <http://www.opengis.net/gml/_Feature> .
<http://dbpedia.org/resource/Plovdiv> <http://dbpedia.org/property/wikilink> <http://dbpedia.org/resource/Sofia> .

then you can conclude with the given rules that:

<http://dbpedia.org/resource/Sofia> a <http://www.opengis.net/gml/_Feature> .
<http://data.nytimes.com/N82091399958465550531> a <http://dbpedia.org/resource/Populated_place> .
<http://dbpedia.org/resource/Plovdiv> <http://dbpedia.org/property/wikilink> <http://data.nytimes.com/N82091399958465550531> .

The challenge with owl:sameAs is that when there are many ‘mappings’ of nodes between datasets, and especially when big chains of owl:sameAs appear, it becomes inefficient. owl:sameAs is defined as Symmetric and Transitive, so given that A sameAs B sameAs C, it also follows that A sameAs A, A sameAs C, B sameAs A, B sameAs B, C sameAs A, C sameAs B, C sameAs C. If you have such a chain with N nodes, then N^2 owl:sameAs statements will be produced (including the explicit N-1 owl:sameAs statements that produce the chain). Also, the owl:sameAs rules will copy the statements with these nodes N times, given that each statement contains only one node from the chain and the other nodes are not sameAs anything. But you can also have a statement <S P O> where S sameAs Sx, P sameAs Py, O sameAs Oz, where the owl:sameAs statements for S are K, for P are L and for O are M, yielding K*L*M statement copies overall.

Therefore, instead of using these simple rules and axioms for owl:sameAs (actually 2 axioms that state that it is Symmetric and Transitive), GraphDB offers an effective non-rule implementation, i.e., the owl:sameAs support is hard-coded. The given rules are commented out in the PIE files and are left only as a reference.

Workbench User Interface

What’s in this document?

	Workbench Functionalities Descriptions

	Workbench configuration properties

The Workbench is the web-based administration interface to GraphDB. It lets you administer GraphDB, as well as load, transform, explore, manage, query and export data.

The Workbench layout consists of two main areas. The navigation area is on the left-hand side of the screen and it contains dropdown menus to all functionalities - Import, Explore, SPARQL, Export/Context, Monitor, Setup, and Help. The work area shows the tasks associated with the selected functionality. On the home page, it provides easy access to some of the actions in the workbench such as set a license, attach location, create a repository, find a resource, query your data, etc. On the bottom of the page, you can see the license details, and in the footer - the versions of the various GraphDB components.

[image: _images/free-workbench-landing-page.png]

Workbench Functionalities Descriptions

	Navigation Tab
	Functionality Description

	Import
	
	RDF => Import data from local files, from files on the server where the workbench is located, from a remote URL (with a format extension or by specifying the data format), or by pasting the RDF data in the Text area tab. Each import method supports different serialisation formats.

	Tabular (OntoRefine) => Convert tabular data into RDF and import it into a GraphDB repository using simple SPARQL queries and a virtual endpoint. The supported formats are TSV, CSV, *SV, Excel (.xls and. xlsx), JSON, XML, RDF as XML, and Google sheet.

	Explore
	
	Class hierarchy => Explore the hierarchy of RDF classes by number of instances. The biggest circles are the parent classes and the nested ones are their children. Hover over a given class to see its subclasses or zoom in a nested circle (RDF class) for further exploration.

	Class relationships => Explore the relationships between RDF classes, where a relationship is represented by links between the individual instances of two classes. Each link is an RDF statement where the subject is an instance of one class, the object is an instance of another class, and the link is the predicate. Depending on the number of links between the instances of two classes, the bundle can be thicker or thinner and it gets the colour of the class with more incoming links. The links can be in both directions.

	View resource => View and edit all RDF data related to a resource.

	SPARQL
	
	SPARQL => Query and update your data. Use any type of SPARQL query and click Run to execute it.

	Export/Context
	
	Export => Export an entire repository or one or more graphs (contexts). Multiple formats are supported.

	Context => Filter and manage the contexts (graphs) in a repository - inspect its triples, downloaded, or delete it.

	Monitor
	
	Resources => Monitor the usage of various system resources, such as memory and CPU, for the currently active location.

	Queries => Monitor all running queries in GraphDB. Any query can be killed by pressing the Abort query button.

	Setup
	
	Repositories => Manage repositories and connect to remote locations. A location represents a local or remote instance of GraphDB. Only a single location can be active at a given time.

	Users and Access => Manage the users and their access to the GraphDB repositories. You can also enable or disable the security of the entire Workbench. When disabled, everyone has full access to the repositories and the admin functionality.

	Connectors => Create, view and delete GraphDB Connector instances with a handy form-based editor for Connector configurations.

	Cluster => Manage a GraphDB cluster - create or modify a cluster by dragging and dropping the nodes or use it to monitor the state of a running cluster in near real time. The view shows repositories from the active location and all remote locations.

	Namespaces => View and manipulate the RDF namespaces for the active repository. You need a write permission to add or delete namespaces.

	Autocomplete => Enable/disable the autocomplete index and check its status. It is used for automatic completion of URIs in the SPARQL editor.

	Help
	
	REST API => REST API documentation of all available public RESTful endpoints together with an interactive interface for executing requests.

	Documentation => a link to the GraphDB public documentation.

	Developer Hub => a link to the GraphDB dev hub - a hands-on compendium to the GraphDB Documentation that gives practical advice and tips on accomplishing real-world tasks.

	Support => a link to the GraphDB support page.

	System information => See the configuration values of the JVM running the GraphDB workbench: Application Info, JVM Arguments and Workbench Configuration properties.

Workbench configuration properties

In addition to the standard GraphDB command line parameters, the GraphDB
Workbench can be controlled with the following parameters (they should
be of the form -Dparam=value):

	Parameter
	Description

	graphdb.workbench.cors.enable
	Enables cross-origin resource sharing.

Default: false

	graphdb.workbench.cors.origin
	Sets the allowed Origin value for cross-origin resource sharing.

This can be a comma-delimited list or a single value. The value “*” means “allow all origins”
and it works with authentication too.

Default: *

	graphdb.workbench.maxConnections
	Sets the maximum number of concurrent connections to a remote GraphDB instance.

Default: 200

	graphdb.workbench.datadir
	Sets the directory where the workbench persistence data will be stored.

Default: ${user.home}/.graphdb-workbench/

	graphdb.workbench.importDirectory
	Changes the location of the file import folder.

Default: ${user.home}/graphdb-import/

	graphdb.workbench.maxUploadSize
	Sets the maximum upload size for importing local files. The value must be in bytes.

Default: 200 MB

SPARQL compliance

What’s in this document?

	SPARQL 1.1 Protocol for RDF

	SPARQL 1.1 Query

	SPARQL 1.1 Update
	Modification operations on the RDF triples:

	Operations for managing graphs:

	SPARQL 1.1 Federation

	SPARQL 1.1 Graph Store HTTP Protocol
	URL patterns for this new functionality are provided at:

	Methods supported by these resources and their effects:

	Request headers:

	Supported parameters for requests on indirectly referenced named graphs:

GraphDB supports the following SPARQL specifications:

SPARQL 1.1 Protocol for RDF

SPARQL 1.1 Protocol for RDF [http://www.w3.org/TR/sparql11-protocol/] defines the means for transmitting SPARQL queries to a SPARQL query processing service, and returning the query results to the entity that requested them.

SPARQL 1.1 Query

SPARQL 1.1 Query [http://www.w3.org/TR/sparql11-query/] provides more powerful query constructions compared to SPARQL 1.0. It adds:

	Aggregates;

	Subqueries;

	Negation;

	Expressions in the SELECT clause;

	Property Paths;

	Assignment;

	An expanded set of functions and operators.

SPARQL 1.1 Update

SPARQL 1.1 Update [http://www.w3.org/TR/sparql11-update/] provides a means to change the state of the database using a query-like syntax. SPARQL Update has similarities to SQL INSERT INTO, UPDATE WHERE and DELETE FROM behaviour. For full details, see the W3C SPARQL Update working group page.

Modification operations on the RDF triples:

	INSERT DATA {...} - inserts RDF statements;

	DELETE DATA {...} - removes RDF statements;

	DELETE {...} INSERT {...} WHERE {...} - for more complex modifications;

	LOAD (SILENT) from_iri - loads an RDF document identified by from_iri;

	LOAD (SILENT) from_iri INTO GRAPH to_iri - loads an RDF document into the local graph called to_iri;

	CLEAR (SILENT) GRAPH iri - removes all triples from the graph identified by iri;

	CLEAR (SILENT) DEFAULT - removes all triples from the default graph;

	CLEAR (SILENT) NAMED - removes all triples from all named graphs;

	CLEAR (SILENT) ALL - removes all triples from all graphs.

Operations for managing graphs:

	CREATE - creates a new graph in stores that support empty graphs;

	DROP - removes a graph and all of its contents;

	COPY - modifies a graph to contain a copy of another;

	MOVE - moves all of the data from one graph into another;

	ADD - reproduces all data from one graph into another.

SPARQL 1.1 Federation

SPARQL 1.1 Federation [http://www.w3.org/TR/sparql11-federated-query/] provides extensions to the query syntax for executing distributed queries over any number of SPARQL endpoints. This feature is very powerful, and allows integration of RDF data from different sources using a single query.

For example, to discover DBpedia resources about people who have the same names as those stored in a local repository, use the following query:

SELECT ?dbpedia_id
WHERE {
 ?person a foaf:Person ;
 foaf:name ?name .
 SERVICE <http://dbpedia.org/sparql> {
 ?dbpedia_id a dbpedia-owl:Person ;
 foaf:name ?name .
 }
}

It matches the first part against the local repository and for each person it finds, it checks the DBpedia SPARQL endpoint to see if a person with the same name exists and, if so, returns the ID.

Since RDF4J repositories are also SPARQL endpoints, it is possible to use the federation mechanism to do distributed querying over several repositories on a local server.

For example, imagine that you have two repositories - one called my_concepts with triples about concepts and another called my_labels, containing all label information.

To retrieve the corresponding label for each concept, you can execute the following query on the my_concepts repository:

SELECT ?id ?label
WHERE {
 ?id a ex:Concept .
 SERVICE <http://localhost:7200/repositories/my_labels> {
 ?id rdfs:label ?label.
 }
}

Note

Federation must be used with caution. First of all, to avoid doing excessive querying of remote (public) SPARQL endpoints, but also because it can lead to inefficient query patterns.

The following example finds resources in the second SPARQL endpoint, which have a similar rdfs:label to the rdfs:label of <http://dbpedia.org/resource/Vaccination> in the first SPARQL endpoint:

PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>

SELECT ?endpoint2_id {
 SERVICE <http://faraway_endpoint.org/sparql>
 {
 ?endpoint1_id rdfs:label ?l1 .
 FILTER(lang(?l1) = "en")
 }
 SERVICE <http://remote_endpoint.com/sparql>
 {
 ?endpoint2_id rdfs:label ?l2 .
 FILTER(str(?l2) = str(?l1))
 }
}
BINDINGS ?endpoint1_id
{ (<http://dbpedia.org/resource/Vaccination>) }

However, such a query is very inefficient, because no intermediate bindings are passed between endpoints. Instead, both subqueries execute independently, requiring the second subquery to return all X rdfs:label Y statements that it stores. These are then joined locally to the (likely much smaller) results of the first subquery.

SPARQL 1.1 Graph Store HTTP Protocol

SPARQL 1.1 Graph Store HTTP Protocol [http://www.w3.org/TR/sparql11-http-rdf-update/] provides a means for updating and fetching RDF graph content from a Graph Store over HTTP in the REST style.

URL patterns for this new functionality are provided at:

	<RDF4J_URL>/repositories/<repo_id>/rdf-graphs/service> (for indirectly referenced named graphs);

	<RDF4J_URL>/repositories/<repo_id>/rdf-graphs/<NAME> (for directly referenced named graphs).

Methods supported by these resources and their effects:

	GET - fetches statements in the named graph from the repository in the requested format.

	PUT - updates data in the named graph in the repository, replacing any existing data in the named graph with the supplied data. The data supplied with this request is expected to contain an RDF document in one of the supported RDF formats.

	DELETE - deletes all data in the specified named graph in the repository.

	POST - updates data in the named graph in the repository by adding the supplied data to any existing data in the named graph. The data supplied with this request is expected to contain an RDF document in one of the supported RDF formats.

Request headers:

	Accept: Relevant values for GET requests are the MIME types of supported RDF formats.

	Content-Type: Must specify the encoding of any request data sent to a server. Relevant values are the MIME types of supported RDF formats.

Supported parameters for requests on indirectly referenced named graphs:

	graph (optional): specifies the URI of the named graph to be accessed.

	default (optional): specifies that the default graph to be accessed. This parameter is expected to be present but to have no value.

Note

Each request on an indirectly referenced graph needs to specify precisely one of the above parameters.

OWL compliance

GraphDB supports several OWL like dialects: OWL Horst (owl-horst), OWL Max (owl-max), which covers most of OWL Lite and RDFS, OWL2 QL (owl2-ql) and OWL2 RL (owl2-rl).

With the owl-max ruleset, GraphDB supports the following semantics:

	full RDFS semantics without constraints or limitations, apart from the entailment related to typed literals (known as D-entailment). For instance, meta-classes (and any arbitrary mixture of class, property, and individual) can be combined with the supported OWL semantics;

	most of OWL Lite;

	all of OWL DLP.

The differences between OWL Horst and the OWL dialects supported by GraphDB (owl-horst and owl-max) can be summarised as follows:

	GraphDB does not provide the extended support for typed literals, introduced with the D-entailment extension of the RDFS semantics. Although such support is conceptually clear and easy to implement, it is our understanding that the performance penalty is too high for most applications. You can easily implement the rules defined for this purpose by ter Horst and add them to a custom ruleset;

	There are no inconsistency rules by default;

	A few more OWL primitives are supported by GraphDB (ruleset owl-max);

	There is extended support for schema-level (T-Box) reasoning in GraphDB.

Even though the concrete rules pre-defined in GraphDB differ from those defined in OWL Horst, the complexity and decidability results reported for R-entailment are relevant for TRREE and GraphDB. To be more precise, the rules in the owl-horst ruleset do not introduce new B-Nodes, which means that R-entailment with respect to them takes polynomial time. In KR terms, this means that the owl-horst inference within GraphDB is tractable.

Inference using owl-horst is of a lesser complexity compared to other formalisms that combine DL formalisms with rules. In addition, it puts no constraints with respect to meta-modelling.

The correctness of the support for OWL semantics (for these primitives that are supported) is checked against the normative Positive- and Negative-entailment OWL test cases.

Glossary

	Datalog

	A query and rule language for deductive databases that syntactically is a subset of Prolog.

	D-entailment

	A vocabulary entailment of an RDF graph that respects the ‘meaning’ of data types.

	Description Logic

	A family of formal knowledge representation languages that are subsets of first order logic, but have more efficient decision problems.

	Horn Logic

	Broadly means a system of logic whose semantics can be captured by Horn clauses. A Horn clause has at most one positive literal and allows for an IF...THEN interpretation, hence the common term ‘Horn Rule’.

	Knowledge Base

	(In the Semantic Web sense) is a database of both assertions (ground statements) and an inference system for deducing further knowledge based on the structure of the data and a formal vocabulary.

	Knowledge Representation

	An area in artificial intelligence that is concerned with representing knowledge in a formal way such that it permits automated processing (reasoning).

	Load Average

	The load average represents the average system load over a period of time.

	Materialisation

	The process of inferring and storing (for later retrieval or use in query answering) every piece of information that can be deduced from a knowledge base’s asserted facts and vocabulary.

	Named Graph

	A group of statements identified by a URI. It allows a subset of statements in a repository to be manipulated or processed separately.

	Ontology

	A shared conceptualisation of a domain, described using a formal (knowledge) representation language.

	OWL

	A family of W3C knowledge representation languages that can be used to create ontologies. See Web Ontology Language [http://www.w3.org/TR/owl-features/].

	OWL Horst

	An entailment system built upon RDF Schema, see R-entailment.

	Predicate Logic

	Generic term for symbolic formal systems like first-order logic, second-order logic, etc. Its formulas may contain variables which can be quantified.

	RDF Graph Model

	The interpretation of a collection of RDF triples as a graph, where resources are nodes in the graph and predicates form the arcs between nodes. Therefore one statement leads to one arc between two nodes (subject and object).

	RDF Schema

	A vocabulary description language for RDF with formal semantics.

	Resource

	An element of the RDF model, which represents a thing that can be described, i.e., a unique name to identify an object or a concept.

	R-entailment

	A more general semantics layered on RDFS, where any set of rules (i.e., rules that extend or even modify RDFS) are permitted. Rules are of the form IF...THEN... and use RDF statement patterns in their premises and consequences, with variables allowed in any position.

	Resource Description Framework (RDF)

	A family of W3C specifications for modelling knowledge with a variety of syntaxes.

	Semantic Repository

	A semantic repository is a software component for storing and manipulating RDF data. It is made up of three distinct components:

	An RDF database for storing, retrieving, updating and deleting RDF
statements (triples);

	An inference engine that uses rules to infer ‘new’ knowledge from
explicit statements;

	A powerful query engine for accessing the explicit and implicit
knowledge.

	Semantic Web

	The concept of attaching machine understandable metadata to all information published on the internet, so that intelligent agents can consume, combine and process information in an automated fashion.

	SPARQL

	The most popular RDF query language.

	Statement or Triple

	A basic unit of information expression in RDF. A triple consists of subject-predicate-object.

	Universal Resource Identifier (URI)

	A string of characters used to (uniquely) identify a resource.

Release notes

What’s in this document?

	GraphDB 8.0.6
	Component versions

	GraphDB Engine

	GraphDB Workbench

	GraphDB 8.0.5
	Component versions

	GraphDB Engine

	GraphDB Workbench

	GraphDB Connectors

	GraphDB 8.0.4
	Component versions

	GraphDB Engine

	GraphDB 8.0.3
	Component versions

	GraphDB Engine

	GraphDB Workbench

	GraphDB 8.0.2
	Component versions

	GraphDB Engine

	GraphDB Workbench

	GraphDB Connectors

	GraphDB 8.0.1
	Component versions

	GraphDB Engine

	GraphDB Workbench

	GraphDB 8.0
	Component versions

	GraphDB Engine

	GraphDB Workbench

	GraphDB Connectors

GraphDB release notes provide information about the features and improvements in
each release, as well as various bugfixes. GraphDB’s versioning scheme is based on
semantic versioning [http://semver.org]. The full version is composed of three components:

major.minor.patch

e.g., 8.1.2 where the major version is 8, the minor version is 1 and the patch version is 2.

Note

Releases with the same major and minor versions do not contain any new features.
Releases with different patch versions contain fixes for bugs discovered since
the previous minor. New or significantly changed features
are released with a higher major or minor version.

GraphDB 8 includes two components with their own version numbers:

	RDF4J

	GraphDB Connectors

Their individual versions use the same semantic versioning scheme as the whole product and their values are provided only as a reference.

GraphDB 8.0.6

Released: 04 April, 2017

Component versions

	RDF4J
	Connectors

	2.0.3
	6.0.2

Important

	Several non-critical bug fixes in the product.

GraphDB Engine

Bug fixes

	GDB-1490 - Query with multiple property paths returns invalid results

	GDB-1517 - Inserting and deleting the same statements in two named graphs leads to inconsistent repo size

GraphDB Workbench

Bug fixes

	GDB-1513 - Out of memory error might lead to NPE in the workbench code which prevents the database from starting up

GraphDB 8.0.5

Released: 15 March, 2017

Component versions

	RDF4J
	Connectors

	2.0.3
	6.0.2

Important

	Fixed critical problems with engine when a plugin rolls back a transaction.

	Multiple non-critical bug fixes in the product.

GraphDB Engine

Bug fixes

	GDB-1332 Literals index might contain invalid ids if another plugin rolls back a transaction

	GDB-1333 Storage tool doesn’t check the literal index consistency

	GDB-1347 Truncated entity types is not properly detected on startup

	GDB-1410 Entity pool goes into an infinity loop during rehashing after its size passes Integer.MAX_VALUE

	GDB-1419 Disc errors during entities storage precommit might result in a corrupted storage

	GDB-1469 False positive inconsistent literal index report after storage tool check

GraphDB Workbench

Bug fixes

	GDB-1319 Allow repository admins to delete repositories

GraphDB Connectors

Bug fixes

	GDB-1353 ES connector doesn’t apply limit to query

	GDB-1394 ES Connector generates SearchContextMissingException when updating entities with many property chains

	GDB-1408 Lucene connector doesn’t recover from a transaction failure

GraphDB 8.0.4

Released: 15 February, 2017

Component versions

	RDF4J
	Connectors

	2.0.3
	6.0.1

Important

	Engine no longer fails during very big transactions adding hundreds of millions new entities in a single commit.

GraphDB Engine

Bug fixes

	GDB-1208 Memory allocation at entity pool rehash is too aggressive

	GDB-1243 Invalid HTTP response header returned after accessing an endpoint with a configured remote location may confuse NGINX

GraphDB 8.0.3

Released: 23 January, 2017

Component versions

	RDF4J
	Connectors

	2.0.3
	6.0.1

Important

	Better performance of SPARQL queries with FROM and FROM NAMED if context indexes are used.

	Minor fixes in the support of IE 11 and Edge.

GraphDB Engine

Bug fixes

	GDB-1068 SPARQL query asking an existing resource in FROM/FROM NAMED returns very slow results despite the context indexes

	GDB-1149 Total stmts owlim.properties do not work properly

	GDB-1154 System statements trigger rule versions that does not match them

GraphDB Workbench

Bug fixes

	GDB-1031 Remove RDFS-Plus non optimized version from the workbench’s ruleset list

	GDB-1081 Class hierarchy is laggy and even unresponsive in IE11

	GDB-1085 Filter of namespaces is laggy when there are a lot of items (IE11 and Edge)

	GDB-1086 Domain range graphs are broken in IE11

	GDB-1105 OntoRefine: NullPointerException when uploading RDF-XML

	GDB-1163 NullPointerException is thrown if trying to add a language when copying an existing connector

	GDB-1183 Size of current repo on home page not formatted for thousands

	GDB-1188 The local worker node is displayed out of the designated box on Firefox or missing label background on non-Firefox

GraphDB 8.0.2

Released: 22 December, 2016

Component versions

	RDF4J
	Connectors

	2.0.3
	6.0.1

Important

	Deletion of owl:sameAs statements may mark extra triples as deleted

	Multiple non-critical bug fixes in the engine

	Workbench now supports IE 11 and Edge

GraphDB Engine

Features and improvements

	GDB-641 GraphDB Engine: hide the compilation status when custom rule-sets from the console

	GDB-883 Increase the limit for query strings to something sensible in the query monitoring

Bug fixes

	GDB-504 Federated queries fails to report user friendly errors

	GDB-508 Storage-tool: file encoding is not forced to be UTF-8 on all Operating Systems

	GDB-660 Starting plugins with SPARQL insert (PluginControlPlugin) might lead to creation of entities after the precommit phase of the entity pool connection

	GDB-766 Add proper exit codes to storage tool checks

	GDB-877 Plugin control plugin cannot start a stopped plugin

	GDB-882 Create a fast path for wildcard queries where the context is not present in the entity pool

	GDB-1044 GraphDB NQuads parser do not handle escaped IRIs

	GDB-1068 SPARQL query asking a non-existing graph returns very slow results despite the context indexes

	GDB-1089 SameAs statement deletion also deletes one of the objects participated in that relation

	GDB-1092 Scan tool report false entity pool inconsistency

GraphDB Workbench

Bug fixes

	GDB-425 Unable to rename repository after showing Class Relationships diagram

	GDB-727 Top right menu doesn’t show statements in the master

	GDB-1076 Switching graphs per page not working correctly

	GDB-1077 Edit repository view doesn’t work in IE 11

	GDB-1078 Fix input file fields for OntoRefine ‘create project’ and ‘import project’ IE 11 and Edge

	GDB-1080 Graphs overview view throws error in IE 11 console

	GDB-1082 Open saved queries button at SPARQL view doesn’t work in IE 11

	GDB-1084 Links between master and workers are not visible due error at Cluster management view in IE 11

GraphDB Connectors

Bug fixes

	GDB-1072 - Elastic search/SOLR connectors do not respect :snippetSpanOpen and :snippetSpanClose values

GraphDB 8.0.1

Released: 12 December, 2016

Component versions

	RDF4J
	Connectors

	2.0.3
	6.0.0

Important

	Fixed a bug preventing the Workbench interface to upgrade its internal database from specific old versions.

GraphDB Engine

Bug fixes

	GDB-714 SPARQL queries with BIND and SERVICE fails to return results

GraphDB Workbench

Bug fixes

	GDB-1053 Unable to rename master repository

	GDB-1056 View resource on home page doesn’t work when autocomplete is ON and an IRI for non-existing resource is used

	GDB-1057 GraphDB cannot start if an older Workbench is found and it needs upgrading

	GDB-1059 A SERVICE query may block execution if started in OntoRefine’s SPARQL editor

GraphDB 8.0

Released: 12 December, 2016

Component versions

	RDF4J
	Connectors

	2.0.3
	6.0.0

Important

	Migration to RDF4J - Eclipse RDF4J is the successor of the OpenRDF Sesame project. In GraphDB 8.0 the server protocol is compatible with Sesame 2.8.x, 2.9.x, 4.x and the RDF4J 2.0.x client libraries. We encourage all Sesame users to migrate their code base to the RDF4J client libraries [http://docs.rdf4j.org/migration/].

	Redesign of the GraphDB Workbench interface - The new interface better organizes all user functionality and is a lot more intuitive. The new layout optimizes the working space and provides feedback to the user for the current running operations and database state.

	Import and clean tabular data with OntoRefine - OntoRefine is a fork of Google’s OpenRefine tool. The interface enables data cleaning, transformation and generation of RDF data from CSV, Excel, XML, Google data, and multiple other formats. All data is accessible through a virtual SPARQL endpoint, which allows the trivial generation of RDF graphs with CONSTRUCT queries.

	Nested type support in Elastic search connector - The nested type support of Elastic search enables the indexing of sub-documents or objects grouped by a relationship beyond the simple attribute. Now, the Elastic search connector fully exposes this functionality and can replicate complex relationship indexing.

	Official GraphDB puppet module - The official GraphDB puppet module [https://github.com/Ontotext-AD/puppet-graphdb] is the shortest path for the automation and management of a GraphDB instance. It provides all required primitives for the fast configuration of cluster or single instance environments.

	Documentation of the full REST APIs - The Swagger documentation now includes all RDF4J and Workbench public REST endpoints. The interface includes examples and mechanism for REST API calls from a web page.

	Redesign of the entity pool structure - The new default transactional entity pool guarantees better transaction isolation, optimizes I/O operations and ensures support of all connectors.

GraphDB Engine

Features and improvements

	GDB-179 As a developer I want to use the latest RDF4J 2.0.3 version

	GDB-195 As a developer I need reliable queries with SPARQL federated service

	GDB-349 Remove the “fast” transaction-mode from the repository configuration

	GDB-384 Speed up multiple long transactions through free pages’ optimization

	GDB-398 As a developer I need GraphDB entity pool to support transactions and better parallelism

	GDB-501 As an end-user I need better precision of RDFRank

	GDB-520 Remove the LoadRDF unnecessary arguments

Bug fixes

	GDB-193 Queries with Federation don’t appear in Query monitoring

	GDB-265 LoadRDF may generates inconsistent results on large datasets between serial and parallel mode

	GDB-313 GraphDB Free connections semaphore not released after failure

	GDB-366 LoadRDF inconsistent load of specific dbpedia and geonames sub-dataset

	GDB-380 Query evaluation error when having comment at last line in SERVICE

	GDB-389 Namespace has become unresponsive when try to delete a lot of namespaces

	GDB-406 Update/remove the CollectionStatistics MBean according to the Global Page cache implementation changes

	GDB-410 Disabling same as on the repository level might lead to non deterministic inference depending on statement order

	GDB-420 Improvements to the GeoSPARQL plugin

	GDB-451 LoadRDF tool encoding problem with BOM files

	GDB-497 LoadRDF fails to load LDBC 256 dataset with a NullPointerException

	GDB-508 Issue when migrating repositories from old -> new page cache (preserving the old configuration in SYSTEM)

	GDB-545 Fix LoadRDF log levels all over the place

	GDB-575 A transaction may expire while processing an update that takes longer than ‘sesame.server.txn.registry.timeout’ seconds

	GDB-576 Connection add statement ignores the context information

	GDB-587 Transactional entity pool affects fingerprint in the wrong way

	GDB-606 After unexpected shutdown GraphDB fails to start with Page 1654 has size of 509 != 503 which is written in the index

	GDB-609 Deadlock detected during shutdown of the engine

	GDB-612 Inconsistent number of statements when loading data with a non-empty ruleset and disable-sameAs=false

	GDB-684 False consistency violation can be triggered from statements in system context

	GDB-743 “Missing or corrupt page file” after kill -9 during repository shutdown

	GDB-749 GeoSPARQL plugin fails with OME during big imports due a memory leak

	GDB-767 Corruption in GraphDB repository after kill -9

	GDB-797 LoadRDF does not update entities count in owlim.properties

	GDB-806 GraphDB cannot be started in a directory that contains spaces

	GDB-820 Scan tool do not work properly on images killed (kill -9) during transaction

	GDB-851 Database doesn’t properly recover if the database is killed during rollback or recovery

	GDB-876 Autocomplete throw exception during insert query

GraphDB Workbench

Features and improvements

	GDB-181 As an end-user I need a tool to generate RDF from tabular data based on Open Refine (Phase I)

	GDB-195 As a developer I need reliable queries with SPARQL federated service

	GDB-200 Update SPARQL module to use latest YASQE version and make the same custom changes to the newer version.

	GDB-230 Users should be able to rename a repository with a click of a button through the workbench

	GDB-232 As an end-user I need an easy way to get the turtle configuration for a repository

	GDB-233 Add a “datatype validation” setting when importing data

	GDB-234 Keep the order of the files when importing

	GDB-289 Add “Close Other Tabs” with shortcut shift + left mouse click

	GDB-290 Integrate the new RDF Loader in the workbench

	GDB-291 Workbench usability improvement implementation

	GDB-310 Add support for SPIN functions to OntoRefine’s SPARQL endpoint

	GDB-399 As an administrator I need to install, configure and monitor GraphDB instances in S4 DBasS

	GDB-438 Reduce toast notification when deleting

	GDB-492 As an end-user I want to use swagger js UI instead of angular swagger UI since it is buggy

	GDB-533 Cluster manager support for all topologies

	GDB-535 Remove support for multiple local locations from the workbench

	GDB-549 Swagger RDF4J documentation along with ours

	GDB-554 As a novice end-user I need simpler default ruleset

	GDB-615 Workbench redesign for 8.0

	GDB-628 Add search option in the class hierarchy to go to a certain class of interest

	GDB-629 Add description, comment, label for the instances in the class hierarchy diagram

	GDB-630 Reflexive links to be displayed as a circle arrow in domain/range

	GDB-632 Include the rdf label and rdfs:comment for the particular type in the class hierarchy diagram

	GDB-712 As a end-user I need responsive Workbench interface and a loading indicator when a repository is rebuilt

	GDB-822 Make execution of query from once saved on homepage to create a tab with name of the saved query in SPARQL view.

	GDB-839 Move Export/Context into Explore and rename it to Graphs overview

	GDB-852 Make two states of “show blank nodes” button to be visible one from another at view resource page

	GDB-871 When edit repo from home page return user to the home page,

	GDB-893 Add explain button/shortcut to SPARQL Query view

	GDB-908 Replace the initial loader with a more user friendly splash screen

	GDB-936 Make resource to be expanded from prefix at home page resource input.

Bug fixes

	GDB-208 Prevent GraphDB Workbench from adding a remote location which points to the URL of the localhost where GraphDB is started

	GDB-215 SPARQL page becomes unresponsive when commenting the first line

	GDB-216 Shortcut Ctrl-S doesn’t work

	GDB-217 Query text is shifted right

	GDB-218 Query text shifts right when switching between tabs

	GDB-219 Two messages appear on the SPARQL result page, when a syntax error is returned

	GDB-224 Allow for the search to be executed once more

	GDB-225 Clear the search when switching between predicates

	GDB-226 Workbench page “Class hierarchy” hangs during the data import process

	GDB-227 Server file import fail

	GDB-228 Search doesn’t work in Class relationships

	GDB-285 Bz2 files in graphdb-import are listed in the server import view but cannot be imported

	GDB-288 Subselect limit return wrong results

	GDB-309 Cannot view class relationships diagram

	GDB-364 Incorrect location node in Cluster management with 2 peered masters

	GDB-373 Limit or offset commented in a query cause the WB to freeze

	GDB-376 RDFLoader doesn’t handle UTF-8 BOM (was Error when importing contexts)

	GDB-403 Free-access authorities popup cosmetics

	GDB-514 Workbench fails to delete saved SPARQL queries with special characters

	GDB-560 CORS does not work with a preflighted requests (when the original site has security)

	GDB-825 Default context missing from Export/Contexts

	GDB-828 View resource fails with CustomBNodeImpl cannot be cast to IRI for data in contexts identified by blank nodes

	GDB-846 Can’t explore the statements from the system repository

	GDB-868 Remove edit SYSTEM repo button at home page

	GDB-929 Add namespace generates invalid warning “Please fill in both fields”

GraphDB Connectors

Features and improvements

	GDB-318 Implement multiple URLs in the Solr connector and possibly cluster auto-discovery

	GDB-416 Implement nested objects in Elasticsearch

	GDB-417 Upgrade Elasticsearch version to 2.4

	GDB-418 Upgrade Lucene version to 6.2.1

	GDB-419 Upgrade Solr version to 6.2.1

Bug fixes

	GDB-372 Clear repository may drop non-managed index on Elasticsearch connector

	GDB-567 Connector fingerprint may go out of sync during intense workload on a cluster setup

	GDB-572 Failing to initialize all plugins if path to Apache Tomcat contains spaces

	GDB-732 Connectors: Non-managed index shouldn’t create index directory in elasticsearch/data/

	GDB-814 Create ES connector operation has a large thread leak

	GDB-819 Lucene connector queries break due to query optimization issues

FAQ

	Where does the name “OWLIM” (the former GraphDB name) come from?

	The name originally came from the term “OWL In Memory” and was fitting for what later became OWLIM-Lite. However, OWLIM-SE used a transactional, index-based file-storage layer where “In Memory” was no longer appropriate. Nevertheless, the name stuck and it was rarely asked where it came from.

	What kind of SPARQL compliance is supported?

	All GraphDB editions support:

	SPARQL 1.1 Protocol for RDF [http://www.w3.org/TR/sparql11-protocol/]

	SPARQL 1.1 Query [http://www.w3.org/TR/sparql11-query/]

	SPARQL 1.1 Update [http://www.w3.org/TR/sparql11-update/]

	SPARQL 1.1 Federation [http://www.w3.org/TR/sparql11-federated-query/]

	SPARQL 1.1 Graph Store HTTP Protocol [http://www.w3.org/TR/sparql11-http-rdf-update/]

See also SPARQL compliance.

	How is GraphDB related to RDF4J?

	
GraphDB is a semantic repository, packaged as a Storage and Inference Layer (Sail) for the RDF4J framework [http://rdf4j.org/about/] and it makes extensive use of the features and infrastructure of RDF4J, especially the RDF model, RDF parsers and query engines.

For more details, see the GraphDB RDF4J.

	Is GraphBD Jena-compatible?

	Yes, GraphBD is compatible with Jena [http://jena.apache.org/] 2.7.3 with a built-in adapter.
| For more information, see Using GraphDB with Jena

	What are the advantages of using solid-state drives as opposed to hard-disk drives?

	We recommend using enterprise grade SSDs whenever possible as they provide a significantly faster database performance compared to hard-disk drives.

Unlike relational databases, a semantic database needs to compute the inferred closure for inserted and deleted statements. This involves making highly unpredictable joins using statements anywhere in its indices. Despite utilising paging structures as best as possible, a large number of disk seeks can be expected and SSDs perform far better than HDDs in such a task.

	How to find out the exact version number of GraphDB?

	The major/minor version and build number are part of the GraphDB distribution .zip file name. The embedded owlim .jar file has the major and minor version numbers appended.

In addition, at start up, GraphDB logs the full version number in an INFO logger message, e.g., [INFO] 2016-04-13 10:53:35,056 [http-nio-7200-exec-8 | c.o.t.f.GraphDBFreeSchemaRepository] Version: 7.0, revision: -2065913377.

The following DESCRIBE query:

DESCRIBE <http://www.ontotext.com/SYSINFO> FROM <http://www.ontotext.com/SYSINFO>

returns pseudo-triples providing information on various GraphDB states, including the number of triples (total and explicit), storage space (used and free), commits (total and if one is in progress), the repository signature, and the build number of the software.

	How to retrieve repository configurations from the RDF4J ``SYSTEM`` repository?

	When using a LocalRepositoryManager, RDF4J stores the configuration data for repositories in its own SYSTEM repository. A Tomcat instance does the same and there is SYSTEM under the list of repositories that the instance manages.

To see what configuration data is stored in a GraphDB repository, connect to the SYSTEM repository and execute the following query:

PREFIX sys: <http://www.openrdf.org/config/repository#>
PREFIX sail: <http://www.openrdf.org/config/repository/sail#>

select ?id ?type ?param ?value
where {
 ?rep sys:repositoryID ?id .
 ?rep sys:repositoryImpl ?impl .
 ?impl sys:repositoryType ?type .
 optional {
 ?impl sail:sailImpl ?sail .
 ?sail ?param ?value .
 }
 # FILTER(?id = "specific_repository_id") .
}
ORDER BY ?id ?param

This returns the repository ID and type, followed by name-value pairs of configuration data for SAIL repositories, including the SAIL type, for example graphdb:FreeSail.

If you uncomment the FILTER clause, you can substitute a repository ID to get the configuration just for that repository.

	Why can’t I use my custom rule file (``.pie``) - an exception occurred?

	To use custom rule files, GraphDB must be running in a JVM that has access to the Java compiler. The easiest way to do this is to use the Java runtime from a Java Development Kit (JDK).

	Why can’t I delete a repository?

	RDF4J keeps all repositories in the SYSTEM repository and sometimes you will not be able to initialise the repository, so you cannot delete it. You can execute the following query to remove the repository from SYSTEM.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX sys: <http://www.openrdf.org/config/repository#>

delete {
 ?g rdf:type sys:RepositoryContext .
} where {
 graph ?g {
 ?s sys:repositoryID "repositoryID" .
 }

 ?g rdf:type sys:RepositoryContext .
}

Change the repositoryID literal as needed. This removes the statement that makes the context a repository context. Configuration for the repository will be kept intact as well as the data in the storage.

	Where can I find the Experimental Explain Plan in the documentation of GraphDB 6.6?

	GraphDB Experimental Explain Plan was introduced in version 6.4.3 to improve the execution of complex queries. It was simultaneously used with the regular Explain Plan until version 6.6.1 when it became the GraphDB’s regular Explain Plan. See the table below for more information.

	Version
	Explain Plan
	Experimental Explain Plan

	6.0 - 6.4.2
	✅
	❌

	6.4.3 - 6.6.0
	✅
	✅

	6.6.1 and higher
	❌
	✅ (renamed to Explain Plan)

Support

	email: graphdb-support@ontotext.com

	Twitter: @OntotextGraphDB [https://twitter.com/OntotextGraphDB]

	GraphDB tag on Stack Overflow at
http://stackoverflow.com/questions/tagged/graphdb

Blueprints RDF support

To install the Blueprints API:

	Download Gremlin 2.6.0 from https://github.com/tinkerpop/gremlin/wiki/Downloads.

	Unzip the file gremlin-groovy-2.6.0.zip in a convenient location.

	Go to the newly extracted folder, e.g., my_files/gremlin-groovy-2.6.0.

	Put the file graphdb-blueprints-rdf-1.0.jar in the /lib subfolder.

	Run the Gremlin console by executing bin/gremlin.sh or bin/gremlin.bat.

	Connect to a GraphDB repository by executing one of the following:
	g = new com.ontotext.blueprints.GraphDBSailGraph("<URL to a GraphDB repository>") or

	g = new com.ontotext.blueprints.GraphDBSailGraph("<URL to a GraphDB repository>", "<username>", "<password>")

Hint

GraphDB supports SAIL graphs with the Blueprints API and GraphDB.

You can use it to access GraphDB through the Gremlin Query language.

Tip

For more information, see the following:

	https://github.com/tinkerpop/gremlin/wiki

	https://github.com/tinkerpop/blueprints/wiki

	https://en.wikipedia.org/wiki/Gremlin_%28programming_language%29

GraphDB ruleset usage optimisation

GraphDB applies the following rules to optimise the ruleset usage so that inferred statements such as <P a rdf:Property>, <P rdfs:subPropertyOf P> and <X a rdfs:Resource> can appear in the repository:

/*partialRDFS*/
Id: rdf1_rdfs4a_4b
x a y

a <rdf:type> <rdf:Property>
x <rdf:type> <rdfs:Resource>
a <rdf:type> <rdfs:Resource>
y <rdf:type> <rdfs:Resource>
/*partialRDFS*/

Id: rdfs6
a <rdf:type> <rdf:Property>

a <rdfs:subPropertyOf> a

According to them, whatever statement comes into the repository, its subject, predicate and object are resources and its predicate is an rdf:Property, which then becomes subPropertyOf itself using the second rule (the reflexivity of subPropertyOf). These rules, however, if executed every time, present a similar challenge to when using owl:sameAs. To avoid the performance drop, GraphDB obtains these statements through code so that <P a rdf:Property> and <X a rdfs:Resource> are asserted only once – when a property or a resource is encountered for the first time (except in the ‘optimized’ rulesets, where rdfs:Resource is omitted because of the very limited use of such inference).

If we start with the empty ruleset, <P a rdf:Property>, <P rdfs:subPropertyOf P> and <X a rdfs:Resource> statements won’t be inferred until we switch the ruleset. Then the inference will take place for the new properties and resources only.

Inversely, if we start with a non-empty ruleset and switch to the empty one, then the statements <P a rdf:Property>, <P rdfs:subPropertyOf P> and <X a rdfs:Resource> inferred so far will remain. This is true even if we delete statements or recompute the inferred closure.

Previous versions

What’s in this document?

	Documentation for version 7.0 - 7.2

	Documentation for version 6.6

	Documentation for version 6.0 to 6.5

	Documentation for versions 4.x and 5.x

This is the documentation for GraphDB Free 8.0. To read the documentation for
a previous version, please click the corresponding link below.

Documentation for version 7.0 - 7.2

	GraphDB 7.2

	GraphDB 7.1

	GraphDB 7.0

Documentation for version 6.6

	GraphDB 6.6

Documentation for version 6.0 to 6.5

The documentation for versions of GraphDB from 6.0 to 6.5 is in a unified format
that applies to all GraphDB editions. It is available on Ontotext’s Confluence:

	GraphDB 6.5 [https://confluence.ontotext.com/display/GraphDB65/Home]

	GraphDB 6.4 [https://confluence.ontotext.com/display/GraphDB64/Home]

	GraphDB 6.3 [https://confluence.ontotext.com/display/GraphDB63/Home]

	GraphDB 6.2 [https://confluence.ontotext.com/display/GraphDB62/Home]

	GraphDB 6.0 and 6.1 [https://confluence.ontotext.com/display/GraphDB6/Home]

Documentation for versions 4.x and 5.x

Prior to version 6.0, GraphDB was called OWLIM, whose documentation is in the same
unified format on Ontotext’s Confluence:

	OWLIM 5.6 [https://confluence.ontotext.com/display/OWLIM56/Home]

	OWLIM 5.5 [https://confluence.ontotext.com/display/OWLIM55/Home]

	OWLIM 5.4 [https://confluence.ontotext.com/display/OWLIMv54/Home]

	OWLIM 5.3 [https://confluence.ontotext.com/display/OWLIMv53/Home]

	OWLIM 5.2 [https://confluence.ontotext.com/display/OWLIMv52/Home]

	OWLIM 5.1 [https://confluence.ontotext.com/display/OWLIMv51/Home]

	OWLIM 5.0 [https://confluence.ontotext.com/display/OWLIMv50/Home]

	OWLIM 4.4 [https://confluence.ontotext.com/display/OWLIMv44/Home]

	OWLIM 4.3 [https://confluence.ontotext.com/display/OWLIMv43/Home]

	OWLIM 4.2 [https://confluence.ontotext.com/display/OWLIMv42/Home]

	OWLIM 4.1 [https://confluence.ontotext.com/display/OWLIMv41/Home]

	OWLIM 4.0 [https://confluence.ontotext.com/display/OWLIMv40/Home]

Using GraphDB with Jena

What’s in this document?

	Installing GraphDB with Jena

GraphDB can also be used with the Jena [http://jena.apache.org/]
framework, which is achieved with a customised Jena/RDF4J/GraphDB
adapter component.

Jena [http://jena.apache.org//] is a Java framework for building
Semantic Web applications. It provides a programmatic environment for
RDF, RDFS, OWL and SPARQL and includes a rule-based inference engine.
Access to GraphDB via the Jena framework is achieved with a special
adapter, which is essentially an implementation of the Jena
ARQ [https://jena.apache.org/documentation/query/] interface that provides
access to individual triples managed by a GraphDB repository through the
RDF4J API interfaces.

Note

The GraphDB-specific Jena adapter can only be used with ‘local’
repositories, i.e., not ‘remote’ repositories that are accessed using
the RDF4J HTTP protocol. If you want to use GraphDB remotely,
consider using the Joseki server as
described below.

Installing GraphDB with Jena

Required software

	Jena [https://repository.apache.org/content/repositories/releases/org/apache/jena/jena-core/]
version 2.7 (tested with version 2.7.3)

	ARQ [https://repository.apache.org/content/repositories/releases/org/apache/jena/jena-arq/]
(tested with version 2.9.3)

Description of the GraphDB Jena adapter

The GraphDB Jena adapter is essentially an implementation of the Jena [http://jena.apache.org/] DatasetGraph interface that provides access to individual triples managed by a GraphDB repository through the RDF4J API interfaces.

It is not a general purpose RDF4J adapter and cannot be used to access any RDF4J compatible repository, because it utilises an internal GraphDB API to provide more efficient methods for processing RDF data and evaluating queries.

The adapter comes with its own implementation of the Jena ‘assembler’ factory to make it easier to instantiate and use with those related parts of the Jena framework, although you can instantiate an adapter directly by providing an instance of a RDF4J SailRepository (a GraphDB GraphDBRepository implementation). Query evaluation is controlled by the ARQ engine, but specific parts of a query (mostly batches of statement patterns) are evaluated natively through a modified StageGenerator plugged into the Jena runtime framework for efficiency. This also avoids unnecessary cross-api data transformations during query evaluation.

Instantiate Jena adapter using a SailRepository

In this approach, a GraphDB repository is first created and wrapped in a
RDF4J SailRespository. Then a connection to it is used to
instantiate the adapter class SesameDataset. The following example
helps to clarify:

import com.ontotext.trree.OwlimSchemaRepository;
import org.eclipse.rdf4j.repository.sail.SailRepository;
import org.eclipse.rdf4j.repository.RepositoryConnection;
import com.ontotext.jena.SesameDataset;

...

OwlimSchemaRepository schema = new OwlimSchemaRepository();

// set the data folder where GraphDB will persist its data
schema.setDataDir(new File("./local-sotrage"));

// configure GraphDB with some parameters
schema.setParameter("storage-folder", "./");
schema.setParameter("repository-type", "file-repository");
schema.setParameter("ruleset", "rdfs");

// wrap it into a RDF4J SailRepository
SailRepository repository = new SailRepository(schema);

// initialize
repository.initialize();
RepositoryConnection connection = repository.getConnection();

// finally, create the DatasetGraph instance
SesameDataset dataset = new SesameDataset(connection);

From now on the SesameDataset object can be used through the Jena
API as a regular dataset, e.g., to add some data to it, you could do
something like the following:

Model model = ModelFactory.createModelForGraph(dataset.getDefaultGraph());
Resource r1 = model.createResource("http://example.org/book#1") ;
Resource r2 = model.createResource("http://example.org/book#2") ;

r1.addProperty(DC.title, "SPARQL - the book")
 .addProperty(DC.description, "A book about SPARQL") ;

r2.addProperty(DC.title, "Advanced techniques for SPARQL") ;

It can also be used to evaluate queries through the ARQ engine:

// Query string.
String queryString = "PREFIX dc: <" + DC.getURI() + "> " +
 "SELECT ?title WHERE {?x dc:title ?title . }";

Query query = QueryFactory.create(queryString);

// Create a single execution of this query, apply to a model
// which is wrapped up as a QueryExecution and then fetch the results
QueryExecution qexec = QueryExecutionFactory.create(query, dataset.asDataset());
try {
 // Assumption: it's a SELECT query.
 ResultSet rs = qexec.execSelect();
 // The order of results is undefined.
 for (; rs.hasNext();) {
 QuerySolution rb = rs.nextSolution();
 for (Iterator<String> iter = rb.varNames(); iter.hasNext();) {
 String name = iter.next();
 RDFNode x = rb.get(name);
 if (x.isLiteral()) {
 Literal titleStr = (Literal) x;
 System.out.print(name + "=" + titleStr + "\t");
 } else if (x.isURIResource()) {
 Resource res = (Resource) x;
 System.out.print(name + "=" + res.getURI() + "\t");
 }
 else
 System.out.print(name + "=" + x.toString() + "\t");
 }
 System.out.println();
 }
}
catch(Exception e) {
 System.out.println("Exception occurred: " + e);
}
finally {
 // QueryExecution objects should be closed to free any system resources
 qexec.close();
}

Instantiate GraphDB adapter using the provided Assembler

Another approach is to use the Jena assemblers infrastructure to
instantiate a GraphDB Jena adapter. For this purpose, the required
configuration must be stored in some valid RDF serialisation format and
its contents read in a Jena model. Then, the assembler can be invoked
to get an instance of the Jena adapter. The following example specifies
an adapter instance in N3 format.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix ja: <http://jena.hpl.hp.com/2005/11/Assembler#> .
@prefix otjena: <http://www.ontotext.com/jena/> .

@prefix : <#> .

[] ja:loadClass "com.ontotext.jena.SesameVocab" .
otjena:SesameDataset rdfs:subClassOf ja:Object .
otjena:SesameDataset ja:assembler "com.ontotext.jena.SesameAssembler" .
<#dataset> rdf:type otjena:SesameDataset ;
 otjena:datasetParam "./location" .

The ja:loadClass statements ensure that the GraphDB Jena adapter
factory class file(s) are initialised and plugged in the Jena
framework prior to being invoked. Then, the \\#dataset description
tells the Jena framework to expect instances of otjena:SesameDataset
to be created by this factory. The following example uses such a
description stored in the file owlimbridge.n3 to get an instance of
the Jena adapter:

Model spec = FileManager.get().loadModel("owlimbridge.n3");
Resource root = spec.createResource(spec.expandPrefix(":dataset"));
DataSource datasource = (DataSource)Assembler.general.open(root);
DatasetGraph dataset = datasource.asDatasetGraph();

After this, the adapter is ready to be used, for example, to evaluate
some queries through the ARQ engine using the same approach.

Using GraphDB with the Joseki server

To use a GraphDB repository with the Joseki server, you only need to configure it as a dataset, so that the Jena assembler framework
is able to instantiate it. An example Joseki configuration file that
makes use of such a dataset description could look like the following.
First, a service that hosts the dataset is described:

<#service1>
 rdf:type joseki:Service ;
 rdfs:label "service point" ;
 joseki:dataset otjena:bridge ;
 joseki:serviceRef "sparql" ;
 joseki:processor joseki:ProcessorSPARQL ;
 .

Then, the dataset is described:

[] ja:loadClass "com.ontotext.jena.SesameVocab" .
otjena:DatasetSesame rdfs:subClassOf ja:RDFDataset .
otjena:bridge rdf:type otjena:DatasetSesame ;
 rdfs:label "GraphDB repository" ;
 otjena:datasetParam "./location" .

If a repositoryConnection is obtained (as in the example in the RDF4J section above), the Jena adapter can be used as follows:

import com.ontotext.jena.SesameDataset;

// Create the DatasetGraph instance
SesameDataset dataset = new SesameDataset(repositoryConnection);

From now on the SesameDataset object can be used through the Jena API as
a regular dataset, e.g., to add some data to it, you could do something like
the following:

Model model = ModelFactory.createModelForGraph(dataset.getDefaultGraph());
Resource r1 = model.createResource("http://example.org/book#1");
Resource r2 = model.createResource("http://example.org/book#2");
r1.addProperty(DC.title, "SPARQL - the book")
 .addProperty(DC.description, "A book about SPARQL");
r2.addProperty(DC.title, "Advanced techniques for SPARQL");

When GraphDB is used through Jena, its performance is quite similar to
using it through the RDF4J APIs. For most of the scenarios and tasks,
GraphDB can deliver considerable performance improvements when used as a
replacement for Jena’s own native RDF backend TDB.

 _images/autocompleteNoPrefix.png
SPARQL Query & Update o Edtor oy Resutsonty (1)

@

v 1 PREFIX pub-old: <http://ontology.ontotext.com/publishing#>
2 PREFIX pub: <http://ontology.ontotext.com/taxonomy/>
3 PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>

v 4 select distinct ?document where {
5 ?document pub-old:containsMention ?mention .

<http://data.ontotext.com/publishing/organization/Democratic_Party>

8 <http://data.ontotext.com/publishing/RelationOrganizationAbbreviation/democratic_party_hdp_>
<http://ontology.ontotext.com/resource/tsk6demtnitc>
<http://data.ontotext.com/publishing/RelationPersonRole/selahattin_demirtas_co_chair>
<http://data.ontotext.com/publishing/RelationPersonHasRoleWithinOrganization/selahattin_demirtas_co_chair_of_hdp>
<http://data.ontotext.com/publishing/RelationPersonHasRoleWithinOrganizationinLocation/selahattin_demirtas_co_chair_of_hdp_turkey>
<http://www.reuters.com/article/2014/10/10/us-electronics-demand-idUSKCNOHZ19T20141010> Press Alt+Enter to autocomplete

Table Raw Response Pivot Table Google Chart Graph(beta)

~
-

_images/autocompleteNumber.png

_images/autocompleteEnable.png
Autocqmplateindex
Click to enable autocomplete

Autocomplete is A @ l

_images/autocompleteEnableLink.png
SPARQL Query & Update o

Unnamed < @

1 PREFIX pub: <http://ontology.ontotext.com/taxonomy/>
2 PREFIX pub-old: <http://ontology.ontotext.com/publishing#>
3 select distinct ?x ?Person where {
4

B2
©4 7xa pu =
&
Q

»

Press Alt+Enter to autocomplete

Table Raw Response Pivot Table Google Chart Graph(beta) Download as

Query took 0.028 s.

A Autocomplete index is off.

Bad Request (#400) Click here to enable

avvhaard elhartbs 1be

_images/activate-location.png
Inactive locations

nttpsarvert mn

_images/addRepository_Free.png
Create Repository

Repository properties

Repository ID* This feld is required

Repository title

Type GRAPHDB-FREE v

Storage folder storage

Ruleset RDFS-Plus (Optimized) v | &, pload custom ruleset

I Disable owl:sameAs
Base URL. http://example.org/owlim

Entity index size. 10000000

@ Use predicate @ Cache literal language tags
indices

(7 Use context I Enable literal index
index

) Check for 3 Throw exception on query time-out
inconsistencies

O Read-only
Entity ID bit-size 22 v
Query time-out (seconds) 0

Limit query resuits 0

_images/autocompleteBuildNow.png
Autocomplete index o

Autocomplete is (Y] @@
Index status is

Build Now

_images/attach-location.png
Connect to a remote GraphDB instance

Location URL http://localhost:8083/
Enter a URL to a remote GraphDB instance

Hide advanced options A
Optional

Usemname admin

Password

Superadmin settings

Jolokia secret

Cancel

_images/autocomplete_moreThanOneWord.png
SPARQL Query & Update o Edtor oy Resutsonty (1)

Unnamed < &)

v 1 PREFIX pub: <http://ontology.ontotext.com/taxonomy/> -
2 PREFIX pub-old: <http://ontology.ontotext.com/publishing#> H
3 select distinct ?Mentions where {

&

y ction-idUSKCNOHV21B20141006>
<http://www.reuters.com/article/2014/10/10/us-art-auction-sothebys-idUSKCNOHZ 1K020141010>

»

Press Alt+Enter to autocomplete

