

Table of contents

	General
	About GraphDB

	Architecture & Components
	Architecture
	RDF4J

	The Sail API

	Components
	Engine

	Connectors

	Workbench

	GraphDB SE
	Comparison of GraphDB Free and GraphDB SE

	Connectors
	Full-text search and aggregation connectors

	MongoDB integration

	Workbench

	Benchmarks
	LDBC Semantic Publishing Benchmark 2.0
	Data loading

	Production load

	Berlin SPARQL Benchmark (BSBM)

	Quick Start Guide
	Run GraphDB as a Standalone Server
	Running GraphDB
	Options

	Configuring GraphDB
	Paths and network settings

	Java virtual machine settings

	Stopping the database

	Set up Your License

	Create a Repository

	Load Your Data
	Load data through the GraphDB Workbench

	Load data through SPARQL or RDF4J API

	Load data through the GraphDB LoadRDF tool

	Explore Your Data and Class Relationships
	Explore instances

	Create your own visual graph

	Class hierarchy

	Domain-Range graph

	Class relationships

	Query Your Data
	Query data through the Workbench

	Query data programmatically

	Additional Resources

	Installation
	Requirements
	Minimum requirements

	Hardware sizing

	Memory management

	Licensing

	Running GraphDB
	Run GraphDB as a Standalone Server
	Running GraphDB

	Configuring GraphDB

	Stopping the database

	Configuring GraphDB
	Directories
	GraphDB Home

	Checking the configured directories

	Configuration
	Config properties

	Configuring logging

	Best practices
	Step by step guide

	Migrating GraphDB Configurations
	Compatibility between the versions of GraphDB, Connectors, and third party connectors

	Migrating a repository

	Migrating a cluster

	Migrating connectors and plugins

	Distribution package

	Using Maven Artifacts
	Public Maven repository

	Distribution

	GraphDB JAR file for embedding the database or plugin development

	Administration
	Administration tasks

	Administration Tools
	Workbench

	JMX interface
	Configuring the JMX endpoint

	Setting up Licenses
	Setting up licenses through the Workbench

	Setting up licenses through a file
	Custom file path property

	Order of preference

	Deprecated methods

	Creating Locations
	Active location

	Inactive location

	Connect to a remote location

	Configure a data location

	Creating a Repository
	Create a repository
	Using the Workbench

	Using the RDF4J console

	Manage repositories
	Select a repository

	Make it a default repository

	Edit a repository

	Configuring a Repository
	Plan a repository configuration

	Configure a repository through the GraphDB Workbench

	Edit a repository

	Configure a repository programmatically

	Configuration parameters

	Configure GraphDB memory
	Configure Java heap memory

	Single global page cache

	Configure Entity pool memory

	Sample memory configuration

	Upper bounds for the memory consumed by the GraphDB process

	Reconfigure a repository
	Using the Workbench

	Global overrides

	Rename a repository
	Using the Workbench

	Secure GraphDB
	Enable security

	Login and default credentials

	Free access

	Users and Roles
	Create new user

	Set password

	Request Tracking

	Application Settings

	Backing up and Restoring a Repository
	Back up a repository
	Export repository to an RDF file

	Back up a repository using JMX interface

	Back up GraphDB by copying the binary image

	Restore a repository

	Query Monitoring and Termination
	Query monitoring and termination using the Workbench

	Query monitoring and termination using the JMX interface
	Query monitoring

	Terminating a query

	Terminating a transaction

	Automatically prevent long running queries

	Performance Optimizations
	Data loading & query optimizations
	Dataset loading

	GraphDB’s optional indices

	Cache/index monitoring and optimizations

	Query optimizations

	Explain Plan
	What is GraphDB’s Explain Plan

	Activating the explain plan

	Simple explain plan

	Multiple triple patterns

	Wine queries

	Inference optimizations
	Delete optimizations

	Rules optimizations

	Optimization of owl:sameAs

	RDFS and OWL support optimizations

	Troubleshooting
	Database health checks
	Possible values for health checks and their meaning

	Default health checks for the different GraphDB editions

	Aggregated health checks

	Running legacy health checks

	System metrics monitoring
	Page cache metrics

	Entity pool metrics

	Diagnosing and reporting critical errors
	Report

	Logs

	Storage tool
	Options

	Supported commands

	Examples

	Usage
	Loading Data
	Loading data using the Workbench
	Import settings

	Importing local files

	Importing remote content

	Importing RDF data from a text snippet

	Importing server files

	Import data with an INSERT query

	Loading data using the LoadRDF tool
	Command line options

	A GraphDB repository configuration sample

	Tuning LoadRDF

	Loading data using the Preload tool
	Preload vs LoadRDF

	Command line option

	A GraphDB repository configuration sample

	Tuning Preload

	Resuming data loading with Preload

	Loading data using OntoRefine
	OntoRefine – overview and features

	Example data

	Upload data in OntoRefine

	RDFize tabular data

	Benchmarks

	Additional resources

	Exploring data
	Class hierarchy
	Explore your data - different actions

	Domain-range graph

	Class relationships

	Explore resources
	Explore resources through the easy graph

	Create your own visual graph

	Save and share graphs

	View and edit resources
	View and add a resource

	Edit a resource

	Querying Data
	Save and share queries

	Interrupt queries

	Exporting Data
	Exporting a repository

	Exporting individual graphs

	Exporting query results

	Exporting resources

	Reasoning
	Logical formalism

	Rule format and semantics

	The ruleset file
	Prefices

	Axioms

	Rules

	Rulesets
	Predefined rulesets

	Custom rulesets

	Inference
	Reasoner

	Rulesets execution

	Retraction of assertions

	How To’s
	Operations on rulesets

	Reinferring

	Provenance

	SHACL Validation
	What is SHACL validation?

	Usage
	Creating and configuring a SHACL repository

	Loading shapes and data graphs

	Deleting shapes and data graphs

	Updating shapes and data graphs

	Viewing shapes and data graphs

	Validation logging and report

	Supported SHACL features

	Virtualization
	Overview and features

	Usage scenario

	Setup and configuration
	JDBC driver

	Configuration files

	Creating a virtual repository from the Workbench

	Creating a virtual repository using cURL

	Mapping language

	SPARQL endpoint

	Query federation

	Limitations

	Using the Workbench REST API
	Data import

	Location management

	Repository management

	Saved queries

	Security management

	SQL views management

	Authentication

	Using GraphDB with the RDF4J API
	RDF4J API
	Accessing a local repository

	Accessing a remote repository

	SPARQL endpoint

	Graph Store HTTP Protocol

	SQL Access over JDBC
	Configuration
	Prerequisites

	Creating a SQL view

	Updating a SQL view

	Deleting a SQL view

	Type mapping

	WHERE to FILTER conversion

	Table verification

	Usage examples
	Tableau

	Microsoft Power BI over ODBC protocol

	How it works: Table description

	Plugins
	Plugin API
	What is the GraphDB Plugin API

	Description of a GraphDB plugin

	The life cycle of a plugin

	Repository internals

	Query processing

	Update processing

	Transactions

	Exceptions

	Accessing other plugins

	List of plugin interfaces and classes

	Putting it all together: example plugins

	RDF Rank
	What is RDF Rank

	Parameters

	Full computation

	Incremental updates

	Exporting RDF Rank values

	Checking the RDF Rank status

	Rank filtering

	Semantic similarity searches
	Why do I need the similarity plugin?

	What the similarity plugin does?

	How the similarity plugin works?

	Download data

	Text based similarity searches

	Predication-based Semantic Indexing

	Hybrid indexing

	Training cycles

	JavaScript functions
	How to register JS function

	How to remove JS function

	Change tracking
	Usage

	Provenance
	Predicates

	Enabling the plugin

	Usage and examples

	Proof plugin
	What the plugin does

	Predicates and namespace

	Usage and examples

	Autocomplete index
	What the index does

	How the index works

	Autocomplete in the SPARQL editor

	Autocomplete in the View resource box

	Workbench queries

	GeoSPARQL support
	What is GeoSPARQL

	Usage

	GeoSPARQL examples

	Geospatial extensions
	What are geospatial extensions

	How to create a geospatial index

	Geospatial query syntax

	Extension query functions

	Implementation details

	Lucene full-text search
	RDF search

	Data history and versioning
	What the plugin does

	Index components

	Usage

	Query process and examples

	GraphDB Connectors
	Lucene GraphDB connector
	Overview and features

	Usage

	Setup and maintenance

	Working with data

	List of creation parameters

	Datatype mapping

	Advanced filtering and fine tuning

	Overview of connector predicates

	Caveats

	Upgrading from previous versions

	MongoDB integration
	Overview and features

	Usage

	Setup and maintenance

	Internal SPARQL Federation
	Usage

	Parameters

	GraphDB Dev Guide
	Storage
	What is GraphDB’s persistence strategy

	GraphDB’s indexing options

	Notifications
	What are GraphDB local notifications

	What are GraphDB remote notifications

	Query behavior
	What are named graphs

	How to manage explicit and implicit statements

	How to query explicit and implicit statements

	How to specify the dataset programmatically

	How to access internal identifiers for entities

	How to use RDF4J ‘direct hierarchy’ vocabulary

	Other special GraphDB query behavior

	Retain BIND position special graph

	Graph Replacement Optimization

	Experimental Features
	SPARQL-MM support
	Usage examples

	Nested repositories
	What are nested repositories

	Inference, indexing and queries

	Configuration

	Initialization and shut down

	LVM-based backup and replication
	Prerequisites

	How it works

	Some further notes

	Security
	Access Control
	Authorization and user database
	User roles and permissions

	Built-in users and roles

	Local user database

	LDAP user database

	OAuth user database

	Authentication methods
	Basic authentication

	GDB authentication

	OpenID authentication

	Kerberos authentication

	Example configurations
	Basic/GDB + LDAP

	OpenID + Local users

	OpenID + LDAP

	OpenID + OAuth

	Kerberos + Local users

	Kerberos + LDAP

	Encryption
	Encryption in transit
	Enable SSL/TLS

	HTTPS in the cluster

	Encryption at rest

	Security Auditing

	Developer Hub
	Data Modeling with RDF(S)
	What is RDF?

	What is RDFS?

	See also

	SPARQL
	What is SPARQL?

	Using SPARQL in GraphDB

	See also

	RDF-star and SPARQL-star
	The modeling challenge
	Standard reification

	N-ary relations

	Singleton properties

	Named graphs

	RDF-star and SPARQL-star

	How the different approaches compare?

	Syntax and examples

	Convert standard reification to RDF-star

	MIME types and file extensions for RDF-star in RDF4J

	Ontologies
	What is an ontology?

	What are the benefits of developing and using an ontology?

	Using ontologies in GraphDB

	See also

	Inference
	What is inference?

	Inference in GraphDB
	Standard rulesets

	Custom rulesets

	Programming with GraphDB
	Installing Maven dependencies

	Examples
	Hello world in GraphDB

	Family relations app

	Embedded GraphDB

	Extending GraphDB Workbench
	Clone, download, and run GraphDB Workbench

	Add your own page and controller

	Add repository checks

	Repository setup

	Select departure and destination airport

	Find the paths between the selected airports

	Visualize results

	Add status message

	Workbench REST API
	Location and repository management
	Prerequisites

	Managing repositories

	Managing locations

	Further reading

	Cluster management
	Prerequisites

	Creating a cluster

	Further reading

	Workbench cURL examples
	Data import

	Location management

	Repository management

	Saved queries

	Security management

	SQL views management

	Authentication

	Visualize GraphDB Data with Ogma JS
	People and organizations related to Google in factforge.net

	Suspicious control chain through off-shore companies in factforge.net

	Shortest flight path

	Common function to visualize GraphDB data

	Create Custom Graph View over Your RDF Data
	How it works?

	World airport, airline, and route data
	Data model

	Configured queries

	Springer Nature SciGraph
	Data model

	Additional sources

	GraphDB System Statements
	System graphs

	System predicates

	Time Functions Extensions
	Period extraction functions

	Period transformation functions

	Durations expressed in certain units

	Arithmetic operations

	GraphDB Fundamentals
	Module 1: RDF & RDFS

	Module 2: SPARQL

	Module 3: Ontology

	Module 4: GraphDB Installation

	Module 5: Performance Tuning & Scalability

	Module 6: GraphDB Workbench & RDF4J

	Module 7: Loading Data

	Module 8: Ruleset & Reasoning Strategies

	Module 9: Extensions

	Module 10: Troubleshooting

	References
	Introduction to the Semantic Web
	Resource Description Framework (RDF)
	Uniform Resource Identifiers (URIs)

	Statements: Subject-Predicate-Object Triples

	Properties

	Named graphs

	RDF Schema (RDFS)
	Describing classes

	Describing properties

	Sharing vocabularies

	Dublin Core Metadata Initiative

	Ontologies and knowledge bases
	Classification of ontologies

	Knowledge bases

	Logic and inference
	Logic programming

	Predicate logic

	Description logic

	The Web Ontology Language (OWL) and its dialects
	OWL DLP

	OWL Horst

	OWL2 RL

	OWL Lite

	OWL DL

	Query languages
	RQL, RDQL

	SPARQL

	SeRQL

	Reasoning strategies
	Total materialization

	Semantic repositories

	GraphDB Feature Comparison

	Repository Configuration Template - How It Works

	Ontology Mapping with owl:sameAs Property

	Workbench User Interface
	Workbench functionalities descriptions

	Workbench configuration properties

	SPARQL Compliance
	SPARQL 1.1 Protocol for RDF

	SPARQL 1.1 Query

	SPARQL 1.1 Update
	Modification operations on the RDF triples:

	Operations for managing graphs:

	SPARQL 1.1 Federation
	Internal SPARQL federation

	Federated query to a remote password protected repository

	SPARQL 1.1 Graph Store HTTP Protocol
	URL patterns for this new functionality are provided at:

	Methods supported by these resources and their effects:

	Request headers:

	Supported parameters for requests on indirectly referenced named graphs:

	Using Math Functions with SPARQL

	OWL Compliance

	Glossary

	Release Notes
	GraphDB 9.6.0
	Component versions

	GraphDB Engine & Cluster
	New features and improvements

	Bug fixing

	GraphDB Workbench
	New features and improvements

	Bug fixing

	GraphDB Connectors & Plugins
	Bug fixing

	GraphDB 9.5.1
	Component versions

	GraphDB Engine
	Bug fixing

	GraphDB Workbench
	Bug fixing

	GraphDB Connectors
	Bug fixing

	GraphDB 9.5.0
	Component versions

	GraphDB Engine & Cluster
	New features and improvements

	Bug fixing

	GraphDB Workbench
	New features and improvements

	Bug fixing

	GraphDB Connectors & Plugins
	New features and improvements

	Bug fixing

	GraphDB Distributions
	Bug fixing

	GraphDB 9.4.1
	Component versions

	GraphDB Engine
	Bug fixing

	GraphDB Workbench
	Bug fixing

	GraphDB Distributions
	Bug fixing

	GraphDB 9.4.0
	Component versions

	GraphDB Engine & Cluster
	New features and improvements

	Bug fixing

	GraphDB Workbench
	New features and improvements

	Bug fixing

	GraphDB Plugins & Connectors
	New features and improvements

	GraphDB 9.3.4
	Component versions

	GraphDB Engine
	Bug fixing

	GraphDB 9.3.3
	Component versions

	GraphDB Engine
	Bug fixing

	GraphDB Connectors
	Bug fixing

	GraphDB 9.3.2
	Component versions

	GraphDB Engine
	Bug fixing

	GraphDB Cluster
	Bug fixing

	GraphDB Plugins
	Bug fixing

	GraphDB Distributions
	Bug fixing

	GraphDB 9.3.1
	Component versions

	GraphDB Engine
	Bug fixing

	GraphDB 9.3.0
	Component versions

	GraphDB Engine
	New features

	Bug fixing

	GraphDB Plugins & Connectors
	New features

	GraphDB 9.2.1
	Component versions

	GraphDB Engine
	Bug fixing

	GraphDB Plugins & Connectors
	Bug fixing

	GraphDB Workbench
	Bug fixing

	GraphDB 9.2.0
	Component versions

	GraphDB Engine & Cluster
	New features

	Bug fixing

	GraphDB Workbench
	New features

	Bug fixing

	GraphDB Plugins & Connectors
	New features

	Bug fixing

	GraphDB Distributions
	New features

	GDB 9.1.1
	Component versions

	GraphDB Engine
	Bug fixing

	GraphDB Workbench
	Bug fixing

	GraphDB Plugins & Connectors
	Bug fixing

	GDB 9.1.0
	Component versions

	GraphDB Engine & Cluster
	New features

	Bug fixing

	GraphDB Workbench
	New features and improvements

	Bug fixing

	GraphDB Connectors & Plugins
	New features

	Bug fixing

	GDB 9.0.0
	Component versions

	GraphDB Engine
	New features

	Bug fixing

	GraphDB Workbench
	New features

	Bug fixing

	GraphDB Plugins
	New features

	Bug fixing

	GraphDB Connectors
	New features

	Bug fixing

	GraphDB Cluster
	Bug fixing

	FAQ
	General
	What is OWLIM?

	Why a solid-state drive and not a hard-disk one?

	Is GraphDB Jena-compatible?

	Configuration
	How do I find out the exact version number of GraphDB?

	What is a repository?

	How do I create a repository?

	How do I retrieve repository configurations?

	What is a location?

	How do I attach a location?

	How do I create a GraphDB EE cluster without knowing JMX?

	RDF & SPARQL
	How is GraphDB related to RDF4J?

	What does it mean when an IRI starts with urn:rdf4j:triple:?

	What kind of SPARQL compliance is supported?

	Troubleshooting
	Why can’t I use custom rule file (.pie) - an exception occurred?

	Why can’t I open GraphDB in MacOS?

	Support

General

Hint

This documentation is written to be used by technical people.
Whether you are a database engineer or system designer evaluating
how this database fits to your system, or you are a developer who
has already integrated it and actively employs its power - this is
the complete reference. It is also useful for system administrators
who need to support and maintain a GraphDB-based system.

Note

The GraphDB documentation presumes that the reader is familiar
with databases. The required minimum of Semantic Web concepts
and related information is provided in the
Introduction to the Semantic Web section in
References.

Ontotext GraphDB is a highly efficient and robust graph database with
RDF [http://www.w3.org/TR/rdf-concepts/] and SPARQL support. This documentation is a comprehensive guide that explains every feature of GraphDB, as well as topics such as setting up a repository, loading and working with data, tuning its performance, scaling, etc.

Credits and licensing

GraphDB uses RDF4J [http://rdf4j.org/about/] as a library,
utilizing its APIs for storage and querying, as well as the
support for a wide variety of query languages (e.g., SPARQL and SeRQL)
and RDF syntaxes (e.g., RDF/XML, N3, Turtle).

Full licensing information is available in the license files located in the /doc folder of the distribution package.

Helpful hints

Throughout the documentation there are a number of helpful pieces of
information that can give you additional information, warn you, or save
you time and unnecessary effort. Here is what to pay attention to:

Hint

Hint badges give additional information you may find useful.

Tip

Tip badges are handy pieces of information.

Note

Notes are comments or references that may save you time and
unnecessary effort.

Warning

Warnings are pieces of advice that turn your attention to things you
should be cautious about.

About GraphDB

GraphDB is a family of highly efficient, robust, and scalable RDF databases. It streamlines the load and use of linked data cloud [https://lod-cloud.net/] datasets, as well as your own resources. For easy use and compatibility with the industry standards, GraphDB implements the RDF4J [http://rdf4j.org/about/] framework interfaces, the W3C SPARQL Protocol specification [https://www.w3.org/TR/sparql11-overview/], and supports all RDF serialization formats. The database is the preferred choice of both small independent developers and big enterprise organizations because of its community and commercial support, as well as excellent enterprise features such as cluster support and integration with external high-performance search applications - Lucene, Solr, and Elasticsearch.

GraphDB is one of the few triplestores that can perform semantic inferencing
at scale, allowing users to derive new semantic facts from existing
facts. It handles massive loads, queries, and inferencing in real time.

Ontotext offers three editions of GraphDB: Free, Standard, and Enterprise.

	GraphDB Free [https://www.ontotext.com/products/graphdb/graphdb-free/] - commercial, file-based, sameAs & query optimizations, scales to tens of billions of RDF statements on a single server with a limit of two concurrent queries.

	GraphDB Standard Edition (SE) [https://www.ontotext.com/products/graphdb/graphdb-standard/] - commercial, file-based, sameAs &
query optimizations, scales to tens of billions of RDF statements on
a single server and an unlimited number of concurrent queries.

	GraphDB Enterprise Edition (EE) [https://www.ontotext.com/products/graphdb/graphdb-enterprise/] - high-availability cluster
with worker and master database implementation for resilience and
high-performance parallel query answering.

To find out more about the differences between the editions, see the
GraphDB Feature Comparison section.

Architecture & Components

What’s in this document?

	Architecture

	RDF4J

	The Sail API

	Components

	Engine

	Connectors

	Workbench

Architecture

GraphDB is packaged as a Storage And Inference Layer (SAIL) for
RDF4J and makes extensive use of the
features and infrastructure of RDF4J, especially the RDF model, RDF
parsers, and query engines.

Inference is performed by the Reasoner (TRREE Engine),
where the explicit and inferred statements are stored in
highly optimized data structures that are kept in-memory for query
evaluation and further inference. The inferred closure is updated
through inference at the end of each transaction that modifies the
repository.

GraphDB implements The Sail API interface so
that it can be integrated with the rest of the RDF4J framework, e.g.,
the query engines and the web UI. A user application can be designed to
use GraphDB directly through the RDF4J SAIL API or via the higher-level
functional interfaces. When a GraphDB repository is exposed using the
RDF4J HTTP Server, users can manage the repository through the embedded
Workbench, the RDF4J Workbench, or other tools
integrated with RDF4J.

[image: _images/GraphDB_High-level_architecture.png]
GraphDB High-level Architecture

RDF4J

The RDF4J framework [http://rdf4j.org/about/] is a framework for
storing, querying, and reasoning with RDF data. It is implemented in Java
by Aduna as an open-source project and includes various storage
back-ends (memory, file, database), query languages, reasoners, and
client-server protocols.

There are essentially two ways to use RDF4J:

	as a standalone server;

	embedded in an application as a Java library.

RDF4J supports the W3C SPARQL query language, as well as the most popular RDF file formats and query result formats.

RDF4J offers a JDBC-like user API, streamlined system APIs and a RESTful HTTP interface. Various extensions are available or are being developed by third parties.

RDF4J Architecture

The following is a schematic representation of the RDF4J architecture and a brief overview of the main components.

[image: _images/sesame_architecture.png]

The RDF4J architecture

The RDF4J framework is a loosely coupled set of components, where
alternative implementations can be easily exchanged. RDF4J comes with a
variety of Storage And Inference Layer (SAIL) implementations that a
user can select for the desired behavior (in-memory storage,
file system, relational database, etc). GraphDB is a plugin SAIL
component for the RDF4J framework.

Applications will normally communicate with RDF4J through the Repository API. This provides a sufficient level of abstraction so that the details of particular underlying components remain hidden, i.e., different components can be swapped without requiring modification of the application.

The Repository API has several implementations, one of which uses HTTP to communicate with a remote repository that exposes the Repository API via HTTP.

The Sail API

The Sail
API [http://docs.rdf4j.org/javadoc/latest/org/eclipse/rdf4j/sail/Sail.html]
is a set of Java interfaces that support RDF storing, retrieving,
deleting, and inferencing. It is used for abstracting from the actual storage
mechanism, e.g., an implementation can use relational databases, file
systems, in-memory storage, etc. One of its key characteristics is the option for SAIL stacking.

Components

Engine

Query optimizer

The query optimizer attempts to determine the most efficient way to execute a given query by considering the possible query plans. Once queries are submitted and parsed, they are then passed to the query optimizer where optimization occurs. GraphDB allows hints for guiding the query optimizer.

Reasoner (TRREE Engine)

GraphDB is implemented on top of the TRREE engine. TRREE stands for
‘Triple Reasoning and Rule Entailment Engine’. The TRREE performs
reasoning based on forward-chaining of entailment rules over RDF triple
patterns with variables. TRREE’s reasoning strategy is total
materialization, although various optimizations are used. Further
details about the rule language can be found in the Reasoning
section.

Storage

GraphDB stores all of its data in files in the configured
storage directory, usually called storage. It consists of two main indices on statements, POS and PSO, context index CPSO, and literal index, with the latter two being optional.

Entity Pool

The Entity Pool is a key component of the GraphDB storage layer. It
converts entities (URIs, blank nodes, literals, and RDF-star [formerly RDF*] embedded triples) to internal IDs (32-
or 40-bit integers). It supports
transactional behavior, which improves space usage and cluster
behavior.

Page Cache

GraphDB’s cache strategy employs the concept of one global cache shared between all internal structures of all repositories, so that you no longer have to configure the cache-memory, tuple-index-memory and predicate-memory, or size every worker and calculate the amount of memory dedicated to it. If one of the repositories is used more at the moment, it naturally gets more slots in the cache.

Connectors

The Connectors provide extremely fast keyword and faceted
(aggregation) searches that are typically implemented by an external
component or service, but have the additional benefit of staying
automatically up-to-date with the GraphDB repository data.
GraphDB comes with the following connector implementations:

	Lucene GraphDB connector

Workbench

The Workbench is the GraphDB web-based administration tool.

Connectors

What’s in this document?

	Full-text search and aggregation connectors

	MongoDB integration

The GraphDB Connectors enable the connection to an external component or service, providing full-text search and aggregation (Lucene, Solr, Elasticsearch), or querying a database using SPARQL and executing heterogeneous joins (MongoDB). They also offer the additional benefit of staying automatically up-to-date with the GraphDB repository data.

Full-text search and aggregation connectors

The Lucene, Solr, and Elasticsearch Connectors provide synchronization at entity level, where an
entity is defined as having a unique identifier (URI) and a set of
properties and property values. In RDF context, this corresponds to a
set of triples that have the same subject. In addition to simple
properties (defined by a single triple), the Connectors support property
chains. A property chain is a sequence of triples where each
triple’s object is the subject of the subsequent triple.

GraphDB SE comes with the following FTS connector implementations:

	Lucene GraphDB connector

MongoDB integration

The MongoDB integration allows you to query MongoDB databases using SPARQL and to execute heterogeneous joins. MongoDB is a document-based database with the biggest developer/user community. It is part of the MEAN technology stack [https://www.ibm.com/cloud/learn/mean-stack-explained/] and guarantees scalability and performance well beyond the throughput supported in GraphDB. The integration between GraphDB and MongoDB is done by a plugin that sends a request to MongoDB then transforms the result to RDF model.

Workbench

Workbench is the GraphDB web-based administration tool. The
user interface is similar to the RDF4J Workbench Web Application, but
with more functionality.

What makes GraphDB Workbench different?

	Better SPARQL editor based on YASGUI [http://about.yasgui.org]

	Import of server files

	Export in more formats

	Query monitoring with the possibility to kill a long running
query

	System resource monitoring

	User and permission management

	Connector management

	Cluster management

The GraphDB Workbench can be used for:

	managing GraphDB repositories;

	loading and exporting data;

	executing SPARQL queries and updates;

	managing namespaces;

	managing contexts;

	viewing/editing RDF resources;

	monitoring queries;

	monitoring resources;

	managing users and permissions;

	managing connectors;

	provides REST API for automating various tasks for managing and
administering repositories.

GraphDB Workbench is a separate project available at https://github.com/Ontotext-AD/graphdb-workbench.
It is also part of the GraphDB distribution and can be configured with the graphdb.workbench.home property.
As a user, this makes it easy for you to extend and reuse parts of the Workbench. See Extend GraphDB Workbench.

Benchmarks

What’s in this document?

	LDBC Semantic Publishing Benchmark 2.0

	Data loading

	Production load

	Berlin SPARQL Benchmark (BSBM)

Our engineering team invests constant efforts in measuring the database data loading and query answering performance.
The section covers common database scenarios tested with popular public benchmarks and their interpretation in the context of common RDF use cases.

LDBC Semantic Publishing Benchmark 2.0

LDBC [http://ldbcouncil.org/] is an industry association aimed to create TPC-like benchmarks for RDF and graph databases.
The association is founded by a consortium of database vendors like Ontotext, OpenLink, Neo Technologies, Oracle, IBM, and SAP, among others.
The Semantic Publishing Benchmark (SPB) simulates the database load commonly faced by media or publishing organizations.
The synthetic generated dataset is based on BBC’s Dynamic Semantic Publishing [https://www.bbc.co.uk/blogs/bbcinternet/2012/04/sports_dynamic_semantic.html] use case.
It contains a graph of linked entities like creative works, persons, documents, products, provenance, and content management system information.
All benchmark operations follow a standard authoring process - add new metadata, update the reference knowledge, and search queries hitting various checkpoints as join performance, data access locality, expression calculation, parallelism, concurrency, and correlated subqueries.

Data loading

This section illustrates how quickly GraphDB can do an initial data load.
The SPB-256 dataset represents the size of a mid-sized production database managing documents and metadata.
The data loading test run measures how the GraphDB edition and the selection of i3 [https://aws.amazon.com/ec2/instance-types/i3/] instances affect the processing of 237K explicit statements, including the materialization of the inferred triples generated by the reasoner.

Table 1: Loading time of the LDBC SPB-256 dataset with the default RDFS-Plus-optimized ruleset in minutes

	Editions

	Ruleset

	Explicit statements

	Total statements

	AWS instance

	Cores

	Loading time (minutes)

	9.6 Free

	RDFS-Plus-optimized

	237,802,643

	385,168,491

	i3.xlarge

	1*

	807

	9.6 SE/EE

	RDFS-Plus-optimized

	237,802,643

	385,168,491

	i3.xlarge

	2

	765

	9.6 SE/EE

	RDFS-Plus-optimized

	237,802,643

	385,168,491

	i3.xlarge

	4

	333

	9.6 SE/EE

	RDFS-Plus-optimized

	237,802,643

	385,168,491

	i3.2xlarge

	8

	265

	9.6 SE/EE

	RDFS-Plus-optimized

	237,802,643

	385,168,491

	i3.4xlarge

	16

	258

* GraphDB Free uses a single CPU core only.

Loading the dataset with RDF-Plus-optimized ruleset generates an additional nearly 150M implicit statements or expansion of 1:1.6 from the imported explicit triples.
GraphDB Free produces the slowest performance due to a limitation of a single write thread.
The Standard and Enterprise editions scale with the increase of the available CPU cores until the I/O performance throughput becomes a major limiting factor.

Table 2: Loading time of the LDBC SPB-256 dataset with the default OWL2-RL ruleset in minutes

	Editions

	Ruleset

	Explicit statements

	Total statements

	AWS instance

	Cores

	Loading time (minutes)

	9.6 SE/EE

	OWL2-RL

	237,802,643

	752,341,659

	i3.large

	2

	1598

	9.6 SE/EE

	OWL2-RL

	237,802,643

	752,341,659

	i3.xlarge

	4

	854

	9.6 SE/EE

	OWL2-RL

	237,802,643

	752,341,659

	i3.2xlarge

	8

	646

	9.6 SE/EE

	OWL2-RL

	237,802,643

	752,341,659

	i3.4xlarge

	16

	606

The same dataset tested with OWL2-RL ruleset produces nearly 515M implicit statements, or an expansion of 1:3.2 from the imported explicit triples.
The data loading performance scales much better with the increase of additional CPU cores due to much higher computational complexity.
Once again, the I/O performance throughput becomes a major limiting factor, but the conclusion is that datasets with a higher reasoning complexity benefit more from the additional CPU cores.

Production load

The test demonstrates the execution speed of small-sized transactions and read queries against the SPB-256 dataset preloaded with RDFS-Plus-optimized ruleset.
The query mix includes transactions generating updates and information searches with simple or complex aggregate queries.
The different runs compare the database performance according to the number of concurrent read and write clients.

Table 3: The number of executed query mixes per second (higher is better) vs. the number of concurrent clients.

	Server instance

	Price

	Disk

	Concurrent read agents

	Read query mixes per second

	Concurrent write agents

	Write per second

	c5a.4xlarge

	$0.616

	EBS (5K IOPS)

	0

	
	

	4

	20.75

	i3.4xlarge

	$1.248

	local NVMe SSD

	0

	
	

	4

	23.09

	c5d.4xlarge

	$0.768

	local NVMe SSD

	0

	
	

	4

	36.60

	c5a.4xlarge

	$0.616

	EBS (5K IOPS)

	16

	43.97

	0

	
	

	i3.4xlarge

	$1.248

	local NVMe SSD

	16

	58.56

	0

	
	

	c5d.4xlarge

	$0.768

	local NVMe SSD

	16

	98.31

	0

	
	

	c5a.4xlarge

	$0.616

	EBS (5K IOPS)

	8

	23.48

	4

	8.18

	i3.4xlarge

	$1.248

	local NVMe SSD

	8

	35.15

	4

	16.07

	c5d.4xlarge

	$0.768

	local NVMe SSD

	8

	49.71

	4

	23.42

	c5a.4xlarge

	$0.616

	EBS (5K IOPS)

	12

	25.49

	4

	5.31

	i3.4xlarge

	$1.248

	local NVMe SSD

	12

	44.46

	4

	11.81

	c5d.4xlarge

	$0.768

	local NVMe SSD

	12

	66.43

	4

	17.19

	c5a.4xlarge

	$0.616

	EBS (5K IOPS)

	16

	30.30

	4

	3.39

	i3.4xlarge

	$1.248

	local NVMe SSD

	16

	53.89

	4

	3.51

	c5d.4xlarge

	$0.768

	local NVMe SSD

	16

	83.17

	4

	8.73

Notes: All runs use the same configuration limited to 20GB heap size on instances with 16 vCPU. The AWS price is based on the US East coast for an on-demand type of instance (Q1 2020), and does not include the EBS volume charges that are substantial only for IOP partitions.

The instances with local NVMe SSD devices substantially outperform any EBS drives due to the lower disk latency and higher bandwidth.
In the case of standard and cheapest EBS gp2 volumes, the performance is even slower after the AWS IOPs throttling starts to limit the disk operations.
The c5d.4xlarge [https://aws.amazon.com/blogs/aws/ec2-instance-update-c5-instances-with-local-nvme-storage-c5d/] instances achieve consistently fastest results with the main limitation of small local disks.
Next in the list are i3.4xlarge [https://aws.amazon.com/ec2/instance-types/i3/] instances offering substantially bigger local disks.
Our recommendation is to avoid using the slow EBS volumes, except for cases where you plan to limit the database performance load.
Cluster setup with multiple worker nodes with local storage will always outperform significantly any instance with EBS volumes.

Berlin SPARQL Benchmark (BSBM)

BSBM [http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/] is a popular benchmark combining read queries with frequent updates. It covers a less demanding use case without reasoning, generally defined as eCommerce, describing relations between products and producers, products and offers, offers and vendors, products and reviews.

The benchmark features two runs, where the “explore” run generates requests like “find products for a given set of generic features”, “retrieve basic information about a product for display purpose”, “get recent review”, etc. The “explore and update” run mixes all read queries with information updates.

Table 4: BSBM 100M query mixes per hour on AWS instance - c5d.4xlarge, local NVMe SSD with GraphDB 9.6 EE and ruleset RDFS-Plus-optimized

	Threads

	explore (query mixes per hour)

	explore & update (query mixes per hour)

	1

	8,666

	7,244

	2

	14,304

	12,873

	4

	26,774

	21,163

	8

	42,979

	29,903

	12

	47,662

	30,707

	16

	50,967

	31,666

Quick Start Guide

What’s in this document?

	Run GraphDB as a Standalone Server

	Running GraphDB

	Options

	Configuring GraphDB

	Paths and network settings

	Java virtual machine settings

	Stopping the database

	Set up Your License

	Create a Repository

	Load Your Data

	Load data through the GraphDB Workbench

	Load data through SPARQL or RDF4J API

	Load data through the GraphDB LoadRDF tool

	Explore Your Data and Class Relationships

	Explore instances

	Create your own visual graph

	Class hierarchy

	Domain-Range graph

	Class relationships

	Query Your Data

	Query data through the Workbench

	Query data programmatically

	Additional Resources

Run GraphDB as a Standalone Server

The default way of running GraphDB is as a standalone server. The server is platform-independent, and includes all recommended JVM parameters for immediate use.

Note

Before downloading and running GraphDB, please make sure to have JDK or JRE installed.

Running GraphDB

	Download your GraphDB distribution file and unzip it.

	Start the GraphDB Server and Workbench interface by executing the graphdb startup script located in the $graphdb_home/bin folder:

A message appears in the console telling you that GraphDB has been started in Workbench mode. To access the Workbench, open http://localhost:7200/ in your browser.

Options

The startup script supports the following options:

	Option

	Description

	-d

	daemonize (run in background), not available on Windows

	-s

	run in server-only mode (no Workbench UI)

	-p pidfile

	write PID to <pidfile>

	-h

--help

	print command line options

	-v

	print GraphDB version, then exit

	-Dprop

	set Java system property

	-Xprop

	set non-standard Java system property

Note

Run graphdb -s to start GraphDB in server-only mode without the web interface (no Workbench). A remote Workbench can still be attached to the instance.

Configuring GraphDB

Paths and network settings

The configuration of all GraphDB directory paths and network settings is read from the conf/graphdb.properties file. It controls where to store the database data, log files and internal data. To assign a new value, modify the file or override the setting by adding -D<property>=<new-value> as a parameter to the startup script. For example, to change the database port number:

graphdb -Dgraphdb.connector.port=<your-port>

The configuration properties can also be set in the environment variable GDB_JAVA_OPTS, using the same -D<property>=<new-value> syntax.

Note

The order of precedence for GraphDB configuration properties is as follows: command line supplied arguments > GDB_JAVA_OPTS > config file.

The GraphDB home directory

The GraphDB home defines the root directory where GraphDB stores all of its data.
The home can be set through the system or config file property graphdb.home.

The default value for the GraphDB home directory depends on how you run GraphDB:

	Running as a standalone server: the default is the same as the distribution directory.

	All other types of installations: OS-dependent directory.

	On Mac: ~/Library/Application Support/GraphDB.

	On Windows: \Users\<username>\AppData\Roaming\GraphDB.

	On Linux and other Unixes: ~/.graphdb.

GraphDB does not store any files directly in the home directory, but uses several
subdirectories for data or configuration.

Java virtual machine settings

We strongly recommend setting explicit values for the Java heap space. You can control the heap size by supplying an explicit value to the startup script such as graphdb -Xms10g -Xmx10g or setting one of the following environment variables:

	GDB_HEAP_SIZE - environment variable to set both the minimum and the maximum heap size (recommended);

	GDB_MIN_MEM - environment variable to set only the minimum heap size;

	GDB_MAX_MEM - environment variable to set only the maximum heap size.

For more information on how to change the default Java settings, check the instructions in the graphdb file.

Note

The order of precedence for JVM options is as follows: command line supplied arguments > GDB_JAVA_OPTS > GDB_HEAP_SIZE > GDB_MIN_MEM/GDB_MAX_MEM.

Tip

Every JDK package contains a default garbage collector (GC) that can potentially affect performance. We tested GraphDB’s performance against the LDBC benchmark with newer versions (i.e., JDK 11 or higher), observing a drop when using G1GC. Tests were also conducted with the Parallel Garbage Collector (ParallelGC), this time producing normal results, i.e., no performance drop.

This is why we recommend experimenting with garbage collectors if using JDK 11 or higher, so as to find the option that would provide you with an optimal configuration.

Stopping the database

To stop the database, find the GraphDB process identifier and send kill <process-id>. This sends a shutdown signal and the database stops. If the database is run in non-daemon mode, you can also send Ctrl+C interrupt to stop it.

Set up Your License

GraphDB SE is available under an RDBMS-like commercial
license on a per-server-CPU basis. It is neither free nor
open source. To purchase a license or obtain a copy for evaluation,
please contact graphdb-info@ontotext.com.

When installing GraphDB SE, the license file can be set through the GraphDB Workbench or programmatically.

To do that, follow the steps:

	Add, view, or update your license by using either the Set button in the top right or the Set new license button in the License section.

[image: _images/no-license-se.png]

	Select the license file and register it.

[image: _images/select-license-file.png]
You can also copy and paste it in the text area.

[image: _images/copy-paste-license.png]

	Validate your license.

[image: _images/validate-new-license.png]

	After completing these steps, you will see the details of your license.

Create a Repository

Now let’s create your first repository.

Hint

When started, GraphDB creates GraphDB-HOME/data directory as an active location. To change the directory, see Configuring GraphDB Data Directory.

	Go to Setup -> Repositories.

	Click Create new repository.

	Select GraphDB SE repository.

[image: _images/select-repo-type-se.png]

	Enter myrepo as a Repository ID and leave all other optional configuration settings at their default values.

Tip

For repositories with over several tens of millions of statements,
see Configuring a Repository.

	Click the Connect button to set the newly created repository as the repository for this
location.

[image: _images/connect_to_repo.png]

	Use the pin to select it as the default repository.

[image: _images/default-repo-pin.png]

Note

Make sure the location where you want to create the repository is active.

Tip

You can also use cURL command to perform basic location and repository management through the Workbench REST API.

Load Your Data

All examples given below are based on the News sample dataset provided in the distribution folder.

Tip

You can also use public datasets such as the w3.org Wine ontology by pasting its data URL - https://www.w3.org/TR/owl-guide/wine.rdf - by Get RDF data from a URL from User data tab of the Import page.

Load data through the GraphDB Workbench

Let’s load your data from a local file:

	Go to Import -> RDF.

	Open the User data tab and click the Upload RDF files to upload the files from the News sample dataset provided in the distribution folder.

[image: _images/import_local_file.png]

	Click the Import button.

	Enter the Import settings in the pop-up window.

[image: _images/import_settings.png]

Import Settings

	Base URI: the default prefix for all local names in the file;

	Target graphs: imports the data into one or more graphs.

For more details, see Loading data using the Workbench.

	Start importing by clicking the Import button.

Note

You can also import data from files on the server where the Workbench is located, from a remote URL (with a format extension or by specifying the data format), from a SPARQL construct query directly, or by typing or pasting the RDF data in a text area.

Import execution

	Imports are executed in the background while you continue working on other things.

	Interrupt is supported only when the location is local.

	Parser config options are not available for remote locations.

Load data through SPARQL or RDF4J API

The GraphDB database also supports a very powerful API with a standard
SPARQL or RDF4J endpoint, to which data can be posted with cURL, a local
Java client API, or an RDF4J console. It is compliant with all standards,
and allows every database operation to be executed via an HTTP client
request.

	Locate the correct GraphDB URL endpoint:

	select Setup -> Repositories

	click the link icon next to the repository name

[image: _images/locate_repo_URL.png]

	copy the repository URL.

	Go to the folder where your local data files are.

	Execute the script:

curl -X POST -H "Content-Type:application/x-turtle" -T <localfilename.ttl> \
 http://localhost:7200/repositories/repository-id/statements

where localfilename.ttl is the data file you want to import,
and http://localhost:7200/repositories/repository-id/statements is
the GraphDB URL endpoint of your repository.

Tip

Alternatively, use the full path to your local file.

Load data through the GraphDB LoadRDF tool

LoadRDF is a low level bulk load tool that writes directly in the
database index structures. It is ultra fast and supports parallel
inference. For more information, see the Loading data using the LoadRDF tool.

Note

Loading data through the GraphDB LoadRDF tool can be performed only
if the repository is empty, e.g., the initial loading after the
database has been inactive.

Explore Your Data and Class Relationships

Explore instances

To explore instances and their relationships, navigate to Explore -> Visual graph, and find an instance of interest through the Easy graph search box. You can also do it from the View resource search field in GraphDB’s home page - search for the name of your graph, and press the Visual button.
The graph of the instance and its relationships are shown.

[image: _images/visualGraph-wine.png]
Hover over a node to see a menu for the following actions:

	Expand a node to show its relationships or collapse to hide them if already expanded. You can also expand the node by double-clicking on it.

	Copy a node’s IRI to the clipboard.

	Focus on a node to restart the graph with this instance as the central one. Note that you will lose the current state of your graph.

	Delete a node to hide its relationships and hide it from the graph.

Click on a node to see more info about it: a side panel opens on the right, including a short description (rdfs:comment), labels (rdfs:label), RDF rank, image (foaf:depiction) if present, and all DataType properties. You can also search by DataType property if you are interested in its value. Click on the node again if you want to hide the side panel.

You can switch between nodes without closing the side panel. Just click on the new node about which you want to see more, and the side panel will automatically show the information about it.

Click on the settings icon on the top right for advanced graph settings. Control number of links, types, and predicates to hide and show.

[image: _images/visual-graph-global.png]
A side panel opens with the available settings:

[image: _images/visual-graph-settings.png]

Create your own visual graph

Control the SPARQL queries behind the visual graph by creating your own visual graph configuration. To make one, go to Explore -> Visual graph -> Create graph config. Use the sample queries to guide you in the configuration.

[image: _images/visGraphConfig.png]
The following parts of the graph can be configured:

	Starting point - this is the initial state of your graph.

	Search box - start with a search box to choose a different start resource each time;

	Fixed node - you may want to start exploration with the same resource each time;

	Query results - the initial config state may be the visual representation of a Graph SPARQL query result.

	Graph expansion - determines how new nodes and links are added to the visual graph when the user expands an existing node. The ?node variable is required and will be replaced with the IRI of the expanded node.

	Node basics - this SELECT query controls how the type, label, comment and rank are obtained for the nodes in the graph. Node types correspond to different colors. Node rank is a number between 0 and 1 and determines the size of a node. The label is the text over each node, and if empty, IRI local name is used. Again, ?node binding is replaced with node IRI.

	Predicate label - defines what text to show for each edge IRI. The query should have ?edge variable to replace it with the edge IRI.

	Node extra - Click on the info icon to see additional node properties. Control what to see in the side panel. ?node variable is replaced with node IRI.

	Save your config and reload it to explore your data the way you wish to visualize it.

Class hierarchy

To explore your data, navigate to Explore -> Class hierarchy. You can see a diagram depicting the hierarchy of the imported RDF classes by number of instances. The biggest circles are the parent classes and the nested ones are their children.

Note

If your data has no ontology (hierarchy), the RDF classes will be visualized as separate circles instead of nested ones.

[image: _images/rdf-class-hierarchy-diagram-news.png]
Various actions for exploring your data:

	To see what classes each parent has, hover over the nested circles.

	To explore a given class, click its circle. The selected class is highlighted with a dashed line, and a side panel with its instances opens for further exploration. For each RDF class you can see its local name, URI, and a list of its first 1,000 class instances. The class instances are represented by their URIs, which, when clicked, lead to another view where you can further explore their metadata.

[image: _images/rdf-class-hierarchy-diagram-selected-class-news.png]

The side panel includes the following:

	Local name;

	URI (Press Ctrl+C / Cmd+C to copy to clipboard and Enter to close);

	Domain-Range Graph button;

	Class instances count;

	Scrollable list of the first 1000 class instances;

	View Instances in SPARQL View button. It redirects to the SPARQL view and executes an auto-generated query that lists all class instances without LIMIT.

	To go to the Domain-Range Graph diagram, double click a class circle or the Domain-Range Graph button from the side panel.

	To explore an instance, click its URI from the side panel.

[image: _images/rdf-class-hierarchy-diagram-class-instance-resource-view-news.png]

	To adjust the number of classes displayed, drag the slider on the left-hand side of the screen. Classes are sorted by the maximum instance count and the diagram displays only the current slider value.

[image: _images/rdf-class-hierarchy-diagram-slider-low-value-news.png]

	To administer your data view, use the toolbar options on the right-hand side of the screen.

[image: _images/rdf-class-hierarchy-diagram-toolbar.png]

	To see only the class labels, click the Hide/Show Prefixes. You can still view the prefixes when you hover over the class that interests you.

	To zoom out of a particular class, click the Focus diagram home icon.

	To reload the data on the diagram, click the Reload diagram icon. This is recommended when you have updated the data in your repository, or when you are experiencing some strange behavior, for example you cannot see a given class.

	To export the diagram as an .svg image, click the Export Diagram download icon.

	You can also filter the hierarchy by graph when there is more than one named graph in your repository. Just expand the All graphs drop-down menu next to the toolbar options and select the graph you want to explore.

[image: _images/rdf-class-hierarchy-filter-by-graph.png]

Domain-Range graph

To explore the connectedness of a given class, double click the class circle or the Domain-Range Graph button from the side panel. You can see a diagram that shows this class and its properties with their domain and range, where domain refers to all subject resources and range - to all object resources.
For example, if you start from class pub:Company, you see something like: <pub-old:Mention pub-old:hasInstance pub:Company> <pub:Company pub:description xsd:string>.

[image: _images/rdf-domain-range-graph-diagram-news.png]
You can also further explore the class connectedness by clicking:

	the green nodes (object property class);

	the labels - they lead to the View resource page, where you can find more information about the current class or property;

	the slider Show collapsed predicates to hide all edges sharing the same source and target nodes;

[image: _images/rdf-domain-range-graph-diagram-collapsed-news.png]
To see all predicate labels contained in a collapsed edge, click the collapsed edge count
label, which is always in the format <count> predicates. A side panel opens with the target node label,
a list of the collapsed predicate labels and the type of the property (explicit or implicit). You can click these labels to see the resource in the View resource page.

[image: _images/rdf-domain-range-graph-diagram-collapsed-side-panel-news.png]
Administering the diagram view

To administer your diagram view, use the toolbar options on the right-hand side of the screen.

[image: _images/rdf-domain-range-graph-diagram-toolbar.png]

	To go back to your class in the Class hierarchy, click the Back to Class hierarchy diagram button.

	To collapse edges with common source/target nodes, in order to see the diagram more clearly, click the Show all predicates/Show collapsed predicates button. The default is collapsed.

	To export the diagram as an .svg image, click the Export Diagram download icon.

Class relationships

To explore the relationships between the classes, navigate to Explore -> Class relationships. You can see a complicated diagram showing only the top relationships, where each of them is a bundle of links between the individual instances of two classes. Each link is an RDF statement, where the subject is an instance of one class, the object is an instance of another class, and the link is the predicate. Depending on the number of links between the instances of two classes, the bundle can be thicker or thinner and gets the color of the class with more incoming links. These links can be in both directions.

In the example below, you can see the relationships between the classes of the News sample dataset provided in the distribution folder. You can observe that the class with the biggest number of links (the thickest bundle) is pub-old:Document.

[image: _images/news-scenario-dependencies.png]
To remove all classes, use the X icon.

[image: _images/news-scenario-remove-all.png]
To control which classes to display in the diagram, use the add/remove icon next to each class.

[image: _images/news-scenario-add-class.png]
To see how many annotations (mentions) there are in the documents, click on the blue bundle representing the relationship between the classes pub-old:Document and pub-old:TextMention. The tooltip shows that there are 6,197 annotations linked by the pub-old:containsMention predicate.

[image: _images/news-scenario-class-document.png]
To see how many of these annotations are about people, click on light purple bundle representing the relationship between the classes pub-old:TextMention and pub:Person. The tooltip shows that 274 annotations are about people linked by the pub-old:hasInstance predicate.

[image: _images/news-scenario-class-person.png]
Just like in the Class hierarchy view, you can also filter the class relationships by graph when there is more than one named graph in the repository. Expand the All graphs drop-down menu next to the toolbar options and select the graph you want to explore.

Query Your Data

Query data through the Workbench

Hint

SPARQL is a SQL-like query language for RDF graph databases with the
following types:

	SELECT - returns tabular results;

	CONSTRUCT - creates a new RDF graph based on query results;

	ASK - returns YES if the query has a solution, otherwise
“NO”;

	DESCRIBE - returns RDF data about a resource; useful when you
do not know the RDF data structure in the data source;

	INSERT - inserts triples into a graph;

	DELETE - deletes triples from a graph.

For more information, see the Additional resources section.

Now it is time to delve into your data. The following is one possible scenario for querying it.

	Select the repository you want to work with, in this example News, and click the SPARQL menu tab.

	Let’s say you are interested in people. Paste the query below into the query field, and click Run to find all people mentioned in the documents from this news articles dataset.

PREFIX pub: <http://ontology.ontotext.com/taxonomy/>
PREFIX pub-old: <http://ontology.ontotext.com/publishing#>
select distinct ?x ?Person where {
?x a pub:Person .
?x pub:preferredLabel ?Person .
?doc pub-old:containsMention / pub-old:hasInstance ?x .
}

[image: _images/news-scenario-all-people.png]

	Run a query to calculate the RDF rank of the instances based on their interconnectedness.

PREFIX rank: <http://www.ontotext.com/owlim/RDFRank#>
INSERT DATA { _:b1 rank:compute _:b2. }

	Find all people mentioned in the documents, ordered by popularity in the repository.

PREFIX pub: <http://ontology.ontotext.com/taxonomy/>
PREFIX pub-old: <http://ontology.ontotext.com/publishing#>
PREFIX rank: <http://www.ontotext.com/owlim/RDFRank#>
select distinct ?x ?PersonLabel ?rank where {
 ?x a pub:Person .
 ?x pub:preferredLabel ?PersonLabel .
 ?doc pub-old:containsMention / pub-old:hasInstance ?x .
 ?x rank:hasRDFRank ?rank .
} ORDER by DESC (?rank)

[image: _images/news-scenario-ordred-by-popularity.png]

	Find all people who are mentioned together with their political parties.

PREFIX pub-old: <http://ontology.ontotext.com/publishing#>
PREFIX pub: <http://ontology.ontotext.com/taxonomy/>
select distinct ?personLabel ?partyLabel where {
 ?document pub-old:containsMention ?mention .
 ?mention pub-old:hasInstance ?person .
 ?person pub:preferredLabel ?personLabel .
 ?person pub:memberOfPoliticalParty ?party .
 ?party pub:hasValue ?value .
 ?value pub:preferredLabel ?partyLabel .
}

[image: _images/news-scenario-people-and-political-parites.png]

	Did you know that Marlon Brando was from the Democratic Party? Find what other mentions occur together with Marlon Brando in the given news article.

PREFIX pub: <http://ontology.ontotext.com/taxonomy/>
PREFIX pub-old: <http://ontology.ontotext.com/publishing#>
select distinct ?Mentions where {
<http://www.reuters.com/article/2014/10/06/us-art-auction-idUSKCN0HV21B20141006> pub-old:containsMention / pub-old:hasInstance ?x .
?x pub:preferredLabel ?Mentions .

}

[image: _images/news-scenario-MB-and-other-mentions.png]

	Find everything available about Marlon Brando in the database.

PREFIX pub: <http://ontology.ontotext.com/taxonomy/>
PREFIX pub-old: <http://ontology.ontotext.com/publishing#>
select distinct ?p ?objectLabel where {
<http://ontology.ontotext.com/resource/tsk78dfdet4w> ?p ?o .
 {
?o pub:hasValue ?value .
 ?value pub:preferredLabel ?objectLabel .
 } union {
 ?o pub:hasValue ?objectLabel .
 filter (isLiteral(?objectLabel)) .
 }
}

[image: _images/news-scenario-MB-data.png]

	Find all documents that mention members of the Democratic Party and the names of these people.

PREFIX pub-old: <http://ontology.ontotext.com/publishing#>
PREFIX pub: <http://ontology.ontotext.com/taxonomy/>
select distinct ?document ?personLabel where {
 ?document pub-old:containsMention ?mention .
 ?mention pub-old:hasInstance ?person .
 ?person pub:preferredLabel ?personLabel .
 ?person pub:memberOfPoliticalParty ?party .
 ?party pub:hasValue ?value .
 ?value pub:preferredLabel "Democratic Party"@en .
}

[image: _images/news-scenario-all-DP-members-and-names.png]

	Find when these people were born and died.

PREFIX pub-old: <http://ontology.ontotext.com/publishing#>
PREFIX pub: <http://ontology.ontotext.com/taxonomy/>
select distinct ?person ?personLabel ?dateOfbirth ?dateOfDeath where {
 ?document pub-old:containsMention / pub-old:hasInstance ?person .
 ?person pub:preferredLabel ?personLabel .
 OPTIONAL {
 ?person pub:dateOfBirth / pub:hasValue ?dateOfbirth .
 }
 OPTIONAL {
 ?person pub:dateOfDeath / pub:hasValue ?dateOfDeath .
 }
 ?person pub:memberOfPoliticalParty / pub:hasValue / pub:preferredLabel "Democratic Party"@en .
} order by ?dateOfbirth

[image: _images/news-scenario-dob-dod.png]

Tip

You can play with more example queries from the Example_queries.rtf file provided in GraphDB’s distribution folder.

Query data programmatically

SPARQL is not only a standard query language, but also a protocol for
communicating with RDF databases. GraphDB stays compliant with the
protocol specification, and allows querying data with standard HTTP
requests.

Execute the example query with an HTTP GET request:

curl -G -H "Accept:application/x-trig" \
 -d query=CONSTRUCT+%7B%3Fs+%3Fp+%3Fo%7D+WHERE+%7B%3Fs+%3Fp+%3Fo%7D+LIMIT+10 \
 http://localhost:7200/repositories/yourrepository

Execute the example query with a POST operation:

curl -X POST --data-binary @file.sparql -H "Accept: application/rdf+xml" \
 -H "Content-type: application/x-www-form-urlencoded" \
 http://localhost:7200/repositories/worker-node

where file.sparql contains an encoded query:

query=CONSTRUCT+%7B%3Fs+%3Fp+%3Fo%7D+WHERE+%7B%3Fs+%3Fp+%3Fo%7D+LIMIT+10

Tip

For more information on how to interact with GraphDB APIs, refer to the
RDF4J and SPARQL protocols or the Linked Data Platform
specifications.

Additional Resources

	SPARQL, OWL, and RDF:
	
RDF: http://www.w3.org/TR/rdf11-concepts/

RDFS: http://www.w3.org/TR/rdf-schema/

SPARQL Overview: http://www.w3.org/TR/sparql11-overview/

SPARQL Query: http://www.w3.org/TR/sparql11-query/

SPARQL Update:
http://www.w3.org/TR/sparql11-update [http://www.w3.org/TR/sparql11-update/]

Installation

	Requirements

	Running GraphDB

	Configuring GraphDB

	Migrating GraphDB Configurations

	Distribution package

	Using Maven Artifacts

Requirements

What’s in this document?

	Minimum requirements

	Hardware sizing

	Memory management

	Licensing

Minimum requirements

The minimum requirements allow loading datasets of only up to 50 million RDF triples.

	2 gigabytes of memory

	2 gigabytes of disk space

	Java SE Development Kit 8, 11, or 12 (not required for GraphDB Free desktop installation)

Warning

All GraphDB indexes are optimized for hard disks with very low seek time. Our team highly recommend using only SSD
partition for persisting repository images.

Hardware sizing

The best approach for correctly sizing the hardware resources is to estimate the number of explicit statements. Statistically, an
average dataset has 3:1 statements to unique RDF resources. The total number of statements determines the expected repository image
size, and the number of unique resources affects the memory footprint required to initialize the repository.

The table below summarizes the recommended parameters for planning RAM and disk sizing:

	Statements are the planned number of explicit statements.

	Unique resources are the expected number of unique RDF resources (IRIs, blank nodes, literals, RDF-star [formerly RDF*] embedded triples).

	Java heap (minimal) is the minimal recommend JVM heap required to operate the database controlled by -Xmx parameter.

	Java heap (optimal) is the recommended JVM heap required to operate a database controlled by -Xmx parameter.

	Off heap is the database memory footprint (outside of the JVM heap) required to initialize the database.

	OS is the recommended minimal space reserved for the operating system.

	Total is the RAM required for the hardware configuration.

	Repository image is the expected size on disk. For repositories with inference use the total number of explicit + implicit statements.

	Statements

	Unique resources

	Java heap (min)

	Java heap (opt)

	Off heap

	OS

	Total

	Repository image

	100M

	33.3M

	1.2GB

	3.6GB

	370M

	2

	6GB

	12GB

	200M

	66.6M

	2.4GB

	7.2GB

	740M

	3

	11GB

	24GB

	500M

	166.5M

	6GB

	18GB

	1.86GB

	4

	24GB

	60GB

	1B

	333M

	12GB

	30GB

	3.72GB

	4

	38GB

	120GB

	2B

	666M

	24GB

	30GB

	7.44GB

	4

	42GB

	240GB

	5B

	1.665B

	30GB

	30GB

	18.61GB

	4

	53GB

	600GB

	10B

	3.330B

	30GB

	30GB

	37.22GB

	4

	72GB

	1200GB

	20B

	6.660B

	30GB

	30GB

	74.43GB

	4

	109GB

	2400GB

Memory management

The optimal approach towards memory management of GraphDB is based on a balance of performance and resource availability per repository. In heavy use cases such as parallel importing into a number of repositories, GraphDB may take up more memory than usual.

There are several configuration properties with which the amount of memory used by GraphDB can be controlled:

	Reduce the global cache: by default, it can take up to half of the available memory allocated to GraphDB, which during periods of stress can be critical. By reducing the size of the cache, more memory can be freed up for the actual operations. This can be beneficial during periods of prolonged imports as that data is not likely to be queried right away.

graphdb.page.cache.size=2g

	Reduce the buffer size: this property is used to control the amount of statements that can be stored in buffers by GraphDB. By default, it is sized at 200,000 statements, which can impact memory usage if many repositories are actively reading/writing data at once. The optimal buffer size depends on the hardware used, as reducing it would cause more write/read operations to the actual storage.

pool.buffer.size=50000

	Reduce inference pool size: this property controls the number of available inference workers that are used for forward inferencing during import to repositories. Reducing the number of inference workers can have a limited benefit, depending on the number of available CPU cores as per the GraphDB license. For the table below, we have used an 8-core license and reduced the number of workers per repository down to three.

infer.pool.size=3

	Disable parallel import: during periods of prolonged imports to a large number of repositories, parallel imports can take up more than 800 megabytes of retained heap per repository. In such cases, parallel importing can be disabled, which would force data to be imported serially to each repository. However, serial import reduces performance.

graphdb.engine.parallel-import=false

This table shows an example of retained heap usage by repository, using different configuration parameters:

	Configurations

	Retained heap per repository

	
	During prolonged import

	Stale

	Default

	≥800MB

	340MB

	+ Reduced global cache (2GB)

	670MB

	140MB

	+ Reduced buffer size*

	570-620MB

	140MB

	+ Reduced inference pool size*

	370-550MB

	140MB

	Serial import**

	210-280MB

	140MB

* Depends on the number of available CPU cores to GraphDB. For the statistics, the default buffer size was reduced from 200,000 (default) to 50,000 statements. The inference pool size was reduced from eight to three. Keep in mind that this reduces performance.

** Without reducing buffer and inference pool sizes. Disables parallel import, which impacts performance.

Licensing

GraphDB SE is available under an RDBMS-like commercial
license on a per-server-CPU basis. It is neither free nor
open source. To purchase a license or obtain a copy for evaluation,
please contact graphdb-info@ontotext.com.

Running GraphDB

GraphDB can be operated as a desktop or a server application. The server application is recommended if you plan to migrate your
setup to a production environment. Choose the one that best suits your needs, and follow the steps below:

Run GraphDB as a standalone server - For production use, we recommend installing the standalone server. The installation comes
with a preconfigured web server. This is the standard way to use GraphDB if you plan to use the database for longer periods with
preconfigured log files.

Run GraphDB in a docker container - If you are into docker and containers, we provide ready to use images for docker. Find more
at https://github.com/Ontotext-AD/graphdb-docker.

	Run GraphDB as a Standalone Server

Run GraphDB as a Standalone Server

The default way of running GraphDB is as a standalone server. The server is platform-independent, and includes all recommended JVM parameters for immediate use.

Note

Before downloading and running GraphDB, please make sure to have JDK or JRE installed.

Running GraphDB

	Download your GraphDB distribution file and unzip it.

	Start the GraphDB Server and Workbench interface by executing the graphdb startup script located in the $graphdb_home/bin folder:

A message appears in the console telling you that GraphDB has been started in Workbench mode. To access the Workbench, open http://localhost:7200/ in your browser.

Options

The startup script supports the following options:

	Option

	Description

	-d

	daemonize (run in background), not available on Windows

	-s

	run in server-only mode (no Workbench UI)

	-p pidfile

	write PID to <pidfile>

	-h

--help

	print command line options

	-v

	print GraphDB version, then exit

	-Dprop

	set Java system property

	-Xprop

	set non-standard Java system property

Note

Run graphdb -s to start GraphDB in server-only mode without the web interface (no Workbench). A remote Workbench can still be attached to the instance.

Configuring GraphDB

Paths and network settings

The configuration of all GraphDB directory paths and network settings is read from the conf/graphdb.properties file. It controls where to store the database data, log files and internal data. To assign a new value, modify the file or override the setting by adding -D<property>=<new-value> as a parameter to the startup script. For example, to change the database port number:

graphdb -Dgraphdb.connector.port=<your-port>

The configuration properties can also be set in the environment variable GDB_JAVA_OPTS, using the same -D<property>=<new-value> syntax.

Note

The order of precedence for GraphDB configuration properties is as follows: command line supplied arguments > GDB_JAVA_OPTS > config file.

The GraphDB home directory

The GraphDB home defines the root directory where GraphDB stores all of its data.
The home can be set through the system or config file property graphdb.home.

The default value for the GraphDB home directory depends on how you run GraphDB:

	Running as a standalone server: the default is the same as the distribution directory.

	All other types of installations: OS-dependent directory.

	On Mac: ~/Library/Application Support/GraphDB.

	On Windows: \Users\<username>\AppData\Roaming\GraphDB.

	On Linux and other Unixes: ~/.graphdb.

GraphDB does not store any files directly in the home directory, but uses several
subdirectories for data or configuration.

Java virtual machine settings

We strongly recommend setting explicit values for the Java heap space. You can control the heap size by supplying an explicit value to the startup script such as graphdb -Xms10g -Xmx10g or setting one of the following environment variables:

	GDB_HEAP_SIZE - environment variable to set both the minimum and the maximum heap size (recommended);

	GDB_MIN_MEM - environment variable to set only the minimum heap size;

	GDB_MAX_MEM - environment variable to set only the maximum heap size.

For more information on how to change the default Java settings, check the instructions in the graphdb file.

Note

The order of precedence for JVM options is as follows: command line supplied arguments > GDB_JAVA_OPTS > GDB_HEAP_SIZE > GDB_MIN_MEM/GDB_MAX_MEM.

Tip

Every JDK package contains a default garbage collector (GC) that can potentially affect performance. We tested GraphDB’s performance against the LDBC benchmark with newer versions (i.e., JDK 11 or higher), observing a drop when using G1GC. Tests were also conducted with the Parallel Garbage Collector (ParallelGC), this time producing normal results, i.e., no performance drop.

This is why we recommend experimenting with garbage collectors if using JDK 11 or higher, so as to find the option that would provide you with an optimal configuration.

Stopping the database

To stop the database, find the GraphDB process identifier and send kill <process-id>. This sends a shutdown signal and the database stops. If the database is run in non-daemon mode, you can also send Ctrl+C interrupt to stop it.

Configuring GraphDB

GraphDB 9.x relies on several main directories for configuration, logging, and data.

What’s in this document?

	Directories

	GraphDB Home

	Checking the configured directories

	Configuration

	Config properties

	Configuring logging

	Best practices

	Step by step guide

Directories

GraphDB Home

The GraphDB home defines the root directory where GraphDB stores all of its data.
The home can be set through the system or config file property graphdb.home.

The default value for the GraphDB home directory depends on how you run GraphDB:

	Running as a standalone server: the default is the same as the distribution directory.

	All other types of installations: OS-dependent directory.

	On Mac: ~/Library/Application Support/GraphDB.

	On Windows: \Users\<username>\AppData\Roaming\GraphDB.

	On Linux and other Unixes: ~/.graphdb.

Note

In the unlikely case of running GraphDB on an ancient Windows XP, the default
directory is \Documents and Settings\<username>\Application Data\GraphDB.

GraphDB does not store any files directly in the home directory, but uses the following
subdirectories for data or configuration:

Data directory

The GraphDB data directory defines where GraphDB stores repository data.
The data directory can be set through the system or config property graphdb.home.data.
The default value is the subdirectory data relative to the GraphDB home directory.

Config directory

The GraphDB config directory defines where GraphDB looks for user-definable configuration.
The config directory can be set through the system property graphdb.home.conf.

Note

It is not possible to set the config directory through a config property
as the value needs to be set before the config properties are loaded.

The default value is the subdirectory conf relative to the GraphDB home directory.

Work directory

The GraphDB work directory defines where GraphDB stores non-user-definable configuration.
The work directory can be set through the system or config property graphdb.home.work.
The default value is the subdirectory work relative to the GraphDB home directory.

Logs directory

The GraphDB logs directory defines where GraphDB stores log files.
The logs directory can be set through the system or config property graphdb.home.logs.
The default value is the subdirectory logs relative to the GraphDB home directory.

Note

When running GraphDB as deployed .war files, the logs directory will be a subdirectory
graphdb within the Tomcat’s logs directory.

Checking the configured directories

When GraphDB starts, it logs the actual value for each of the above directories, e.g.,

GraphDB Home directory: /opt/test/graphdb-se-8.x.x
GraphDB Config directory: /opt/test/graphdb-se-8.x.x/conf
GraphDB Data directory: /opt/test/graphdb-se-8.x.x/data
GraphDB Work directory: /opt/test/graphdb-se-8.x.x/work
GraphDB Logs directory: /opt/test/graphdb-se-8.x.x/logs

Configuration

There is a single config file for GraphDB. GraphDB loads the config file graphdb.properties
from the GraphDB config directory.

A sample file is provided in the distribution under conf/graphdb.properties.

Config properties

Config properties are defined in the config file in the following format:

propertyName = propertyValue, i.e., using the standard Java properties file syntax.

Each config property can be overridden through a Java system property with the same name,
provided in the environment variable GDB_JAVA_OPTS, or in the command line.

Note

The legacy properties (e.g., owlim-license) in the config file are ignored,
but they work if specified as system properties.

List of configuration properties

General properties

The general properties define some basic configuration values that are shared with all
GraphDB components and types of installation:

	Property name

	Description

	graphdb.home

	Defines the GraphDB home directory

	graphdb.home.data

	Defines the GraphDB data directory

	graphdb.home.conf

	(only as a system property) Defines the GraphDB conf directory

	graphdb.home.work

	Defines the GraphDB work directory

	graphdb.home.logs

	Defines the GraphDB logs directory

	graphdb.external-url

	Provides an external URL used as an access point to GraphDB

	graphdb.workbench.home

	The place where the source for
GraphDB Workbench [https://github.com/Ontotext-AD/graphdb-workbench] is located

	graphdb.external-url

	Provides an external URL for accessing the Workbench

	graphdb.license.file

	Sets a custom path to the license file to use

	graphdb.page.cache.size

	The amount of memory to be taken by the page cache

Tip

The graphdb.external-url property is useful when creating a cluster with proxy or Docker.

Note

graphdb.workbench.external-url is considered a legacy property, and should not be confused with graphdb.external-url.

Network properties

The network properties control how the standalone application listens on a network.
These properties correspond to the attributes of the embedded Tomcat Connector.
For more information, see Tomcat’s documentation [https://tomcat.apache.org/tomcat-8.0-doc/config/http.html#Attributes].

Each property is composed of the prefix graphdb.connector. + the relevant Tomcat Connector attribute.
The most important property is graphdb.connector.port, which defines the port to be used. The default is 7200.

In addition, the sample config file provides an example for setting up SSL.

Note

The graphdb.connector.<xxx> properties are only relevant when running GraphDB
as a standalone application.

Engine properties

You can configure the GraphDB Engine through a set of properties composed of the prefix
graphdb.engine. + the relevant engine property. These properties correspond to the properties
that can be set when creating a repository through the Workbench or through a .ttl file.

Note

The properties defined in the config override the properties for each repository,
regardless of whether you created the repository before or after setting the global value of an engine property.
As such, the global override should be used only in specific cases. For normal everyday needs, set the corresponding properties when you create a repository.

	Property name

	Description

	Default value

	
graphdb.engine.entity-pool-implementation

	Defines the Entity Pool implementation for the whole installation.
Possible values are transactional or classic.

	The default value is transactional.
The transactional-simple implementation
is not supported anymore.

	graphdb.persistent.parallel.inferencers

	Since GraphDB 8.6.1, inferencers for our Parallel loader are
shut down at the end of each transaction to minimize GraphDB’s
memory footprint. For cases where a lot of small insertions are
done in a quick succession that can be a problem, as inferencer
initialization times can be fairly slow. This setting reverts to
the old behavior where inferencers are only shut down when
the repository is released.

	false

	graphdb.engine.entity.validate

	A global setting that ensures IRI validation in the entity pool.
It is performed only when an IRI is seen for the first time
(i.e., when being created in the entity pool). For consistency
reasons, not only IRIs coming from RDF serializations, but also
all new IRIs (via API or SPARQL), will be validated in the same way.
This property can be turned off by setting its value to false.

	true

Note

Note that IRI validation makes the import of broken data more problematic - in such a case, you would have to change a config property and restart your GraphDB instance instead of changing the setting per import.

Configuring logging

GraphDB uses logback to configure logging. The default configuration is provided as logback.xml
in the GraphDB config directory.

Best practices

Even though GraphDB provides the means to specify separate custom directories for data, configuration and so on,
it is recommended to specify the home directory only. This ensures that every piece of data,
configuration, or logging, is within the specified location.

Step by step guide

	Choose a directory for GraphDB home, e.g., /opt/graphdb-instance.

	Create the directory /opt/graphdb-instance.

	(Optional) Copy the subdirectory conf from the distribution into /opt/graphdb-instance.

	Start GraphDB with graphdb -Dgraphdb.home=/opt/graphdb-instance or set the -D option in Tomcat.

GraphDB creates the missing subdirectories data, conf (if you skipped that step), logs, and work.

Migrating GraphDB Configurations

What’s in this document?

	Compatibility between the versions of GraphDB, Connectors, and third party connectors

	Migrating a repository

	Migrating a cluster

	Migrating connectors and plugins

To migrate from one GraphDB version to another, follow the instructions in the last column of the table below, and then the steps described further down in this page.

Compatibility between the versions of GraphDB, Connectors, and third party connectors

	GraphDB
and RDF4J

	Connectors: Elasticsearch, Lucene, Solr

	Steps for migrating from an older version

	GDB

	RDF4J

	Con

	ES

	Luc

	Solr

	9.6.x

	3.5.1

	13.0.1

	7.9.2

	8.6.3

	8.6.3

	No special attention needed.

	9.5.x

	3.4.4

	13.0.0

	7.9.2

	8.6.3

	8.6.3

	Introduced Entity change plugin
(used by the Ontotext Platform [https://platform.ontotext.com/])
as part of the fingerprint. In a cluster, this will lead to out of sync for the workers.
Stop the master and rename the txLog for backup purposes. Start the master again.

The following authentication parameters have been deprecated, but still work:
graphdb.auth.module, graphdb.auth.kerberos.enabled

	9.4.x

	3.3.1

	12.1.x

	7.7.0

	8.5.1

	8.5.1

	No special attention needed.

	9.3.x

	3.2.0

	12.1.x

	7.7.0

	8.5.1

	8.5.1

	Recreate all connectors with the repair option.

	9.2.x

	3.2.0
-M1

	12.0.x

	7.3.1

	8.2.0

	8.2.0

	Language tags in literals are now returned according to the recommended case normalization
specified by BCP47, Section 2.1.1 [https://tools.ietf.org/html/bcp47#section-2.1.1].
For comparing language literals we recommend the SPARQL 1.1 langMatches function [https://www.w3.org/TR/sparql11-query/#func-langMatches] instead of comparing language
tags directly (e.g. FILTER(lang(?var) = "en-gb") would fail because lang(?var)
will return the case-normalized tag as en-GB).

Some aggregate queries may return different results due to a fix in RDF4J [https://github.com/eclipse/rdf4j/issues/1978].

	9.1.x

	3.0.1

	12.0.1

	7.3.1

	8.2.0

	8.2.0

	Introduced History plugin as part of the fingerprint. In a cluster, this will lead to
out of sync for the workers. Stop the master and rename the txLog for backup
purposes. Start the master again.

	9.0.x

	2.5.2

	12.0.0

	7.3.1

	8.2.0

	8.2.0

	Recreate all connectors with the repair option.

	8.11.x

	2.5.2

	11.0.0

	6.6.x

	7.7.x

	7.7.x

	No special attention needed.

	8.10.x

	2.5.2

	11.0.0

	6.6.x

	7.7.x

	7.7.x

	No special attention needed.

	8.9.x

	2.4.6

	10.1.0

	6.6.x

	7.7.x

	7.7.x

	Removal of SPARQL-MM from the fingerprint.
In a cluster, this will lead to out of sync for the workers. Stop the master and rename
the txLog for backup purposes. Start the master again.

	8.8.x

	2.4.2

	10.0.0

	6.3.x

	7.4.x

	7.4.x

	No special attention needed.

	8.7.x

	2.3.2

	9.0.0

	6.3.x

	7.4.x

	7.4.x

	Recreate all the connectors with the repair option.
Need to rebuild Semantic similarity search indexes.

	8.6.x

	2.3.2

	8.0.0

	6.2.x

	7.2.x

	7.2.x

	Need to rebuild GeoSPARQL index.

	8.5.x

	2.2.4

	7.2.0

	5.3.x

	6.5.x

	6.5.x

	No more system repository in future installations. During the upgrade procedure,
system repository will be removed while the data insight will be backed up.
There will be config.ttl file in each repository directory with config data.
Important points:
1. Cannot query System repo.
2. More strict parser - IRI validation according to RFC3987

	8.4.x

	2.2.2

	7.2.0

	5.3.x

	6.5.x

	6.5.x

	Autocomplete is no longer part of the fingerprint. In case of cluster, this will lead
to out of sync for the workers. Stop the master and rename the txlog for backup
purposes. Start the master again.

	8.3.x

	2.2.2

	7.1.0

	5.3.x

	6.5.x

	6.5.x

	No special attention needed.

	8.2.x

	2.2.1

	7.0.0

	5.3.x

	6.5.x

	6.5.x

	No special attention needed.

	8.1.x

	2.1.6

	6.0.2

	2.4.0

	6.2.1

	6.2.1

	Recreate all the connectors with the repair option.
Please note the breaking changes for each connector:

	https://www.elastic.co/guide/en/elasticsearch/reference/5.0/breaking-changes-5.0.html

	https://lucene.apache.org/solr/guide/6_6/upgrading-solr.html#upgrading-solr

	8.0.x

	2.0.3

	6.0.2

	2.4.0

	6.2.1

	6.2.1

	No special attention needed.

Important points:

	The engine replaces PCSO and PCOS indexes with CPSO.

	Remove the owlim-license parameter from the repository TTL configuration.

	For older versions, please ask for support.

Migrating a repository

If you want to migrate your GraphDB configurations and replicate the setup, there are three steps that you need to follow:

	Back up your repository by copying the binary image (explained in more detail here), or restore it from an RDF export or from a binary image or zip backup (explained in more detail here).

For steps 2 and 3, it is useful to know that the GraphDB distribution package consists of several folders that are described in detail here.

	Copy the conf directory to the new instance. It contains the logback and the GraphDB configuration.

	Copy the work directory to the new instance. It contains all Workbench-related details, e.g., saved queries, users, user roles, etc.

Migrating a cluster

No cluster support in GraphDB SE.

Migrating connectors and plugins

Lucene: All you need to do is recreate the connector. If new properties are introduced, they will have default values.

Autocomplete: The index will be disabled to keep the cluster healthy, so you will need to enable it in the Workbench.

RDF Rank: You need to compute the rank as it will be outdated. This can be done through the Workbench interface.

Using Maven Artifacts

What’s in this document?

	Public Maven repository

	Distribution

	GraphDB JAR file for embedding the database or plugin development

Part of GraphDB’s Maven repository is open, and allows downloading GraphDB Maven artifacts without credentials.

Note

You still need to obtain a license from our Sales team, as the artifacts do not provide one.

Public Maven repository

To browse and search the public GraphDB’s Maven repository, use our Nexus [http://maven.ontotext.com/#browse/browse:owlim-releases].

For the Gradle build script:

repositories {
 maven {
 url "http://maven.ontotext.com/repository/owlim-releases"
 }
}

For the Maven POM file:

<repositories>
 <repository>
 <id>ontotext-public</id>
 <url>http://maven.ontotext.com/repository/owlim-releases</url>
 </repository>
</repositories>

Distribution

To use the distribution for some automation or to run integration tests in embedded Tomcat, get the zip artifacts with the following snippet:

<build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-dependency-plugin</artifactId>
 <version>2.10</version>
 <executions>
 <execution>
 <id>copy</id>
 <phase>package</phase>
 <goals>
 <goal>copy</goal>
 </goals>
 <configuration>
 <artifactItems>
 <artifactItem>
 <groupId>com.ontotext.graphdb</groupId>
 <artifactId>graphdb-se</artifactId>
 <version>${graphdb.version}</version>
 <type>zip</type>
 <classifier>dist</classifier>
 <outputDirectory>target/se-dist</outputDirectory>
 </artifactItem>
 </artifactItems>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

GraphDB JAR file for embedding the database or plugin development

To embed the database in your application or develop a plugin, you need the GraphDB runtime JAR. Here are the details for the runtime JAR artifact:

<dependency>
 <groupId>com.ontotext.graphdb</groupId>
 <artifactId>graphdb-enterprise-runtime</artifactId>
 <version>${graphdb.version}</version>
</dependency>

<dependency>
 <groupId>com.ontotext.graphdb</groupId>
 <artifactId>graphdb-standard-runtime</artifactId>
 <version>${graphdb.version}</version>
</dependency>

Administration

	Administration tasks

	Administration Tools

	Setting up Licenses

	Creating Locations

	Creating a Repository

	Configuring a Repository

	Secure GraphDB

	Request Tracking

	Application Settings

	Backing up and Restoring a Repository

	Query Monitoring and Termination

	Performance Optimizations

	Troubleshooting

Administration Tools

GraphDB can be administered through the Workbench, the JMX
interface, or programmatically.

What’s in this document?

	Workbench

	JMX interface

	Configuring the JMX endpoint

Workbench

The Workbench is the web-based administration interface to GraphDB. It lets you administer GraphDB, as well as load, explore, manage, query and export data. To use it, start GraphDB in Workbench mode and open http://localhost:7200/ in your browser.

JMX interface

After initialization, GraphDB registers a number of JMX MBeans for
each repository, each providing a different set of information and
functions for specific features.

Configuring the JMX endpoint

Configure the JMX endpoint using
special system properties when starting the Java virtual machine (JVM),
in which GraphDB is running. For example, the following command line
parameters set the JMX server endpoint to listen on port 2815 without authentication and a secure socket layer:

	Linux/Mac - add the following configuration in <graphdb_distribution>/bin/graphdb.in.sh.

JAVA_OPTS_ARRAY+=("-Djava.rmi.server.hostname=`hostname`")
JAVA_OPTS_ARRAY+=("-Dcom.sun.management.jmxremote")
JAVA_OPTS_ARRAY+=("-Dcom.sun.management.jmxremote.port=2815")
JAVA_OPTS_ARRAY+=("-Dcom.sun.management.jmxremote.ssl=false")
JAVA_OPTS_ARRAY+=("-Dcom.sun.management.jmxremote.authenticate=false")

	Windows - add the following configuration in <graphdb_distribution>/bin/graphdb.in.cmd.

set JAVA_OPTS=%JAVA_OPTS% -Djava.rmi.server.hostname=`hostname`
set JAVA_OPTS=%JAVA_OPTS% -Dcom.sun.management.jmxremote
set JAVA_OPTS=%JAVA_OPTS% -Dcom.sun.management.jmxremote.port=2815
set JAVA_OPTS=%JAVA_OPTS% -Dcom.sun.management.jmxremote.ssl=false
set JAVA_OPTS=%JAVA_OPTS% -Dcom.sun.management.jmxremote.authenticate=false

Once GraphDB is loaded, use any compliant JMX client, e.g., JConsole
that is part of the Java development kit, to access the JMX interface on
the configured port.

Setting up Licenses

What’s in this document?

	Setting up licenses through the Workbench

	Setting up licenses through a file

	Custom file path property

	Order of preference

	Deprecated methods

GraphDB SE is available under an RDBMS-like commercial
license on a per-server-CPU basis. It is neither free nor
open source. To purchase a license or obtain a copy for evaluation,
please contact graphdb-info@ontotext.com.

When installing GraphDB SE, the license file can be set through the GraphDB Workbench or programmatically.

Setting up licenses through the Workbench

To do that, follow the steps:

	Add, view, or update your license by using either the Set button in the top right or the Set new license button in the License section.

[image: _images/no-license-se.png]

	Select the license file and register it.

[image: _images/select-license-file.png]
You can also copy and paste it in the text area.

[image: _images/copy-paste-license.png]

	Validate your license.

[image: _images/validate-new-license.png]

	After completing these steps, you will see the details of your license.

Setting up licenses through a file

GraphDB will look for a graphdb.license file in the GraphDB configuration directory
(by default conf under GraphDB-HOME). To install a license file there, copy the license file as graphdb.license.

Custom file path property

You can use the configuration property graphdb.license.file to provide a custom path for the license file,
for example:

graphdb.license.file = /opt/graphdb/my-graphdb-dev.license

The license file must be readable by the user running GraphDB.

Note

If you set the license through a file in the config directory or a custom path, you will not be able to change the license through the GraphDB Workbench.

Order of preference

When looking for a license, GraphDB will use the first license it finds in this order:

	The custom license file property graphdb.license.file;

	The file graphdb.license in the configuration directory;

	A license set through the GraphDB Workbench.

Deprecated methods

GraphDB SE 9.6 supports some deprecated methods for setting the license. If you use one of them,
please consider switching to one of the official methods, as support for the deprecated ones may be dropped
in a future version. The deprecated methods are:

	The OWLIM_LICENSE environment variable;

	The owlim-license system property;

	The owlim:owlim-license repository property.

Note

The licenses for each commercial GraphDB edition are different, and will not work if used with the wrong software.

Tip

By default, GraphDB can be run on a machine with more CPUs than licensed.

Creating Locations

What’s in this document?

	Active location

	Inactive location

	Connect to a remote location

	Configure a data location

Locations represent individual GraphDB servers where the repository data is stored. They can be local (a directory on the disk) or remote (an endpoint URL), and can be attached, edited, and detached. Only a single location can be active at a time.

To manage your data locations:

	Start a browser and go to the Workbench web application using a URL of the form http://localhost:7200, substituting localhost and the 7200 port number as appropriate.

	Go to Setup -> Repositories.

Active location

Upon startup, GraphDB creates GraphDB-HOME/data directory as an active location. To change the directory, see Configuring GraphDB data directory.

[image: _images/Repository_locations.png]
Change active location settings

By default, the active location does not send anonymous usage statistics to Ontotext. To change this, click on the icon Edit common settings for these repositories and enable it.

[image: _images/usage-statistics-icon.png]
The following settings dialog will appear:

[image: _images/usage-statistics.png]
View or update active location license

Click the Key icon

[image: _images/view-license-icon.png]
to check the details of your current license.

[image: _images/view-license.png]

Inactive location

All inactive locations are listed below the active repository window. Here, you can change the locations settings, as well as disconnect the location from the running GraphDB.

[image: _images/inactive-locations.png]

Connect to a remote location

To connect to a remote location:

	Click the Attach remote location button and and enter the URL of the remote GraphDB instance, for example http://localhost:7300.

	In terms of authentication methods to the remote location, GraphDB offers three options:

	None: The security of the remote location is disabled, and no authentication is needed.

[image: _images/attach-location-auth-none.png]

	Basic authentication: The security of the remote location has basic authentication enabled (default setting). Requires a username and a password.

[image: _images/attach-location-auth-basic.png]

	Signature: Uses the token secret, which must be the same on both GraphDB instances. For more information on configuring the token secret, see the GDB authentication section of the Access Control documentation.

[image: _images/attach-location-auth-signature.png]

Hint

Signature authentication is the recommended method for a cluster environment, as both require the same authentication settings.

Note

If you use the Workbench as a SPARQL endpoint, all your queries are sent to a repository in the currently active location. This works well if you do not change the active location. To
have endpoints that are always accessible outside the Workbench, we
recommend using standalone Workbench and Engine installations,
connecting the Workbench to the Engine over a remote location and
using the Engine endpoints (i.e., not the ones provided by the
Workbench) in any software that executes SPARQL queries.

Note

You can connect to a remote location over HTTPS as well. To do so:

	Enable HTTPS on the remote host.

	Set the correct Location URL, for example https://localhost:8083.

	In case the certificate of the remote host is self-signed, you should add it to you JVM’s SSL TrustStore.

Configure a data location

Set the property graphdb.home.data in <graphdb_dist>/conf/graphdb.properties. If no property is set, the default repositories location will be <graphdb_dist>/data.

Creating a Repository

What’s in this document?

	Create a repository

	Using the Workbench

	Using the RDF4J console

	Manage repositories

	Select a repository

	Make it a default repository

	Edit a repository

Create a repository

There are two ways for creating and managing repositories: either through the Workbench interface, or by using the RDF4J console.

Using the Workbench

To manage your repositories, go to Setup -> Repositories. This opens a list of available repositories and their locations.

	Click the Create new repository button or create it from a file by using the configuration template that can be found at configs/templates/.

[image: _images/createRepository.png]

	Select GraphDB SE repository.

[image: _images/select-repo-type-se.png]

	Enter the Repository ID (e.g., repository1) and leave all other
optional configuration settings with their default values.

Tip

For repositories with over several tens of millions of statements, see the configuration parameters.

	Click the Create button. Your newly created repository appears in the repository list.

Note

Make sure the location where you want to create the repository is active.

Using the RDF4J console

Note

Use the create command to add new repositories to the location
to which the console is connected. This command expects the
name of the template that describes the repository’s configuration.

	Run the RDF4J console application, which resides in the /bin folder:

console.cmd (Windows)
./console (Unix/Linux)

	Connect to the GraphDB server instance using the command:

connect http://localhost:7200.

	Create a repository using the command:

create se.

	Fill in the values of the parameters in the console.

	Exit the RDF4J console:

quit.

Manage repositories

Select a repository

	Connect the newly created repository to the active location.

[image: _images/connect_to_repo.png]

	Alternatively, use the dropdown menu in the top right corner. This allows you to easily switch between repositories while running queries or importing and exporting data in other views.

[image: _images/selectRepository.png]

Make it a default repository

Use the pin to select it as a default repository.

[image: _images/default-repo-pin.png]

Edit a repository

To copy the repository URL, edit it, download the repository configuration as a Turtle file, restart it, or delete it, use the icons next to its name.

[image: _images/repo-actions.png]

Warning

Once a repository is deleted, all data contained in it is irrevocably lost.

You can restart a repository without having to restart the entire GraphDB instance. There are two ways to do that:

	Click the restart icon as shown above. A warning will prompt you to confirm the action.

	Click the edit icon, which will open the repository configuration. At its bottom, tick the restart box, save, and confirm.

[image: _images/restart-repo.png]

Warning

Restarting the repository will shut it down immediately, and all running queries and updates will be cancelled.

Configuring a Repository

Before you start adding or changing the parameter values, we recommend planning your repository configuration and familiarizing yourself with what each of the parameters does, what the configuration template is and how it works, what data structures GraphDB supports, what configuration values are optimal for your setup, etc.

What’s in this document?

	Plan a repository configuration

	Configure a repository through the GraphDB Workbench

	Edit a repository

	Configure a repository programmatically

	Configuration parameters

	Configure GraphDB memory

	Configure Java heap memory

	Single global page cache

	Configure Entity pool memory

	Sample memory configuration

	Upper bounds for the memory consumed by the GraphDB process

	Reconfigure a repository

	Using the Workbench

	Global overrides

	Rename a repository

	Using the Workbench

Plan a repository configuration

To plan your repository configuration, check out the following sections:

	Hardware sizing

	Configuration parameters

	How the template works

	GraphDB data structures

	Configure Java heap memory

	Configure Entity pool memory

Configure a repository through the GraphDB Workbench

To configure a new repository, complete its properties form.

[image: _images/create_repository_se.png]

Note

If you need a repository with enabled SHACL validation, you must enable this option at configuration time. SHACL validation cannot be enabled after the repository has been created.

Edit a repository

Some of the parameters you specify at repository creation time can be changed at any point.

	Click the Edit icon next to a repository to edit it.

	Restart GraphDB for the changes to take effect.

Configure a repository programmatically

Tip

GraphDB uses an RDF4J configuration
template [https://rdf4j.org/documentation/tools/repository-configuration/]
for configuring its repositories. RDF4J keeps the repository
configurations with their parameters, modeled in RDF. Therefore, in order to create a new repository, the RDF4J needs such an RDF file. For more information on how the configuration template works, see Repository configuration template - how it works.

To configure a new repository programmatically:

	Fill in the .ttl configuration template that can be found in the /configs/templates folder of the GraphDB distribution. The parameters are described in the Configuration parameters section.

RDF4J configuration template for a GraphDB Standard Edition repository

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix rep: <http://www.openrdf.org/config/repository#>.
@prefix sr: <http://www.openrdf.org/config/repository/sail#>.
@prefix sail: <http://www.openrdf.org/config/sail#>.
@prefix owlim: <http://www.ontotext.com/trree/owlim#>.

[] a rep:Repository ;
 rep:repositoryID "graphdb-test" ;
 rdfs:label "GraphDB SE repository" ;
 rep:repositoryImpl [
 rep:repositoryType "owlim:MonitorRepository" ;
 sr:sailImpl [
 sail:sailType "owlim:Sail" ;

 owlim:base-URL "http://example.org/graphdb#" ;
 owlim:defaultNS "" ;
 owlim:entity-index-size "10000000" ;
 owlim:entity-id-size "32" ;
 owlim:imports "" ;
 owlim:repository-type "file-repository" ;
 owlim:ruleset "rdfsplus-optimized" ;
 owlim:storage-folder "storage" ;

 owlim:enable-context-index "false" ;

 owlim:enablePredicateList "true" ;

 owlim:in-memory-literal-properties "true" ;
 owlim:enable-literal-index "true" ;

 owlim:check-for-inconsistencies "false" ;
 owlim:disable-sameAs "false" ;
 owlim:query-timeout "0" ;
 owlim:query-limit-results "0" ;
 owlim:throw-QueryEvaluationException-on-timeout "false" ;
 owlim:read-only "false" ;
 owlim:nonInterpretablePredicates "http://www.w3.org/2000/01/rdf-schema#label;http://www.w3.org/1999/02/22-rdf-syntax-ns#type;http://www.ontotext.com/owlim/ces#gazetteerConfig;http://www.ontotext.com/owlim/ces#metadataConfig" ;
]
].

To configure a SHACL validation enabled repository programmatically, do the same as above, but with the added SHACL parameters:

RDF4J configuration template for a GraphDB Standard repository with SHACL validation support

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix rep: <http://www.openrdf.org/config/repository#> .
@prefix sail: <http://www.openrdf.org/config/sail#> .
@prefix sail-shacl: <http://rdf4j.org/config/sail/shacl#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<#graphdb-test> a rep:Repository;
 rep:repositoryID "graphdb-test";
 rep:repositoryImpl [
 rep:repositoryType "owlim:MonitorRepository";
 <http://www.openrdf.org/config/repository/sail#sailImpl> [
 sail-shacl:cacheSelectNodes true;
 sail-shacl:dashDataShapes true;
 sail-shacl:eclipseRdf4jShaclExtensions true;
 sail-shacl:globalLogValidationExecution false;
 sail-shacl:ignoreNoShapesLoadedException false;
 sail-shacl:logValidationPlans false;
 sail-shacl:logValidationViolations false;
 sail-shacl:parallelValidation true;
 sail-shacl:performanceLogging false;
 sail-shacl:rdfsSubClassReasoning true;
 sail-shacl:serializableValidation true;
 sail-shacl:undefinedTargetValidatesAllSubjects false;
 sail-shacl:validationEnabled true;
 sail-shacl:validationResultsLimitPerConstraint "-1"^^xsd:long;
 sail-shacl:validationResultsLimitTotal "-1"^^xsd:long;
 sail:delegate [
 <http://www.ontotext.com/trree/owlim#base-URL> "http://example.org/owlim#";
 <http://www.ontotext.com/trree/owlim#check-for-inconsistencies> "false";
 <http://www.ontotext.com/trree/owlim#defaultNS> "";
 <http://www.ontotext.com/trree/owlim#disable-sameAs> "true";
 <http://www.ontotext.com/trree/owlim#enable-context-index> "false";
 <http://www.ontotext.com/trree/owlim#enable-literal-index> "true";
 <http://www.ontotext.com/trree/owlim#enablePredicateList> "true";
 <http://www.ontotext.com/trree/owlim#entity-id-size> "32";
 <http://www.ontotext.com/trree/owlim#entity-index-size> "10000000";
 <http://www.ontotext.com/trree/owlim#imports> "";
 <http://www.ontotext.com/trree/owlim#in-memory-literal-properties> "true";
 <http://www.ontotext.com/trree/owlim#owlim-license> "";
 <http://www.ontotext.com/trree/owlim#query-limit-results> "0";
 <http://www.ontotext.com/trree/owlim#query-timeout> "0";
 <http://www.ontotext.com/trree/owlim#read-only> "false";
 <http://www.ontotext.com/trree/owlim#repository-type> "file-repository";
 <http://www.ontotext.com/trree/owlim#ruleset> "rdfsplus-optimized";
 <http://www.ontotext.com/trree/owlim#storage-folder> "storage";
 <http://www.ontotext.com/trree/owlim#throw-QueryEvaluationException-on-timeout> "false";
 sail:sailType "owlim:Sail"
];
 sail:sailType "rdf4j:ShaclSail"
]
];
rdfs:label "" .

	Use this command to create a repo from the config.ttl:

curl -X POST --header "Content-Type:multipart/form-data" -F "config=@./config.ttl"
 "http://localhost:7200/rest/repositories"

Configuration parameters

This is a list of all repository configuration parameters. Some of the parameters can be
changed (effective after a restart), some cannot be changed (the change has no effect)
and others need special attention once a repository has been created, as changing them will
likely lead to inconsistent data (e.g., unsupported inferred statements, missing
inferred statements, or inferred statements that cannot be deleted).

	Parameter name

	Description

	Default value

	base-URL

	Specifies the default namespace for the main persistence file.
Non-empty namespaces are recommended, because their use guarantees
the uniqueness of the anonymous nodes that may appear within the repository.

	
none

Can be changed.

	
check-for-inconsistencies

(see more)

	Enables or disables the mechanism for consistency checking.
If this parameter is true, consistency checks are defined in the rule
file and applied at the end of every transaction. If an inconsistency is
while committing a transaction, the whole transaction will be rolled back.

	
false

Can be changed.

	
defaultNS

	Default namespaces corresponding to each imported schema file,
separated by semicolon. The number of namespaces must be equal to the
number of schema files from the imports parameter. Example:
owlim:defaultNS "http://www.w3.org/2002/07/owl#;http://example.org/owlim#"

Warning: This parameter cannot be set via a command line argument.

	
<empty>

Cannot be changed.

	
disable-sameAs

(see more)

	Enables or disables the owl:sameAs optimization.

Warning: This parameter needs special attention.

	
true

Can change in the UI depending
on the ruleset.

	
enable-context-index

(see more)

	Possible value: true, where GraphDB will build and use the context index.

	
false

Can be changed.

	
enable-literal-index

(see more)

	Enables or disables the storage.
The literal index is always built as data is loaded/modified.
This parameter only affects whether the index is used during query answering.

	
true

Can be changed.

	
enablePredicateList

(see more)

	Enables or disables mappings from an entity (subject or object)
to its predicates; enabling it can significantly speed up queries
that use wildcard predicate patterns.

	
true

Can be changed.

	entity-id-size

	Defines the bit size of internal IDs used to index entities
this parameter can be left at its default value. However, if using very
large datasets containing over 2 31 entities,
set this parameter to 40. Be aware that this can only be set when
instantiating a new repository, and that converting an existing repository
from 32 to 40-bit entity widths is not possible.

Possible values: 32 and 40.

	
32

Cannot be changed.

	
entity-index-size

(see more)

	
Defines the initial size of the entity hash table index entries.
The bigger the size, the fewer the collisions in the hash table,
and the faster the entity retrieval. The entity hash table will adapt
to the number of stored entities once the number of
collisions passes a critical threshold.

Warning: Once initially set, this parameter cannot be changed
by the user.

	10,000,000

	
imports

Tip: Schema files can be either a local path
name, e.g., ./ontology/myfile.rdf or a URL,
e.g., http://www.w3.org/2002/07/owl.rdf.
If this parameter is used, the default
namespace for each imported schema file
must be provided using the
defaultNS parameter.

	A list of schema files that will be imported at startup.
All statements found in these files will be loaded in the repository
and will be treated as read-only.
The serialization format is determined by the file extension:

	.brf => BinaryRDF

	.n3 => N3

	.nq => N-Quads

	.nq => N-Quads

	.nt => N-Triples

	.owl => RDF/XML

	.rdf => RDF/XML

	.rdfs => RDF/XML

	.trig => TriG

	.trix => TriX

	.ttl => Turtle

	.xml => TriX

Example: owlim:imports "./ont/owl.rdfs;./ont/ex.rdfs"

	
none

Cannot be changed.

	
in-memory-literal-properties

(see more)

	Enables or disables caching of the literal languages and data types.
If the caching is on and the entity pool is restored from persistence, but
there is no such cache available on disk, it is created after the entity pool
initialization.

	
true

Can be changed.

	
nonInterpretablePredicates

	Colon-separated list of predicates (full URLs) that GraphDB will not try to
process with the registered GraphDB plugins. (Predicates processed by
registered plugins are often called “Magic” predicates). This optimization
will speed up the data loading by providing a hint that these predicates are
not magic.

	http://www.w3.org/2000/01/rdf-
schema#label;http://www.w3.org/
1999/02/22-rdf-syntax-ns#type;
http://www.ontotext.com/owlim/
ces#gazetteerConfig;http:
//www.ontotext.com/owlim/ces
#metadataConfig

	query-limit-results

	Sets the maximum number of results returned from a query after which
he evaluation of a query will be terminated; values less than or equal to
zero mean no limit.

	
0; (no limit)

Can be changed.

	
query-timeout

(see more)

	Sets the number of seconds after which the evaluation of a query will be
terminated; values less than or equal to zero mean no limit.

	
0; (no limit)

Can be changed.

	
read-only

	In this mode, no modifications to the data or namespaces are allowed.

Possible value: true, puts the repository in read-only mode.

	
false

Can be changed.

	
repository-type

	In this mode, no modifications to the data or namespaces are allowed.

Possible values: file-repository, weighted-file-repository.

	
file-repository

Cannot be changed.

	
ruleset

(see more)

Tip:
Hints on optimizing GraphDB’s rulesets.

	Sets of axiomatic triples, consistency checks and entailment rules,
which determine the applied semantics.

Possible values: empty, rdfs, owl-horst, owl-max, and
owl2-rl, and their optimized counterparts rdfs-optimized,
owl-horst-optimized, owl-max-optimized, and owl2-rl-optimized.
A custom ruleset is chosen by setting the path to its rule file .pie.

Warning: This parameter needs special attention.

	rdfs-plus-optimized

	
storage-folder

(see more)

	Specifies the folder where the index files will be stored.

	
none

Can be changed.

	
throw-QueryEvaluationException-on-timeout

	Possible value: true; if set, a QueryEvaluationException is thrown
when the duration of a query execution exceeds the timeout parameter.

	
false

Can be changed.

Configure GraphDB memory

Configure Java heap memory

The following diagram offers a view of the memory use by
the GraphDB structures and processes:

[image: _images/total_JAVA_Heap_Memory.png]
To specify the maximum amount of heap space used by a JVM, use the -Xmx virtual machine parameter.

As a general rule, the -Xmx value should not exceed 2/3 of the system memory. This means that if you have a system with a total of 8 gigabytes RAM, where 1 gigabyte is used by the operating system, services, etc., and 1 gigabyte by the entity pool and the hash maps. As they are off-heap, the JVM that hosts the application using GraphDB should, ideally, have a maximum heap size of 6 gigabytes, and can be set using the JVM argument -Xmx6g.

Single global page cache

GraphD’s cache strategy, the single global page cache, employs the concept of one global cache shared between all internal structures of all repositories. This way, you no longer have to configure the cache-memory, tuple-index-memory and predicate-memory, or size every repository and calculate the amount of memory dedicated to it. If at a given moment one of the repositories is being used more, it will naturally get more slots in the cache.

The current global cache implementation can be enabled by specifying:
-Dgraphdb.global.page.cache=true -Dgraphdb.page.cache.size=3G.
If you do not specify graphdb.page.cache.size but only enable the global cache, it will take 50% of the -Xmx parameter.

Note

You do not have to change/edit your repository configurations. The new cache
will be used when you upgrade to the new version.

Configure Entity pool memory

By default, all entity pool structures are residing off-heap, i.e., outside of the normal JVM heap. This way, you do not have to calculate the entity pool memory when
giving the JVM max heap memory parameter to GraphDB. This means, however, that you need to leave some memory outside of the -Xmx.

To activate the old behavior, you can still enable on-heap allocation with -Dgraphdb.epool.onheap=true.

If you are concerned that the process will eat up unlimited amount of memory, you can specify a maximum size with
-XX:MaxDirectMemorySize, which defaults to the -Xmx parameter (at least in OpenJDK and Oracle JDK).

Sample memory configuration

This is a sample configuration demonstrating how to correctly size a GraphDB server with a single repository. The loaded dataset is estimated to 500 million RDF statements and 150 million unique entities. As a rule of thumb, the average number of unique entities compared to the total number of statements in a standard dataset is 1:3.

	Configuration parameter

	Description

	Example value

	Total OS memory

	Total physical system memory

	16 GB

	On-heap JVM (-Xmx) configuration

	Maximum heap memory allocated by the JVM process

	10 GB

	graphdb.page.cache.size

	Global single cache shared between all internal structures of all repositories (the default value is 50% of the heap size)

	5 GB

	Remaining on-heap memory for query execution

	Raw estimate of the memory for query execution; a higher value is required if many, long running analytical queries are expected

	~4.5 GB

	entity-index-size (“Entity index size”) stored off-heap by default

	Size of the initial entity pool hash table; the recommended value is equal to the total number of unique entities

	150,000,000

	Memory footprint of the entity pool stored off-heap by default

	Calculated from entity-index-size and total number of entities; this memory will be taken after the repository initialization

	~2.5 GB

	Remaining OS memory

	Raw estimate of the memory left to the OS

	~3.5 GB

Upper bounds for the memory consumed by the GraphDB process

In order to make sure that no OutOfMemoryExceptions are thrown while working with an active GraphDB repository, you need to set an upper bound value for the memory consumed by all instances of the tupleSet/distinct collections. This is done with the -Ddefault.min.distinct.threshold parameter, whose default value is 250m and can be changed. If this value is surpassed, a QueryEvaluationException is thrown so as to avoid running out of memory due to hungry distinct/group by operation.

Reconfigure a repository

Once a repository is created, it is possible to change some parameters,
either by editing it in the Workbench or by setting a global override for a given property.

Note

When you change a repository parameter, you need to restart GraphDB
for the changes to take effect.

Using the Workbench

To edit a repository parameter in the GraphDB Workbench,
go to Setup -> Repositories and click the Edit icon
for the repository whose parameters you want to edit.

Global overrides

It is also possible to override a repository parameter for all repositories
by setting a configuration or system property. See Engine properties
for more details on how to do it.

Rename a repository

Using the Workbench

Use the Workbench to change the repository ID.
This will update all locations in the Workbench where the repository name is used.

Secure GraphDB

What’s in this document?

	Enable security

	Login and default credentials

	Free access

	Users and Roles

	Create new user

	Set password

Security configurations in the GraphDB Workbench are located under Setup -> Users and Access.

The Users and Access page allows you to create new users, edit the profiles, change their password and read/write permissions for each repository, as well as delete them.

Note

As a security precaution, you cannot delete or rename the admin user.

Enable security

[image: _images/users_and_access.png]
By default, the security for the entire Workbench instance is disabled. This means that everyone has full access to the repositories and the admin functionality.

To enable security, click the Security slider on the top right. You are immediately taken to the login screen.

Login and default credentials

[image: _images/login.png]
The default admin credentials are:

username: admin

password: root

Note

We recommend changing the default credentials for the admin account as soon as possible. Using the default password in production is not secure.

Free access

Once you have enabled security, you can turn on free access mode. If you click the slider associated with it, you will be shown this pop-up box:

[image: _images/Free_access_configuration.png]
This gives you the ability to allow unrestricted access to a number of resources without the need of any authentication.

In the example above, all users will be able to read and write in the repository called “news”, and read the “wine” repository. They will also be able to create or delete connectors and toggle plugins for the “news” repository.

Application settings allow you to configure the default behavior for the GraphDB Workbench.

Users and Roles

Create new user

This is the user creation screen.

[image: _images/Create-new-user2.png]
Any user can have three different roles:

	User - can save SPARQL queries, graph visualizations or user-specific server side settings. Can also be given specific repository permissions.

	Repository manager - in addition to what a standard user can do, also has full read and write permission to all repositories. Can create, edit, and delete them. Can also access monitoring and configure whether the service reports anonymous usage statistics.

	Admin - can perform any server operation.

Regular users can be granted specific repository permissions. Granting a write permission to a user will mean that they can also read that repository.

If you want to allow a particular user global access to all repositories, you can do that by using the Any data repository checkbox.

Set password

[image: _images/Edit_User.png]
The only difference between the Edit user and Create new user screens is that in Edit user, you cannot change the username.

Request Tracking

Tracking a single request through a distributed system is an issue due to the scattered nature of the logs. Therefore, GraphDB offers the capability for tracking particular request ID headers, or generates those itself if need be. This allows for easier auditing and system monitoring. Headers will be intercepted when a request comes into the database and passed onwards together with the response. Request tracking is turned off by default, and can be enabled by adding graphdb.append.request.id.headers=true to their graphdb.properties file. The value is already present in the default configuration file, but needs to be uncommented to work.

By default, GraphDB scans all incoming requests for an X-Request-ID header. If no such header exists, it assigns to the incoming request a random ID in the UUID type 5 format.

Some clients and systems assign alternative names to their request identifiers. Those can be listed in the following format:

graphdb.request.id.alternatives=my-request-header-1, outside-app-request-header

In a cluster, headers will be logged in the masters’ logs and the logs of the worker executing the request.

Application Settings

Application settings help you to configure the default behavior of the GraphDB Workbench.

The Workbench interface has some useful options that change only the way you query the database, not changing the rest of the GraphDB behavior:

[image: _images/application-settings.png]

	Default SameAS value - This is the default value for the Expand results over owl:SameAs option in the SPARQL editor. It is taken each time a new tab is created. Note that once you toggle the value in the editor, the changed value is saved in your browser, so the default is used only for new tabs.

	Default Inference value - Same as above, but for the Include inferred data in results option in the SPARQL editor.

	Count all SPARQL results - For each query without limit sent through the SPARQL editor, an additional query is sent to determine the total number of results. This value is needed both for your information and for results pagination. In some cases, you do not want this additional query to be executed, because for example the evaluation may be too slow for your data set. Set this option to false in this case.

Application settings are user-based.
When security is ON, each user can access their own settings through the Setup -> My Settings menu. The admin user can also change other users’ settings through Setup -> User and access -> Edit user.

When security is OFF, the settings are global for the application and available through Setup -> My Settings.

When free access is ON, only the admin can set the application settings.

Backing up and Restoring a Repository

What’s in this document?

	Back up a repository

	Export repository to an RDF file

	Back up a repository using JMX interface

	Back up GraphDB by copying the binary image

	Restore a repository

Back up a repository

Repository backups allow you to revert a GraphDB repository to a previous state. The database offers different approaches of copying the repository state:

	Export the repository to an RDF file - this operation can run in parallel to read and write, but takes longer to complete.

	Back up a repository using the JMX interface or cURL.

	Copy the repository image directory to a backup - this is a much faster option, but in non-cluster setups it requires shutdown of the database process.

Note

We recommend all repository backups to be scheduled during periods of lower user activity.

Export repository to an RDF file

The repository export works without having to stop GraphDB. This operation usually takes longer than copying the low level file system, because all explicit RDF statements must be serialized and de-serialized over HTTP. Once the export operation starts, all following updates will not be included in the dump. To invoke the export repository operation, several interfaces are available:

Option 1: Export the repository with the GraphDB Workbench.

Export the database contents using the Workbench. To
preserve the contexts (named graph) when exporting/importing the
whole database, use a context-aware RDF file format, e.g., TriG.

	Go to Explore/Graphs overview.

	Choose the files you want to export.

	Click Export graph as TriG.

[image: _images/export_TriG.png]
Option 2: Export all statements with cURL.

The repository SPARQL endpoint supports dumping all explicit statements (replace the repositoryId with a valid repository name) with:

curl -X GET -H "Accept:application/x-trig" "http://localhost:7200/repositories/repositoryId/statements?infer=false" > export.trig

This method streams a snapshot of the database’s explicit statements into the export.trig file.

Option 3: Export all statements using the RDF4J API.

The same operation can be executed once with Java code by calling the RepositoryConnection.exportStatements() [http://docs.rdf4j.org/javadoc/latest/org/eclipse/rdf4j/repository/RepositoryConnection.html#exportStatements-org.eclipse.rdf4j.model.Resource-org.eclipse.rdf4j.model.IRI-org.eclipse.rdf4j.model.Value-boolean-org.eclipse.rdf4j.rio.RDFHandler-org.eclipse.rdf4j.model.Resource...-] method with the includeInferred flag set to false (to return only the explicit statements).

Example:

RepositoryConnection connection = repository.getConnection();
FileOutputStream outputStream = new FileOutputStream(new File("export.nq"));
RDFWriter writer = Rio.createWriter(RDFFormat.NQUADS, outputStream);
connection.exportStatements(null, null, null, false, writer);
IOUtils.closeQuietly(outputStream);

The returned iterator can be used to visit every explicit statement in the repository. One of the RDF4J RDF writer implementations can be used to output the statements in the chosen format.

Note

If the data will be re-imported, we recommend the N-Quads format as it can easily be broken down into large ‘chunks’ that can be inserted and committed separately.

Back up a repository using JMX interface

GraphDB offers backing up a repository through JMX.

Use the OwlimRepositoryManager MBean method createZipBackup(String backupName) with a backupName argument. This will create a zip file named rep_<repository_id>-<timestamp>_backup.zip with the content of the repository data directory (the storage folder is a subfolder there, so the config.ttl should be archived too). By default, it will be created in the backup/backupName directory of the repository’s folder.

You can also change the location of the backup directory by using the runtime property -Dgraphdb.backup.base.folder=<full_path_to_target_folder>. This will result in creating backup in the <full_path_to_target_folder/backup/backupName> folder.

Invoking method with null parameter for backupName will result in creating backup in the default folder.

Note

Any attempt to create backup with an invalid backupName will result in the following message:

“Backup name must start with a letter, digit, or underscore.

Each subsequent character may be a letter, digit, underscore, dash, or period.”

You can invoke the method from JConsole, or by sending an HTTP request via cURL:

Back up a repository from JConsole

Invoke backup from the JMX interface using JConsole:

[image: _images/backup_jconsole.png]

Back up a repository using cURL

curl -H 'content-type: application/json' -d "{\"type\":\"exec\",\"mbean\":\"com.ontotext:type=OwlimRepositoryManager,name=\\\"Repository (/full_path_to_repository_storage/)\\\"\",\"operation\":\"createZipBackup\",\"arguments\":[\"backupName\"]}" http://localhost:7200/jolokia/

Here is an example where full_path_to_repository_storage is replaced by a real path:

curl -H 'content-type: application/json' -d "{\"type\":\"exec\",\"mbean\":\"com.ontotext:type=OwlimRepositoryManager,name=\\\"Repository (/home/ubuntu/graphdb-se-8.7.0/data/repositories/test/storage/)\\\"\",\"operation\":\"createZipBackup\",\"arguments\":[\"backupName\"]}" http://localhost:7200/jolokia/

This will produce a folder backupName in the <test>/backup/ directory which contains the backup zip.

Back up GraphDB by copying the binary image

Note

This is the fastest method to back up a repository, but it requires stopping the database.

All RDF data is stored only in your repository.

	Stop the GraphDB server.

	Manually copy the storage folders to the backup location.

kill <pid-of-graphdb>
sleep 10 #wait some time for the database to stop
cp -r {graphdb.home.data}/repositories/your-repo backup-dest/date/ #copies GraphDB's data

Tip

For more information about the data directory, see here.

Restore a repository

The restore options depend on the backup format.

Option 1: Restore a repository from an RDF export.

This option will import a previously exported file into an empty repository.

	Make sure that the repository is empty or recreated with the same repository configuration settings.

	Go to Import > RDF, and select the Server files tab.

	Press the Help button to see the directory path where you need to import your files or directories.

	Copy the RDF file with the backup into this directory path and refresh the Workbench.

	Start the file import and wait for the data to be imported.

Option 2: Restore the database from a binary image or zip backup.

	Make sure that the repository is empty or recreated with the same repository configuration settings.

	Stop the GraphDB server.

	Delete the entire your-repo folder, and copy/paste the folder of the {graphdb.home.data}/repositories/your-repo from the backup copy.

	Start the GraphDB server.

	Run a quick test read query to make sure that the repository is initialized correctly.

Query Monitoring and Termination

What’s in this document?

	Query monitoring and termination using the Workbench

	Query monitoring and termination using the JMX interface

	Query monitoring

	Terminating a query

	Terminating a transaction

	Automatically prevent long running queries

Query monitoring and termination can be done manually from the Workbench or by running a JMX operation, and automatically by configuring GraphDB to abort queries after a certain query timeout is reached.

Query monitoring and termination using the Workbench

When there are running queries, their number is shown up next to the Repositories dropdown menu.

To track and interrupt long running queries:

	Go to Monitoring -> Queries or click the Running queries status next to the Repositories dropdown menu.

	Press the Abort query button to stop a query.

To pause the current state of the running queries, use the Pause button. Note that this will not stop their execution on the server.

[image: _images/query-monitoring.png]
To interrupt long running queries, click the Abort query button.

	Attribute

	Description

	id

	the ID of the query

	node

	local or remote worker node repository ID

	type

	the operation type QUERY or UPDATE

	query

	the first 500 characters of the query string

	lifetime

	the time in seconds since the iterator was created

	state

	the low level details for the current query collected over the JMX interface

You can also interrupt a query directly from the SPARQL Editor:

[image: _images/editorWithAbort.png]

Query monitoring and termination using the JMX interface

Query monitoring

GraphDB offers a number of monitoring and control functions through JMX. It also provides detailed statistics about executing queries, or, more accurately,
query result iterators. This is done through the RepositoryMonitor
MBean, one for each repository instance. Each bean instance is named
after the storage directory of the repository to which it relates.

	Package

	com.ontotext

	MBean name

	RepositoryMonitor

The RepositoryMonitor MBean has two attributes - TrackRecords and TrackRecordsNumber.

The TrackRecords attribute is an array of objects with the following attributes:

	Attribute

	Description

	msSinceCreated

	the time (in ms) since the iterator was created

	numberOfOperations

	the total number of operations for this iterator

	requestedToStop

	indicates if the query has been requested to terminate early (see below)

	sparqlString

	the full text of the query

	state

	the current state of the iterator: ACTIVE, IN_HAS_NEXT , COMMIT_PENDING , IN_COMMIT , IN_COMMIT_PLUGIN , IN_NEXT , BEGIN_PENDING , IN_PARALLEL_IMPORT , IN_PARALLEL_COMMIT , ENQUEUED, CLOSED

	trackAlias

	a unique alias for this iterator given by the client

	trackId

	a unique ID for this iterator - if debug level is used to increase the detail of the GraphDB output, then this value is used to identify queries when logging the query execution plan and optimization information

	type

	the type of this iterator - UPDATE or READ

The TrackRecordsNumber attribute is the number of running queries.

[image: _images/query_load.png]
The collection of these objects grows for each executing/executed query.
However, older objects in the CLOSED state expire and are removed from
the collection, as the query result iterators are garbage collected.

Terminating a query

The following operations are available with RepositoryMonitor MBean:

	Operation

	Description

	requestStop

	Requests that a query terminates early;
parameter: trackId of the query to stop

	requestStopByAlias

	Requests that a query terminates early;
parameter: trackAlias of the query to stop

	getFullSparqlString

	Returns the full text of the query;
parameter: trackId of the query

The requestStop and requestStopByAlias operations allow an administrator to request earliest as possible termination of a query.

To terminate a query, execute the requestStop command with given trackId of the query; or requestStopByAlias with given trackAlias.

As a result:

	The requestedToStop attribute is set to true.

	The query terminates normally when hasNext() returns false.

	The so far collected result will be returned by the interrupted query.

Terminating a transaction

It is also possible to terminate a long committing update transaction. For example, when
committing a ‘chain’ of many thousands of statements using some transitive property,
the inferencer will attempt to materialize all possible combinations leading to hundreds of millions of inferred statements. In such a situation, you can abort the commit operation
and roll back to the state the database had before the commit was attempted.

The following MBean is used:

	Package

	com.ontotext

	MBean name

	OwlimRepositoryManager

This MBean has no attributes:

	Operation

	Description

	abortTransactionCommit

	Requests that the currently executing (lengthy) commit operation be terminated and rolled back.

Automatically prevent long running queries

You can set a global query timeout period by adding a query-timeout configuration parameter. All queries will stop after the number of seconds you have set in it, where a default value of 0 indicates no limit.

Performance Optimizations

The best performance is typically measured by the shortest load time and the fastest query answering. Here are all the factors that affect GraphDB performance:

	Configure GraphDB memory

	Data loading & query optimizations

	Dataset loading

	GraphDB’s optional indices

	Cache/index monitoring and optimizations

	Query optimizations

	Explain Plan

	Inference optimizations

	Delete optimizations

	Rules optimizations

	Optimization of owl:sameAs

	RDFS and OWL support optimizations

Data loading & query optimizations

What’s in this document?

	Dataset loading

	Normal operation

	GraphDB’s optional indices

	Predicate lists

	Context index

	Cache/index monitoring and optimizations

	Query optimizations

	Caching literal language tags

	Not enumerating sameAs

The life cycle of a repository instance typically starts with the
initial loading of datasets, followed by the processing of queries and
updates. The loading of a large dataset can take a long time - up to 12
hours for one billion statements with inference. Therefore, during
loading, it is often helpful to use a different configuration than the one
for a normal operation.

Furthermore, if you frequently load a certain dataset, since it gradually
changes over time, the loading configuration can evolve as you
become more familiar with the GraphDB behavior towards this dataset. Many
dataset properties only become apparent after the initial load
(such as the number of unique entities) and this information can be used
to optimize the loading step for the next round or to improve the
configuration for a normal operation.

Dataset loading

The following is a typical initialization life cycle:

	Configure a repository for best loading performance with many estimated parameters.

	Load data.

	Examine dataset properties.

	Refine loading configuration.

	Reload data and measure improvement.

Unless the repository has to handle queries during the initialization
phase, it can be configured with the minimum number of options and
indices:

enablePredicateList = false (unless the dataset has a large number of predicates)
enable-context-index = false
in-memory-literal-properties = false

Normal operation

The size of the data structures used to index entities is directly
related to the number of unique entities in the loaded dataset. These
data structures are always kept in memory. In order to get an upper
bound on the number of unique entities loaded and to find the actual
amount of RAM used to index them, it is useful to know the contents of the
storage folder.

The total amount of memory needed to index entities is equal to the sum
of the sizes of the files entities.index and entities.hash. This
value can be used to determine how much memory is used and therefore how
to divide the remaining memory between the cache memory, etc.

An upper bound on the number of unique entities is given by the size of
entities.hash divided by 12 (memory is allocated in pages and
therefore the last page will likely not be full).

The file entities.index is used to look up entries in the file
entities.hash, and its size is equal to the value of the
entity-index-size parameter multiplied by 4. Therefore, the
entity-index-size parameter has less to do with efficient use of
memory and more with the performance of entity indexing and lookup. The
larger this value, the less collisions occur in the entities.hash
table. A reasonable size for this parameter is at least half the number
of unique entities. However, the size of this data structure is never
changed once the repository is created, so this knowledge can only be
used to adjust this value for the next clean load of the dataset with a
new (empty) repository.

The following parameters can be adjusted:

	Parameter

	Description

	
entity-index-size

(see more)

	Set to a large enough value.

	
enablePredicateList

(see more)

	Can speed up queries (and loading).

	
enable-context-index

(see more)

	Provides better performance when executing queries that use contexts.

	
index-in-memory-literal-properties

(see more)

	Defines whether to keep the properties of each literal in-memory.

Furthermore, the inference semantics can be adjusted by choosing a
different ruleset. However, this will require a reload of the whole
repository, otherwise some inferences may remain in the wrong location.

Note

The optional indices can be built at a later point when the
repository is used for query answering. You need to experiment using
typical query patterns from the user environment.

GraphDB’s optional indices

Predicate lists

Predicate lists are two indices (SP and OP) that can improve
performance in the following situations:

	When loading/querying datasets that have a large number of
predicates;

	When executing queries or retrieving statements that use a wildcard
in the predicate position, e.g., the statement pattern:
dbpedia:Human ?predicate dbpedia:Land.

As a rough guideline, a dataset with more than about 1,000 predicates
will benefit from using these indices for both loading and query
answering. Predicate list indices are not enabled by default, but can be
switched on using the enablePredicateList configuration parameter.

Context index

To provide better performance when executing queries that use contexts,
you can use the context index CPSO. It is enabled
by using the enable-context-index configuration parameter.

Cache/index monitoring and optimizations

Statistics are kept for the main index data structures, and include
information such as cache hits/misses, file reads/writes, etc. This
information can be used to fine-tune GraphDB memory configuration, and
can be useful for ‘debugging’ certain situations, such as understanding
why load performance changes over time or with particular datasets.

[image: _images/global-cache-metrics.jpg]
For each index, there will be a CollectionStatistics MBean published,
which shows the cache and file I/O values updated in real time:

	Package

	com.ontotext

	MBean name

	CollectionStatistics

The following information is displayed for each MBean/index:

	Attribute

	Description

	CacheHits

	The number of operations completed without accessing the storage system.

	CacheMisses

	The number of operations completed, which needed to access the storage system.

	FlushInvocations

	

	FlushReadItems

	

	FlushReadTimeAverage

	

	FlushReadTimeTotal

	

	FlushWriteItems

	

	FlushWriteTimeAverage

	

	FlushWriteTimeTotal

	

	PageDiscards

	The number of times a non-dirty page’s memory was reused to read in another page.

	PageSwaps

	The number of times a page was written to the disk, so its memory could be used to load another page.

	Reads

	The total number of times an index was searched for a statement or a range of statements.

	Writes

	The total number of times a statement was added to a collection.

The following operations are available:

	Operation

	Description

	resetCounters

	Resets all the counters for this index.

Ideally, the system should be configured to keep the number of cache
misses to a minimum. If the ratio of hits to misses is low,
consider increasing the memory available to the index (if other factors
permit this).

Page swaps tend to occur much more often during large scale data loading.
Page discards occur more frequently during query evaluation.

Query optimizations

GraphDB uses a number of query optimization techniques by default. They
can be disabled by using the enable-optimization configuration
parameter set to false, however there is rarely any need to do this.
See GraphDB’s Explain Plan for a way to view query plans and applied
optimizations.

Caching literal language tags

This optimization applies when the repository contains a large number of
literals with language tags, and it is necessary to execute queries that
filter based on language, e.g., using the following SPARQL query
construct:

FILTER (langMatches(lang(?name), "es"))

In this situation, the in-memory-literal-properties configuration
parameters can be set to true, causing the data values with language
tags to be cached.

Not enumerating sameAs

During query answering, all URIs from each equivalence class produced by
the sameAs optimization are enumerated. You can use the
onto:disable-sameAs pseudo-graph (see
Other special query behavior) to significantly
reduce these duplicate results (by returning a single
representative from each equivalence class).

Consider these example queries executed against the
FactForge [http://factforge.net/] combined dataset. Here, the
default is to enumerate:

PREFIX dbpedia: <http://dbpedia.org/resource/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT * WHERE { ?c rdfs:subClassOf dbpedia:Airport}

producing many results:

dbpedia:Air_strip
http://sw.cyc.com/concept/Mx4ruQS1AL_QQdeZXf-MIWWdng
umbel-sc:CommercialAirport
opencyc:Mx4ruQS1AL_QQdeZXf-MIWWdng
dbpedia:Jetport
dbpedia:Airstrips
dbpedia:Airport
fb:guid.9202a8c04000641f800000000004ae12
opencyc-en:CommercialAirport

If you specify the onto:disable-sameAs pseudo-graph:

PREFIX onto: <http://www.ontotext.com/>
PREFIX dbpedia: <http://dbpedia.org/resource/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT * FROM onto:disable-sameAs
WHERE {?c rdfs:subClassOf dbpedia:Airport}

only two results are returned:

dbpedia:Air_strip
opencyc-en:CommercialAirport

The Expand results over equivalent URIs checkbox in the GraphDB
Workbench SPARQL editor plays a similar role, but the meaning is
reversed.

Warning

If the query uses a filter over the textual representation of a URI,
e.g., filter(strstarts(str(?x),"http://dbpedia.org/ontology")),
this may omit some valid solutions, as not all URIs within an
equivalence class are matched against the filter.

Explain Plan

What’s in this document?

	What is GraphDB’s Explain Plan

	Activating the explain plan

	Simple explain plan

	Multiple triple patterns

	Wine queries

	First query with aggregation

What is GraphDB’s Explain Plan

GraphDB’s Explain Plan is a feature that explains how GraphDB executes a SPARQL query. It also includes information about unique subject, predicate and object collection sizes. It can help you improve your query, leading to better execution performance.

Activating the explain plan

To see the query explain plan, use the onto:explain pseudo-graph:

PREFIX onto: <http://www.ontotext.com/>
select * from onto:explain
...

Simple explain plan

For the simplest query explain plan possible (?s ?p ?o), execute the following query:

PREFIX onto: <http://www.ontotext.com/>
select * from onto:explain {
 ?s ?p ?o .
}

Depending on the number of triples that you have in the database, the results will vary, but you will get something like the following:

SELECT ?s ?p ?o
{

 { # ----- Begin optimization group 1 -----

 ?s ?p ?o . # Collection size: 108.0
 # Predicate collection size: 108.0
 # Unique subjects: 90.0
 # Unique objects: 55.0
 # Current complexity: 108.0

 } # ----- End optimization group 1 -----
 # ESTIMATED NUMBER OF ITERATIONS: 108.0

}

This is the same query, but with some estimations next to the statement pattern (1 in this case).

Note

The query might not be the same as the original one. See below the triple patterns in the order in which they are executed internally.

	----- Begin optimization group 1 -----: indicates starting a group of statements, which most probably are part of a subquery (in the case of property paths, the group will be the whole path);

	Collection size: an estimation of the number of statements that match the pattern;

	Predicate collection size: the number of statements in the database for this particular predicate (in this case, for all predicates);

	Unique subjects: the number of subjects that match the statement pattern;

	Unique objects: the number of objects that match the statement pattern;

	Current complexity: the complexity (the number of atomic lookups in the index) the database will need to make so far in the optimization group (most of the time a subquery). When you have multiple triple patterns, these numbers grow fast.

	----- End optimization group 1 -----: the end of the optimization group;

	ESTIMATED NUMBER OF ITERATIONS: 108.0: the approximate number of iterations that will be executed for this group.

Multiple triple patterns

Note

The result of the explain plan is given in the exact order, in which the engine will execute the query.

The following is an example where the engine reorders the triple patterns based on their complexity. The query is a simple join:

PREFIX onto: <http://www.ontotext.com/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

select *
from onto:explain
{
 ?o rdf:type ?o1 .
 ?o rdfs:subPropertyOf ?o2
}

and the output is:

SELECT ?o ?o1 ?o2
{

 { # ----- Begin optimization group 1 -----

 ?o rdfs:subPropertyOf ?o2 . # Collection size: 20.0
 # Predicate collection size: 20.0
 # Unique subjects: 19.0
 # Unique objects: 18.0
 # Current complexity: 20.0
 ?o rdf:type ?o1 . # Collection size: 43.0
 # Predicate collection size: 43.0
 # Unique subjects: 34.0
 # Unique objects: 7.0
 # Current complexity: 860.0

 } # ----- End optimization group 1 -----
 # ESTIMATED NUMBER OF ITERATIONS: 25.294117647058822

}

Understanding the output:

	?o rdfs:subPropertyOf ?o1 has a lower collection size (20 instead of 43), so it will be executed first.

	?o rdf:type ?o1 has a bigger collection size (43 instead of 20), so it will be executed second (although it is written first in the original query).

	The current complexity grows fast because it multiplies. In this case, you can expect to get 20 results from the first statement pattern. Then you need to join them with the results from the second triple pattern, which results in the complexity of 20 * 43 = 860.

	Although the complexity for the whole group is 860, the estimated number of iterations for this group is 25.3.

Wine queries

All of the following examples refer to our simple wine dataset (wine.ttl). The file is quite small, but here is some basic explanation about the data:

	There are different types of wine (Red, White, Rose).

	Each wine has a label.

	Wines are made from different types of grapes.

	Wines contain different levels of sugar.

	Wines are produced in a specific year.

First query with aggregation

A typical aggregation query contains a group with some aggregation function. Here, we have added an explain graph:

Retrieve the number of wines produced in each year along with the year
PREFIX onto: <http://www.ontotext.com/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX : <http://www.ontotext.com/example/wine#>
SELECT (COUNT(?wine) as ?wines) ?year
FROM onto:explain
WHERE {
 ?wine rdf:type :Wine .
 OPTIONAL {
 ?wine :hasYear ?year
 }
}
GROUP BY ?year
ORDER BY DESC(?wines)

When you execute the query in GraphDB, you get the following as an output (instead of the real results):

SELECT (COUNT(?wine) AS ?wines) ?year
{

 { # ----- Begin optimization group 1 -----

 ?wine rdf:type :wine#Wine . # Collection size: 5.0
 # Predicate collection size: 64.0
 # Unique subjects: 50.0
 # Unique objects: 12.0
 # Current complexity: 5.0

 } # ----- End optimization group 1 -----
 # ESTIMATED NUMBER OF ITERATIONS: 5.0

 OPTIONAL
 {

 { # ----- Begin optimization group 2 -----

 ?wine :hasYear ?year . # Collection size: 5.0
 # Predicate collection size: 5.0
 # Unique subjects: 5.0
 # Unique objects: 2.0
 # Current complexity: 5.0

 } # ----- End optimization group 2 -----
 # ESTIMATED NUMBER OF ITERATIONS: 5.0

 }
}
GROUP BY ?year
ORDER BY DESC(?wines)
LIMIT 1000

Inference optimizations

	Delete optimizations

	Rules optimizations

	Optimization of owl:sameAs

	RDFS and OWL support optimizations

Delete optimizations

What’s in this document?

	The algorithm

	Example

	Schema transactions

GraphDB’s inference policy is based on materialization, where implicit statements are inferred from explicit statements as soon as they are inserted into the repository, using the specified semantics ruleset. This approach has the advantage of achieving query answering very quickly, since no inference needs to be done at query time.

However, no justification information is stored for inferred statements, therefore deleting a statement normally requires a full re-computation of all inferred statements. This can take a very long time for large datasets.

GraphDB uses a special technique for handling the deletion of explicit statements and their inferences, called smooth delete. It allows fast delete operations as well as ensures that schemas can be changed when necessary.

The algorithm

The algorithm for identifying and removing the inferred statements that can no longer be derived by the explicit statements that have been deleted, is as follows:

	Use forward chaining to determine what statements can be inferred from the statements marked for deletion.

	Use backward chaining to see if these statements are still supported by other means.

	Delete explicit statements and the no longer supported inferred statements.

Note

We recommend that you mark the visited statements as read-only. Otherwise, as almost all delete operations follow inference paths that touch schema statements, which then lead to almost all other statements in the repository, the smooth delete can take a very long time. However, since a read-only statement cannot be deleted, there is no reason to find what statements are inferred from it (such inferred statements might still get deleted, but they will be found by following other inference paths).

Statements are marked as read-only if they occur in the Axioms section of the ruleset files (standard or custom) or are loaded at initialization time via the imports configuration parameter.

Note

When using smooth delete, we recommend that you load all ontology/schema/vocabulary statements using the imports configuration parameter.

Example

Consider the following statements:

Schema:
<foaf:name> <rdfs:domain> <owl:Thing> .
<MyClass> <rdfs:subClassOf> <owl:Thing> .

Data:
<wayne_rooney> <foaf:name> "Wayne Rooney" .
<Reviewer40476> <rdf:type> <MyClass> .
<Reviewer40478> <rdf:type> <MyClass> .
<Reviewer40480> <rdf:type> <MyClass> .
<Reviewer40481> <rdf:type> <MyClass> .

When using the owl-horst ruleset the removal of the statement:

<wayne_rooney> <foaf:name> "Wayne Rooney"

will cause the following sequence of events:

rdfs2:
x a y - (x=<wayne_rooney>, a=foaf:name, y="Wayne Rooney")
a rdfs:domain z (a=foaf:name, z=owl:Thing)

x rdf:type z - The inferred statement [<wayne_rooney> rdf:type owl:Thing] is to be removed.

rdfs3:
x a u - (x=<wayne_rooney>, a=rdf:type, u=owl:Thing)
a rdfs:range z (a=rdf:type, z=rdfs:Class)

u rdf:type z - The inferred statement [owl:Thing rdf:type rdfs:Class] is to be removed.

rdfs8_10:
x rdf:type rdfs:Class - (x=owl:Thing)

x rdfs:subClassOf x - The inferred statement [owl:Thing rdfs:subClassOf owl:Thing] is to be removed.

proton_TransitiveOver:
y q z - (y=owl:Thing, q=rdfs:subClassOf, z=owl:Thing)
p protons:transitiveOver q - (p=rdf:type, q=rdfs:subClassOf)
x p y - (x=[<Reviewer40476>, <Reviewer40478>, <Reviewer40480>, <Reviewer40481>], p=rdf:type, y=owl:Thing)

x p z - The inferred statements [<Reviewer40476> rdf:type owl:Thing], etc., are to be removed.

Statements such as [<Reviewer40476> rdf:type owl:Thing] exist because of the statements [<Reviewer40476> rdf:type <MyClass>] and [<MyClass> rdfs:subClassOf owl:Thing].

In large datasets, there are typically millions of statements [X rdf:type owl:Thing], and they are all visited by the algorithm.

The [X rdf:type owl:Thing] statements are not the only problematic statements considered for removal. Every class that has millions of instances leads to similar behavior.

One check to see if a statement is still supported requires about 30 query evaluations with owl-horst, hence the slow removal.

If [owl:Thing rdf:type owl:Class] is marked as an axiom (because it is derived by statements from the schema, which must be axioms), then the process stops when reaching this statement. So, the schema (the system statements) must necessarily be imported through the imports configuration parameter in order to mark the schema statements as axioms.

Schema transactions

As mentioned above, ontologies and schemas imported at initialization time using the imports configuration parameter configuration parameter are flagged as read-only. However, there are times when it is necessary to change a schema. This can be done inside a ‘system transaction’.

The user instructs GraphDB that the transaction is a system transaction by including a dummy statement with the special schemaTransaction predicate, i.e.:

_:b1 <http://www.ontotext.com/owlim/system#schemaTransaction> _:b2

This statement is not inserted into the database, but is rather serving as a flag telling GraphDB that the statements from this transaction are going to be inserted as read-only; all statements derived from them are also marked as read-only. When you delete statements in a system transaction, you can remove statements marked as read-only, as well as statements derived from them. Axiom statements and all statements derived from them stay untouched.

Rules optimizations

What’s in this document?

	How to enable rule profiling

	Log file

	Excel format

	Investigating performance

	Hints on optimizing GraphDB’s rulesets

	Know what you want to infer

	Minimize the number of rules

	Write your rules carefully

	Avoid duplicate statements

	Know the implications of ontology mapping

	Consider avoiding inverse statements

	Consider avoiding long transitive chains

	Consider specialized property constructs

	Translating OWL constructs to specialized property constructs

	Additional ruleset usage optimization

GraphDB includes the useful feature of rule optimizing that allows you to profile and debug rule performance.

How to enable rule profiling

Rule profiling prints out statistics about rule execution.

To enable rule profiling, start GraphDB with the following Java option:

-Denable-debug-rules=true

This enables the collection of rule statistics (various counters).

Warning

Rule Profiling Limitations

	Must use a custom ruleset, since built-in rulesets do not have the required instrumentation (counters);

	The debug rules statistics are available only for importing data in serial mode. It does not work for Parallel Inferencing, which is default. Check “Force serial pipeline” in the Import settings dialog to enable it.

Warning

Rule profiling slows down the rule execution (the leading premise checking part) by 10-30%, so do not use it in production.

Log file

When rule profiling is enabled:

	Complete rule statistics are printed at every million statements, every 5 minutes, or on shutdown, depending on which occurs first.

	They are written to graphdb-folder/logs/main-<date>.log;

	The descriptive rule stats format looks like this:

----------rs start----------
Rule statistics for repository <name> :
RULE: ...

Time overall (all rules): ... ns.
----------rs end----------

	Stats are printed for each active repository.

	Stats are cumulative, so find the last section rs start … rs end for your repo of interest.

	Rule variants are ordered by total time (descending).

For example, consider the following rule:

Id: ptop_PropRestr
 t <ptop:premise> p
 t <ptop:restriction> r
 t <ptop:conclusion> q
 t <rdf:type> <ptop:PropRestr>
 x p y
 x r y

 x q y

This is a conjunction of two props. It is declared with the axiomatic (A-Box) triples involving t. Whenever the premise p and restriction r hold between two resources, the rule infers the conclusion q between the same resources, i.e., p & r => q.

The corresponding log for variant 4 of this rule may look like the following:

RULE ptop_PropRestr_4 invoked 163,475,763 times.
ptop_PropRestr_4:
e b f
a ptop_premise b
a rdf_type ptop_PropRestr
e c f
a ptop_restriction c
a ptop_conclusion d

e d f

a ptop_conclusion d invoked 1,456,793 times and took 1,814,710,710 ns.
a rdf_type ptop_PropRestr invoked 7,261,649 times and took 9,409,794,441 ns.
a ptop_restriction c invoked 1,456,793 times and took 1,901,987,589 ns.
e c f invoked 17,897,752 times and took 635,785,943,152 ns.
a ptop_premise b invoked 10,175,697 times and took 9,669,316,036 ns.
Fired 1,456,793 times and took 157,163,249,304 ns.
Inferred 1,456,793 statements.
Time overall: 815,745,001,232 ns.

Note

Variable names are renamed due to the compilation to Java bytecode.

Understanding the output:

	The premises are checked in the order given in RULE. (The premise statistics printed after the blank line are not in any particular order.)

	Invoked is the number of times the rule variant or specific premise was checked successfully. Tracing through the rule:

	ptop_PropRestr_4 checked successfully 163 million times: for each incoming triple, since the lead premise (e b f = x p y) is a free pattern.

	a ptop_premise b checked successfully 10 million times: for each b=p that has an axiomatic triple involving ptop_premise.

This premise was selected because it has only 1 unbound variable a and it is first in the rule text.

	a rdf_type ptop_PropRestr checked successfully 7 million times: for each ptop_premise that has type ptop_PropRestr.

This premise was selected because it has 0 unbound variables (after the previous premise binds a).

	The time to check each premise is printed in ns.

	Fired is the number of times all premises matched, so the rule variant was fired.

	Inferred is the number of inferred triples.

It may be greater than fired if there are multiple conclusions.

It may be less than fired since a duplicate triple is not inferred a second time.

	Time overall is the total time that this rule variant took.

Excel format

The log records detailed information about each rule and premise, which is very useful when you are trying to understand which of the rules is too time-consuming. However, it can still be overwhelming because of this level of detail.

Therefore, we have developed the rule-stats.pl script that outputs a TSV file such as the following:

	rule

	ver

	tried

	time

	patts

	checks

	time

	fired

	time

	triples

	speed

	ptop_PropChain

	4

	163475763

	776.3

	5

	117177482

	185.3

	15547176

	590.9

	9707142

	12505

Parameters:

	Parameter

	Description

	rule

	the rule ID (name)

	ver

	the rule version (variant) or “T” for overall rule totals

	tried, time

	the number of times the rule/variant was tried, the overall time in sec

	patts

	the number of triple patterns (premises) in the rule, not counting the leading premise

	checks, time

	the number of times premises were checked, time in sec

	fired

	the number of times all premises matched, so the rule was fired

	triples

	the number of inferred triples

	speed

	inference speed, triples/sec

Run the script the following way:

perl rule-stats.pl main-2014-07-28.log > main-2014-07-28.xls

Investigating performance

The following is an example of using the Excel format to investigate where time is spent during rule execution.

Download the time-spent-during-rule.xlsx example file, and use it as a template.

[image: _images/main-2014-08-08.png]

Note

These formulas are dynamic, and they are updated every time you change the filters.

To perform your investigation:

	Open the results in Excel.

	Set a filter “ver=T”, first looking at the rules in their entirety instead of rule variants.

	Sort by “time” (fourth column) in descending order.

	Check which rules are highlighted in red (those that take significantly long and whose speed is substantially lower than average).

	Pick a rule (for example, PropRestr).

	Filter by “rule=PropRestr” and “ver<>T” to see its variants.

[image: _images/main-PropRestr.png]

	Focus on a variant to investigate the reasons for its poorer time and speed performance.

In this example, the first variant you would want to investigate will be ptop_PropRestr_5, as it is spending 30% of the time of this rule, and has very low speed. The reason is that it fired 1.4 million times but produced only 238 triples, so most of the inferred triples were duplicates.

You can find the definition of this variant in the log file:

RULE ptop_PropRestr_5 invoked 163,475,763 times.
ptop_PropRestr_5:
e c f
a ptop_restriction c
a rdf_type ptop_PropRestr
e b f
a ptop_premise b
a ptop_conclusion d

e d f

It is very similar to the productive variant ptop_PropRestr_4 (see Log file above):

	one checks e b f. a ptop_premise b first,

	the other checks e c f. a ptop_restriction c first.

Still, the function of these premises in the rule is the same and therefore the variant ptop_PropRestr_5 (which is checked after 4) is unproductive.

The most likely way to improve performance would be if you make the two premises use the same axiomatic triple ptop:premise (emphasizing they have the same role), and introduce a Cut:

Id: ptop_PropRestr_SYM
 t <ptop:premise> p
 t <ptop:premise> r
 t <ptop:conclusion> q
 t <rdf:type> <ptop:PropRestr>
 x p y
 x r y [Cut]

 x q y

The Cut eliminates the rule variant with x r y as leading premise. It is legitimate to do this, since the two variants are the same, up to substitution p<->r.

Note

Introducing a Cut in the original version of the rule would not be legitimate:

Id: ptop_PropRestr_CUT
 t <ptop:premise> p
 t <ptop:restriction> r
 t <ptop:conclusion> q
 t <rdf:type> <ptop:PropRestr>
 x p y
 x r y [Cut]

 x q y

since it would omit some potential inferences (in the case above, 238 triples), changing the semantics of the rule (see the example below).

Assume these axiomatic triples:

:t_CUT a ptop:PropRestr; ptop:premise :p; ptop:restriction :r; ptop:conclusion :q. # for ptop_PropRestr_CUT
:t_SYM a ptop:PropRestr; ptop:premise :p; ptop:premise :r; ptop:conclusion :q. # for ptop_PropRestr_SYM

Now consider a sequence of inserted triples :x :p :y. :x :r :y.

	ptop_PropRestr_CUT will not infer :x :q :y, since no variant is fired by the second incoming triple :x :r :y: it is matched against x p y, but there is no axiomatic triple t ptop:premise :r.

	ptop_PropRestr_SYM will infer :x :q :y, since the second incoming triple :x :r :y will match x p y and t ptop:premise :r, then the previously inserted :x :p :y will match t ptop:premise :p and the rule will fire.

Tip

Rule execution is often non-intuitive, therefore we recommend that you detail the speed history and compare the performance after each change.

Hints on optimizing GraphDB’s rulesets

The complexity of the ruleset has a significant effect on the loading performance, the number of inferred statements, and the overall size of the repository after inferencing. The complexity of the standard rulesets increases as follows:

	no inference (lowest complexity, best performance)

	RDFS-Optimized

	RDFS

	RDFS-Plus-Optimized

	RDFS-Plus

	OWL-Horst-Optimized

	OWL-Horst

	OWL-Max-Optimized

	OWl-Max

	OWL2-QL-Optimized

	OWL2-QL

	OWL2-RL-Optimized

	OWL2-RL (highest complexity, worst performance)

It needs to be mentioned that OWL-RL and OWL-QL do a lot of heavy work that is often not required by applications. For more details, see OWL Compliance.

Know what you want to infer

Check the expansion ratio (total/explicit statements) for your dataset in order to get an idea of whether this is the result that you are expecting. For example, if your ruleset infers 4 times more statements over a large number of explicit statements, this will take time regardless of the ways in which you try to optimize the rules.

Minimize the number of rules

The number of rules and their complexity affects inferencing performance, even for rules that never infer any new statements. The reason for this is that every incoming statement is passed through every variant of every rule to check whether something can be inferred. This often results in many checks and joins, even if the rule never fires.

So, start with a minimal ruleset and only add the rules that you need. The default ruleset (RDFS-Plus-Optimized) works for many users, but you might even consider starting from RDFS. For example, if you need owl:Symmetric and owl:inverseOf on top of RDFS, you can copy only these rules from OWL-Horst to RDFS and leave out the rest.

Conversely, you can start with a bigger standard ruleset and remove the rules that you do not need.

Note

To deploy a custom ruleset, set the ruleset configuration parameter to the full pathname of your custom .pie file.

Write your rules carefully

	Be careful with the recursive rules as they can lead to an explosion in the number of inferred statements.

	Always check your spelling:

	A misspelled variable in a premise leads to a Cartesian explosion (variables quickly growing to an intractable level) of the number of triple joins to be considered by the rule.

	A misspelled variable in a conclusion (or the use of an unbound variable) leads to the creation of new blank nodes. This is almost never what you really want.

	Order premises by specificity. GraphDB first checks premises with the least number of unbound variables. But if there is a tie, it follows the order given by you. Since you may know the cardinalities of triples in your data, you may be in a better position to determine which premise has better specificity (selectivity).

	Use Cut for premises that have the same role (for an example, see Investigating performance), but be careful not to remove any necessary inferences by mistake.

Avoid duplicate statements

Avoid inserting explicit statements in a named graph if the same statements are inferable. GraphDB always stores inferred statements in the default graph, so this will lead to duplicating statements. This will increase the repository size and slow down query answering.

You can eliminate duplicates from query results using DISTINCT or FROM onto:skip-redundant-implicit (see Other special GraphDB query behavior). However, these are slow operations, so it is better not to produce duplicate statements in the first place.

Know the implications of ontology mapping

People often use owl:equivalentProperty, owl:equivalentClass (and less often rdfs:subPropertyOf, rdfs:subClassOf) to map ontologies. However, every such assertion means that many more statements are inferred
(owl:equivalentProperty works as a pair of rdfs:subPropertyOf, and owl:equivalentClass works as a pair of rdfs:subClassOf).

A good example is DCTerms (DCT): almost each DC property has a declared DCT subproperty and there is also a hierarchy amongst DCT properties, for instance:

dcterms:created rdfs:subPropertyOf dc:date, dcterms:date.
dcterms:date rdfs:subPropertyOf dc:date.

This means that every dcterms:created statement will expand to 3 statements. So, do not load the DC ontology unless you really need these inferred dc:date.

Consider avoiding inverse statements

Inverse properties (e.g., :p owl:inverseOf :q) offer some convenience in querying, but are never necessary:

	SPARQL natively has bidirectional data access: instead of ?x :q ?y, you can always query for ?y :p ?x.

	You can even invert the direction in a property path: instead of ?x :p1/:q ?y, use ?x :p1/(^:p) ?y.

If an ontology defines inverses but you skip inverse reasoning, you have to check which of the two properties is used in a particular dataset, and write your queries carefully.

The Provenance Ontology (PROV-O) has considered this dilemma thoroughly, and has abstained from defining inverses to “avoid the need for OWL reasoning, additional code, and larger queries” (see http://www.w3.org/TR/prov-o/#inverse-names).

Consider avoiding long transitive chains

A chain of N transitive relations (e.g., rdfs:subClassOf) causes GraphDB to infer and store a further \((n^2 - n) / 2\) statements. If the relationship is also symmetric (e.g., in a family ontology with a predicate such as relatedTo), then there will be \(n^2 - n\) inferred statements.

Consider removing the transitivity and/or symmetry of relations that make long chains. Or, if you must have them, consider the implementation of TransitiveProperty through step property, which can be faster than the standard implementation of owl:TransitiveProperty.

Consider specialized property constructs

While OWL2 has very powerful class constructs, its property constructs are quite weak. Some widely used OWL2 property constructs could be done faster.

See this draft [http://rawgit2.com/VladimirAlexiev/my/master/pubs/extending-owl2/index.html] for some ideas and clear illustrations. Below, we describe three of these ideas.

Tip

To learn more, see a detailed account of applying some of these ideas in a real-world setting. Here [http://vocab.getty.edu/doc/#Inference] are the respective rule implementations.

PropChain

Consider 2-place PropChain instead of general owl:propertyChainAxiom.

owl:propertyChainAxiom needs to use intermediate nodes and edges in order to unroll the rdf:List representing the chain. Since most chains found in practice are 2-place chains (and a chain of any length can be implemented as a sequence of 2-place chains), consider a rule such as the following:

Id: ptop_PropChain
 t <ptop:premise1> p1
 t <ptop:premise2> p2
 t <ptop:conclusion> q
 t <rdf:type> <ptop:PropChain>
 x p1 y
 y p2 z

 x q z

It is used with axiomatic triples as in the following:

@prefix ptop: <http://www.ontotext.com/proton/protontop#>.
:t a ptop:PropChain; ptop:premise1 :p1; ptop:premise2 :p2; ptop:conclusion :q.

transitiveOver

psys:transitiveOver has been part of Ontotext’s PROTON ontology since 2008. It is defined as follows:

Id: psys_transitiveOver
 p <psys:transitiveOver> q
 x p y
 y q z

 x p z

It is a specialized PropChain, where premise1 and conclusion coincide. It allows you to chain p with q on the right, yielding p. For example, the inferencing of types along the class hierarchy can be expressed as:

rdf:type psys:transitiveOver rdfs:subClassOf

TransitiveProperty through step property

owl:TransitiveProperty is widely used and is usually implemented as follows:

Id: owl_TransitiveProperty
 p <rdf:type> <owl:TransitiveProperty>
 x p y
 y p z

 x p z

You may recognize this as a self-chain, thus a specialization of psys:transitiveOver, i.e.:

?p rdf:type owl:TransitiveProperty <=> ?p psys:transitiveOver ?p

Most transitive properties comprise transitive closure over a basic ‘step’ property. For example, skos:broaderTransitive is based on skos:broader and is implemented as:

skos:broader rdfs:subPropertyOf skos:broaderTransitive.
skos:broaderTransitive a owl:TransitiveProperty.

Now consider a chain of N skos:broader between two nodes. The owl_TransitiveProperty rule has to consider every split of the chain, thus inferring the same closure between the two nodes N times, leading to quadratic inference complexity.

This can be optimized by looking for the step property s and extending the chain only at the right end:

Id: TransitiveUsingStep
 p <rdf:type> <owl:TransitiveProperty>
 s <rdfs:subPropertyOf> p
 x p y
 y s z

 x p z

However, this would not make the same inferences as owl_TransitiveProperty if someone inserts the transitive property
explicitly (which is a bad practice).

A more robust approach is to declare the step and transitive properties together using psys:transitiveOver, for instance:

skos:broader rdfs:subPropertyOf skos:broaderTransitive.
skos:broaderTransitive psys:transitiveOver skos:broader.

Translating OWL constructs to specialized property constructs

Other options for optimizing your rulesets to make them faster:

	ptop:transitiveOver is faster than owl:TransitiveProperty: quadratic vs cubic complexity over the length of transitive chains.

	ptop:PropChain (a 2-place chain) is faster than general owl:propertyChainAxiom (n-place chain) because it does not need to unroll the rdf:List underlying the representation of owl:propertyChainAxiom.

Under some conditions, you can translate the standard OWL constructs to these custom constructs to have both standards compliance and faster speed:

	use rule TransitiveUsingStep; if every TransitiveProperty p (e.g., skos:broaderTransitive) is defined over a step property s (e.g., skos:broader) and you do not insert p directly.

	if you use only 2-step owl:propertyChainAxiom, then translate them to custom using the following rule, and infer using rule ptop_PropChain:

Id: ptop_PropChain_from_propertyChainAxiom
 q <owl:propertyChainAxiom> l1
 l1 <rdf:first> p1
 l1 <rdf:rest> l2
 l2 <rdf:first> p2
 l2 <rdf:rest> <rdf:nil>

 t <ptop:premise1> p1
 t <ptop:premise2> p2
 t <ptop:conclusion> q
 t <rdf:type> <ptop:PropChain>

Additional ruleset usage optimization

GraphDB applies special processing to the following rules so that inferred statements such as <P a rdf:Property>, <P rdfs:subPropertyOf P> and <X a rdfs:Resource> can appear in the repository without slowdown of inference:

/*partialRDFS*/
Id: rdf1_rdfs4a_4b
x a y

a <rdf:type> <rdf:Property>
x <rdf:type> <rdfs:Resource>
a <rdf:type> <rdfs:Resource>
y <rdf:type> <rdfs:Resource>
/*partialRDFS*/

Id: rdfs6
a <rdf:type> <rdf:Property>

a <rdfs:subPropertyOf> a

According to them, whatever statement comes into the repository, its subject, predicate and object are resources and its predicate is an rdf:Property, which then becomes subPropertyOf itself using the second rule (the reflexivity of subPropertyOf). These rules, however, if executed every time, present a similar challenge to when using owl:sameAs. To avoid the performance drop, GraphDB obtains these statements through code so that <P a rdf:Property> and <X a rdfs:Resource> are asserted only once – when a property or a resource is encountered for the first time (except in the ‘optimized’ rulesets, where rdfs:Resource is omitted because of the very limited use of such inference).

If we start with the empty ruleset, <P a rdf:Property>, <P rdfs:subPropertyOf P> and <X a rdfs:Resource> statements will not be inferred until we switch the ruleset. Then the inference will take place for the new properties and resources only.

Inversely, if we start with a non-empty ruleset and switch to the empty one, then the statements <P a rdf:Property>, <P rdfs:subPropertyOf P> and <X a rdfs:Resource> inferred so far will remain. This is true even if we delete statements or recompute the inferred closure.

Optimization of owl:sameAs

What’s in this document?

	Removing owl:sameAs statements

	Disabling the owl:sameAs support

	How disable-sameAs interferes with the different rulesets

	Example 1

	Example 2

	Example 3

	Example 4

	Example 5

The OWL same as optimization uses the OWL owl:sameAs property to create an equivalence class between nodes of an RDF graph. An equivalence class has the following properties:

	Reflexivity, i.e., A -> A

	Symmetricity, i.e., if A -> B then B -> A

	Transitivity, i.e., if A -> B and B -> C then A -> C

Instead of using simple rules and axioms for owl:sameAs (actually 2 axioms that state that it is Symmetric and Transitive), GraphDB offers an effective non-rule implementation, i.e., the owl:sameAs support is hard-coded. The rules are commented out in the .pie files, and are left only as a reference.

In GraphDB, the equivalence class is represented with a single node, thus avoiding the explosion of all N^2 owl:sameAs statements, and instead storing the members of the equivalence class in a separate structure. In this way, the ID of the equivalence class can be used as an ordinary node, which eliminates the need to copy statements by subject, predicate and object. So, all these copies are replaced by a single statement.

There is no restriction on how to choose this single node that will represent the class as a whole, so we pick the first node that enters the class. After creating such a class, all statements with nodes from this class are altered to use the class representative. These statements also participate in the inference.

The equivalence classes may grow when more owl:sameAs statements containing nodes from the class are added to the repository. Every time you add a new owl:sameAs statement linking two classes, they merge into a single class.

During query evaluation, GraphDB uses a kind of backward chaining by enumerating equivalent URIs, thus guaranteeing the completeness of the inference and query results. It takes special care to ensure that this optimization does not hinder the ability to distinguish between explicit and implicit statements.

Removing owl:sameAs statements

When removing owl:sameAs statements from the repository, some nodes may remain detached from the class they belong to, the class may split into two or more classes, or may disappear altogether. To determine the behavior of the classes in each particular case, you should track what the original owl:sameAs statements were and which of them remain in the repository. All statements coming from the user (either through a SPARQL query or through the RDF4J API) are marked as explicit, and every statement derived from them during inference is marked as inferred. So, by knowing which the remaining explicit owl:sameAs statements are, you can rebuild the equivalence classes.

Note

It is not necessary to rebuild all the classes but only the ones that were referred to by the removed owl:sameAs statements.

When nodes are removed from classes, or when classes split or disappear, the new classes (or the removal of classes) yield new representatives. So, statements using the old representatives should be replaced with statements using the new ones. This is also achieved by knowing which statements are explicit. The representative statements (i.e., statements that use representative nodes) are flagged as a special type of statement that may cease to exist after making changes to the equivalence classes. In order to make new representative statements, you should use the explicit statements and the new state of the equivalence classes (e.g., it is not necessary to process all statements when only a single equivalence class has been changed). The representative statements, although being volatile, are visible to SPARQL queries and the inferencer, whereas the explicit statements that use nodes from the equivalence classes remain invisible and are only used for rebuilding the representative statements.

Disabling the owl:sameAs support

By default, the owl:sameAs support is enabled in all rulesets except for Empty (without inference), RDFS, and RDFS-Plus. However, disabling the owl:sameAs behavior may be beneficial in some cases. For example, it can save you time or you may want to visualize your data without the statements generated by owl:sameAs in queries or inferences of such statements.

To disable owl:sameAs, use:

	(for individual queries) FROM onto:disable-sameAs system graph;

	(for the whole repository) the disable-sameAs configuration parameter (Boolean, defaults to false). This disables all inferences.

Disabling owl:sameAs by query does not remove the inferences that have taken place because of owl:sameAs.

Consider the following example:

PREFIX owl: <http://www.w3.org/2002/07/owl#>

INSERT DATA {
 <urn:A> owl:sameAs <urn:B> .
 <urn:A> a <urn:Class1> .
 <urn:B> a <urn:Class2> .
}

This leads to <urn:A> and <urn:B> being instances of the intersection of the two classes:

PREFIX : <http://test.com/>
PREFIX owl: <http://www.w3.org/2002/07/owl#>

INSERT DATA {
 :Intersection owl:intersectionOf (<urn:Class1> <urn:Class2>) .
}

If you query what instances the intersection has:

PREFIX : <http://test.com/>

SELECT * {
 ?s a :Intersection .
}

the response will be: <urn:A> and <urn:B>. Using FROM onto:disable-sameAs returns only the equivalence class representative (e.g., <urn:A>). But it does not disable the inference as a whole.

In contrast, when you set up a repository with the disable-sameAs repository parameter set to true, the inference <urn:A> a :Intersection will not take place. Then, if you query what instances the intersection has, it will return neither <urn:A>, nor <urn:B>.

Apart from this difference that affects the scope of action, disabling owl:sameAs both as a repository parameter and a FROM clause in the query will have the same behavior.

How disable-sameAs interferes with the different rulesets

The following parameters can affect the owl:sameAs behavior:

	ruleset – owl:sameAs support is enabled for all rulesets, except the empty ruleset. Switching to a non-empty ruleset (e.g., owl-horst-optimized) enables the inference and if it is launched again, the results show all inferred statements, as well as the ones generated by owl:sameAs. They do not include any <P a rdf:Property> and <X a rdfs:Resource> statements (see Rules optimizations).

	disable-sameAs: true + inference – disables the owl:sameAs expansion but still shows the other implicit statements. However, these results will be different from the ones retrieved by owl:sameAs + inference or when there is no inference.

	FROM onto:disable-sameAs – including this clause in a query produces different results with different rulesets.

	FROM onto:explicit – using only this clause (or with FROM onto:disable-sameAs) produces the same results as when the inferencer is disabled (as with the empty ruleset). This means that the ruleset and the disable-sameAs parameter do not affect the results.

	FROM onto:explicit + FROM onto:implicit – produces the same results as if both clauses are omitted.

	FROM onto:implicit – using this clause returns only the statements derived by the inferencer. Therefore, with the empty ruleset, it is expected to produce no results.

	FROM onto:implicit + FROM onto:disable-sameAs – shows all inferred statements (except for the ones generated by owl:sameAs).

The following examples illustrate this behavior:

Example 1

If you use owl:sameAs with the following statements:

PREFIX : <http://test.com/>
PREFIX owl: <http://www.w3.org/2002/07/owl#>

INSERT DATA {
 :a :b :c .
 :a owl:sameAs :d .
 :d owl:sameAs :e .
}

and you want to retrieve data with this query:

PREFIX : <http://test.com/>
PREFIX onto: <http://www.ontotext.com/>

DESCRIBE :a :b :c :d :e

the result is the same as if you query for explicit statements when there is no inference or if you add FROM onto:explicit.

However, if you enable the inference, you will see a completely different picture. For example, if you use owl-horst-optimized, disable-sameAs=false, you will receive the following results:

:a :b :c .
:a owl:sameAs :a .
:a owl:sameAs :d .
:a owl:sameAs :e .
:b a rdf:Property .
:b rdfs:subPropertyOf :b .
:d owl:sameAs :a .
:d owl:sameAs :d .
:d owl:sameAs :e .
:e owl:sameAs :a .
:e owl:sameAs :d .
:e owl:sameAs :e .
:d :b :c .
:e :b :c .

Example 2

If you start with the empty ruleset, then switch to owl-horst-optimized:

PREFIX sys: <http://www.ontotext.com/owlim/system#>

INSERT DATA {
 _:b sys:addRuleset "owl-horst-optimized" .
 _:b sys:defaultRuleset "owl-horst-optimized" .
}

and compute the full inference closure:

PREFIX sys: <http://www.ontotext.com/owlim/system#>

INSERT DATA {
 _:b sys:reinfer _:b .
}

the same DESCRIBE query will return:

:a :b :c .
:a owl:sameAs :a .
:a owl:sameAs :d .
:a owl:sameAs :e .
:d owl:sameAs :a .
:d owl:sameAs :d .
:d owl:sameAs :e .
:e owl:sameAs :a .
:e owl:sameAs :d .
:e owl:sameAs :e .
:d :b :c .
:e :b :c .

i.e., without the <P a rdf:Property> and <P rdfs:subPropertyOf P> statements.

Example 3

If you start with owl-horst-optimized and set the disable-sameAs parameter to true or use FROM onto:disable-sameAs, you will receive:

:a :b :c .
:a owl:sameAs :d .
:b a rdf:Property .
:b rdfs:subPropertyOf :b .
:d owl:sameAs :e .

i.e., the explicit statements + <type Property>.

Example 4

This query:

PREFIX : <http://test.com/>
PREFIX onto: <http://www.ontotext.com/>

DESCRIBE :a :b :c :d :e
FROM onto:implicit
FROM onto:disable-sameAs

yields:

:b a rdf:Property .
:b rdfs:subPropertyOf :b .

because all owl:sameAs statements and the statements generated from them (<:d :b :c>, <:e :b :c>) will not be shown.

Note

The same is achieved with the disable-sameAs repository parameter set to true. However, if you start with the empty ruleset and then switch to a non-empty ruleset, the latter query will not return any results. If you start with owl-horst-optimized and then switch to empty, <type Property> will persist, i.e., the latter query will return some results.

Example 5

If you use named graphs, the results will look differently:

PREFIX : <http://test.com/>
PREFIX owl: <http://www.w3.org/2002/07/owl#>

INSERT DATA {
 GRAPH :graph {
 :a :b :c .
 :a owl:sameAs :d .
 :d owl:sameAs :e .
 }
}

Then the test query will be:

PREFIX : <http://test.com/>
PREFIX onto: <http://www.ontotext.com/>

SELECT DISTINCT *
{
 GRAPH ?g {
 ?s ?p ?o
 FILTER (
 ?s IN (:a, :b, :c, :d, :e, :graph) ||
 ?p IN (:a, :b, :c, :d, :e, :graph) ||
 ?o IN (:a, :b, :c, :d, :e, :graph) ||
 ?g IN (:a, :b, :c, :d, :e, :graph)
)
 }
}

If you have started with owl-horst-optimized, disable-sameAs=false, you will receive:

graph {
 :a :b :c .
 :a owl:sameAs :d .
 :d owl:sameAs :e .
}

because the statements from the default graph are not automatically included. This is the same as in the DESCRIBE query, where using both FROM onto:explicit and FROM onto:implicit nullifies them.

So, if you want to see all the statements, you should write:

PREFIX : <http://test.com/>
PREFIX onto: <http://www.ontotext.com/>

SELECT DISTINCT *
FROM NAMED onto:explicit
FROM NAMED onto:implicit
{
 GRAPH ?g {
 ?s ?p ?o
 FILTER (
 ?s IN (:a, :b, :c, :d, :e, :graph) ||
 ?p IN (:a, :b, :c, :d, :e, :graph) ||
 ?o IN (:a, :b, :c, :d, :e, :graph) ||
 ?g IN (:a, :b, :c, :d, :e, :graph)
)
 }
}
ORDER BY ?g ?s

Note that when querying quads, you should use the FROM NAMED clause and when querying triples - FROM. Using FROM NAMED with triples and FROM with quads has no effect and the query will return the following:

:graph {
 :a :b :c .
 :a owl:sameAs :d .
 :d owl:sameAs :e .
}
onto:implicit {
 :b a rdf:Property .
 :b rdfs:subPropertyOf :b .
}
onto:implicit {
 :a owl:sameAs :a .
 :a owl:sameAs :d .
 :a owl:sameAs :e .
 :d owl:sameAs :a .
 :d owl:sameAs :d .
 :d owl:sameAs :e .
 :e owl:sameAs :a .
 :e owl:sameAs :d .
 :e owl:sameAs :e .
}
onto:implicit {
 :d :b :c .
 :e :b :c .
}

In this case, the explicit statements <:a owl:sameAs :d> and <:d owl:sameAs :e> appear also as implicit. They do not appear twice when dealing with triples because the iterators return unique triples. When dealing with quads, however, you can see all statements.

Here, you have the same effects with FROM NAMED onto:explicit, FROM NAMED onto:impicit and FROM NAMED onto:disable-sameAs, and the behavior of the <type Property>.

RDFS and OWL support optimizations

There are several features in the RDFS and OWL specifications that lead to inefficient entailment rules and axioms, which can have a significant impact on the performance of the inferencer. For example:

	The consequence X rdf:type rdfs:Resource for each URI node in the RDF graph;

	The system should be able to infer that URIs are classes and properties, if they appear in schema-defining statements such as Xrdfs:subClassOf Y and X rdfs:subPropertyOf Y;

	The individual equality property in OWL is reflexive, i.e., the statement X owl:sameAs X holds for every OWL individual;

	All OWL classes are subclasses of owl:Thing and for all individuals X rdf:type owl:Thing should hold;

	C is inferred as being rdfs:Class whenever an instance of the class is defined: I rdf:type C.

Although the above inferences are important for formal semantics completeness, users rarely execute queries that seek such statements. Moreover, these inferences generate so many inferred statements that performance and scalability can be significantly degraded.

For this reason, optimized versions of the standard rulesets are provided. These have -optimized appended to the ruleset name, e.g., owl-horst-optimized.

The following optimizations are enacted in GraphDB:

	Optimization

	Affects patterns

	Remove axiomatic triples

	
	<any> <any> <rdfs:Resource>

	<rdfs:Resource> <any> <any>

	<any> <rdfs:domain> <rdf:Property>

	<any> <rdfs:range> <rdf:Property>

	<owl:sameAs> <rdf:type> <owl:SymmetricProperty>

	<owl:sameAs> <rdf:type> <owl:TransitiveProperty>

	Remove rule conclusions

	
	<any> <any> <rdfs:Resource>

	Remove rule constraints

	
	[Constraint <variable> != <rdfs:Resource>]

Troubleshooting

	Database health checks

	System metrics monitoring

	Diagnosing and reporting critical errors

	Storage tool

Database health checks

What’s in this document?

	Possible values for health checks and their meaning

	Default health checks for the different GraphDB editions

	Aggregated health checks

	Running health checks

	Running legacy health checks

The GraphDB health check endpoint is at http://localhost:7200/repositories/myrepo/health.

Possible responses: HTTP status 200 (the repository is healthy), 206 (the repository needs attention but it is not something critical), 500 (the repository is inconsistent, i.e. some checks failed).

Possible values for health checks and their meaning

	Value

	Description

	read-availability

	Checks whether the repository is readable.

	storage-folder

	Checks if there are at least 20 megabytes writable left for the storage folder. The amount can be controlled with the system parameter health.minimal.free.storage.

	long-running-queries

	Checks if there are queries running longer than 20 seconds. The time can be controlled with the system parameter health.max.query.time.seconds. If a query is running for more than 20 seconds, it is either a slow one, or there is a problem with the database.

	predicates-statistics

	Checks if the predicate statistics contain correct values.

	master-status

	Checks whether the master is up and running, can access its workers, and the peers are not lagging. If there are non-readable workers, the status will be yellow. If there are workers that are off, the status will be red.

	plugins

	Provides aggregated health checks for the individual plugins.

Default health checks for the different GraphDB editions

	Name

	Free

	SE

	EE / Worker

	EE / Master

	read-availability

	✅

	✅

	✅

	✅

	storage-folder

	✅

	✅

	✅

	✅

	long-running-queries

	✅

	✅

	✅

	❌

	predicates-statistics

	✅

	✅

	✅

	❌

	master-status

	❌

	❌

	❌

	✅

	plugins

	✅

	✅

	✅

	❌

Aggregated health checks

The aggregated GraphDB health checks include checks for dependent services and components as plugins and connectors.

Each connector plugin is reported independently as part of the composite “plugins” check in the repository health check. Each connector’s check is also a composite where each component is an individual connector instance.

The output may look like this:

{
 "name":"wine",
 "status":"green",
 "components":[
 {
 "name":"read-availability",
 "status":"green"
 },
 {
 "name":"storage-folder",
 "status":"green"
 },
 {
 "name":"long-running-queries",
 "status":"green"
 },
 {
 "name":"predicates-statistics",
 "status":"green"
 },
 {
 "name":"plugins",
 "status":"yellow",
 "components":[
 {
 "name":"elasticsearch-connector",
 "status":"green",
 "components":[

]
 },
 {
 "name":"lucene-connector",
 "status":"yellow",
 "components":[
 {
 "name":"my_index",
 "status":"green",
 "message":"query took 0 ms, 5 hits"
 },
 {
 "name":"my_index2",
 "status":"yellow",
 "message":"query took 0 ms, 0 hits"
 }
]
 },
 {
 "name":"solr-connector",
 "status":"yellow",
 "components":[
 {
 "name":"my_index",
 "status":"green",
 "message":"query took 7 ms, 5 hits"
 },
 {
 "name":"my_index2",
 "status":"yellow",
 "message":"query took 5 ms, 0 hits"
 }
]
 }
]
 }
]
}

An individual check run involves sending a query for all documents to the connector instance, and the result is:

	green - more than zero hits

	yellow - zero hits or failing shards (shards check only for Elasticsearch)

	red - unable to execute query

In all of these cases, including the green status, there is also a message providing details, e.g., “query took 15 ms, 5 hits, 0 failing shards”.

Running health checks

To run the health checks for a particular repository, in the example myrepo, execute the following command:

curl 'http://localhost:7200/repositories/myrepo/health?'

Running legacy health checks

If you have been relying on the health check format from a version of GraphDB prior to 9.0, you can add the old parameter to get results in the old health check format:

curl 'http://localhost:7200/repositories/myrepo/health?old'

Parameter: checks (By default all checks are run)

Behavior: Run only the specified checks.

Accepts multiple values: True.

Values: read-availability, storage-folder, long-running-queries, predicates-statistics, master-status.

curl 'http://localhost:7200/repositories/myrepo/health?old&checks=<value1>&checks=<value2>'

	an example output for a healthy repository with HTTP status 200:

{
 "predicates-statistics": "OK",
 "long-running-queries": "OK",
 "read-availability": "OK",
 "status": "green",
 "storage-folder": "OK"
}

	an example output for an unhealthy repository with HTTP status 500:

{
 predicates-statistics: "OK",
 long-running-queries: "OK",
 read-availability: "OK",
 storage-folder: "UNHEALTHY: Permission denied java.io.IOException: Permission denied",
 status: "red"
}

The status field in the output means the following:

	green - all is good;

	yellow - the repository needs attention;

	red - the repository is inconsistent in some way.

System metrics monitoring

What’s in this document?

	Page cache metrics

	Entity pool metrics

The database employs a number of metrics that help tune the memory parameters and performance. They can be found in the JMX console under
the com.ontotext.metrics package. The global metrics that are shared between the repositories are under the top level package, and those specific to repositories - under com.ontotext.metrics.<repository-id>.

[image: _images/jmx-metrics.png]

Page cache metrics

The global page cache provides metrics that help tune the amount of memory given for the page cache.
It contains the following elements:

	Parameter

	Description

	cache.flush

	A timer [http://metrics.dropwizard.io/3.1.0/getting-started/#timers] for the pages that
are evicted out of the page and the amount of time it takes for them to be flushed on the disc.

	cache.hit

	Number of hits in the cache. This can be viewed as the number of pages that do not
need to be read from the disc but can be taken from the cache.

	cache.load

	A timer [http://metrics.dropwizard.io/3.1.0/getting-started/#timers] for the pages that
have to be read from the disc. The smaller the number of pages is, the better.

	cache.miss

	Number of cache misses. The smaller this number is, the better. If you see that the number of hits
is smaller than the misses, then it is probably a good idea to increase the page cache memory.

Entity pool metrics

You can monitor the number of reads and writes in the entity pool of each repository with the following parameters:

	Parameter

	Description

	epool.read

	a timer [http://metrics.dropwizard.io/3.1.0/getting-started/#timers]
for the number of reads in the entity pool.

	epool.write

	a timer [http://metrics.dropwizard.io/3.1.0/getting-started/#timers]
for the number of writes in the entity pool.

Diagnosing and reporting critical errors

What’s in this document?

	Report

	Report content

	Create Report from Workbench

	Create report through the report script

	Logs

	Setting up the root logger

	Logs location

	Log files

It is essential to gather as many details as possible about an issue once it appears.
For this purpose, we provide utilities that generate such issue reports by collecting data from various log files, JVM, etc. Using these issue reports helps us to investigate the problem and provide an appropriate solution as quickly as possible.

Report

GraphDB provides an easy way to gather all important system information and package it as an archive that can be sent to graphdb-support@ontotext.com. Run the report using the GraphDB Workbench, or from the generate-report script in your distribution.
The report is saved in GraphDB-Work/report directory. There is always one report - the one that has been generated most recently.

Report content

	GraphDB version

	recursive directory list of the files in GraphDB-Home as home.txt

	recursive directory list of the files in GraphDB-Work as work.txt

	recursive directory list of the files in GraphDB-Data data.txt

	the 30 most recent logs files from GraphDB-Logs ordered by time of creation

	full copy of the content of GraphDB-Conf

	the output from jcmd GC.class_histogram as jcmd_histogram.txt

	the output from jcmd Thread.print as thread_dump.txt

	the System Properties for the GraphDB instance

	the repository configurations info as system.ttl

	the owlim.properties file for each repository

[image: _images/report.png]

Create Report from Workbench

Go to Help -> System information. Click on Create new server report in the Application info tab to obtain a new one, wait until it is ready, and download it.

[image: _images/create-report.png]

Create report through the report script

The generate-report script can be found in the bin folder in the GraphDB distribution. It needs graphdb-pid - the GraphDB for which you want a report. An optional argument is output-file, the default for which is graphdb-server-report.zip.

Logs

GraphDB uses slf4j [http://www.slf4j.org/] for logging through the Logback [http://logback.qos.ch/] implementation (the RDF4J facilities for log configuration discovery are no longer used). Instead, the whole distribution has a central place for the logback.xml configuration file in GraphDB-HOME/conf/logback.xml. If you use the war file setup, you can provide the log file location through a system parameter, or we will pick it up from the generated war file.

Note

Check the Logback [http://logback.qos.ch/] configuration location rules for more information.

On startup, GraphDB logs the logback configuration file location:

[INFO] 2016-03-17 17:29:31,657 [main | ROOT] Using 'file:/opt/graphdb-ee/conf/logback.xml' as logback's configuration file for graphdb

Setting up the root logger

The default root logger is set to info. You can change it in several ways:

	Edit the logback.xml configuration file.

Note

You do not have to restart the database as it will check the file for changes every 30 seconds, and will reconfigure the logger.

	Change the log level through the logback JMX configurator. For more information, see the Logback manual chapter 10 [http://logback.qos.ch/manual/jmxConfig.html].

	Start each component with graphdb.logger.root.level set to your desired root logging level. For example:

bin/graphdb -Dgraphdb.logger.root.level=WARN

Logs location

By default, all database components and tools log in GraphDB-HOME/logs, when run from the bin folder. If you setup GraphDB by deploying .war files into a stand-alone servlet container, the following
rules apply:

	To log in a specified directory, set the logDestinationDirectory system property.

	If GraphDB is run in Tomcat, the logs can be found in ${catalina.base}/logs/graphdb.

	If GraphDB is run in Jetty, the logs can be found in ${jetty.base}/logs/graphdb.

	Otherwise, all logs are in the logs subdirectory of the current working directory for the process.

Log files

Different information is logged in different files. This makes it easier to
follow what goes on in different parts of the system.

	File name

	Description

	http-log.log

	Contains the HTTP communication between the master and the workers.

	query-log.log

	Contains all queries that were sent to the database. The format is machine-readable and allows you
to replay the queries when debugging a problem.

	main.log

	Contains all messages coming from the main part of the engine.

Storage tool

What’s in this document?

	Options

	Supported commands

	Examples

The Storage Tool is an application for scanning and repairing a GraphDB repository.
To run it, execute bin/storage-tool in the GraphDB distribution folder. For help, run bin/storage-tool –help.

Note

The tool works only on repository images that are not in use (i.e., when the database is down).

Options

	Parameter

	Description

	Default value

	command

	Operation to be executed, mandatory

	

	storage

	Absolute path to repo storage directory, mandatory

	

	esize

	Size of entity pool IDs: 32 or 40 bits

	32

	statusPrintInterval

	Interval between status message printing

	30, means 30 seconds

	pageCacheSize

	Size of the page cache

	10, means 10,000 elements

	sortBufferSize

	Size of the external sort buffer

	95, means 95M elements, max value is also 95

	positiveFilterStatus

	Optional statement status filter during export

	-1, means no filter

	srcIndex

	One of pso, pos

	

	destIndex

	One of pso, pos, cpso

	

	origURI

	Original existing URI in the repo

	

	replURI

	New non-existing URI in the repo

	

	destFile

	Path to file used to store exported data

	

Supported commands

	Command

	Description

	scan

	Scans repo index(es) and prints statistic of the number of statements and repo consistency.

	rebuild

	Uses the source index (srcIndex) to rebuild the destination index destIndex. If srcIndex = destIndex,
compacts destIndex. If srcIndex is missing and destIndex = predicates.
then it just rebuilds destIndex.

	replace

	Replaces an existing entity -origURI with a non-existing one -replURI.

	repair

	Repairs the repository indexes and restores data, a better variant of the merge index.

	mergeindex

	Merges pso and pos indexes (makes union), rebuilds context indexes if any. Note that there is no data backup.

	export

	Uses the source index (srcIndex) to export repository data to the destination file (destFile).
Supported destination file extension formats: .trig, .ttl, .nq.

	epool

	Scans the entity pool for inconsistencies and checks for invalid IRIs. IRIs are validated against the
RFC 3987 [https://tools.ietf.org/html/rfc3987] standard. Invalid IRIs will be listed in an
entities.invalid.log file for review. If -fix is specified, instead of listing the invalid IRIs,
they will instead be fixed in the entity pool.

Examples

	scan the repository, print statement statistics and repository consistency status:

bin/storage-tool -command=scan -storage=/repo/storage

	when everything is OK

 Scan result consistency check!

_______________________scan results_______________________
mask | pso | pos | diff | flags
0001 | 29,937,266 | 29,937,266 | OK | INF
0002 | 61,251,058 | 61,251,058 | OK | EXP
0005 | 145 | 145 | OK | INF RO
0006 | 8,134 | 8,134 | OK | EXP RO
0009 | 1,661,585 | 1,661,585 | OK | INF HID
000a | 2,834,694 | 2,834,694 | OK | EXP HID
0011 | 1,601,875 | 1,601,875 | OK | INF EQ
0012 | 1,934,013 | 1,934,013 | OK | EXP EQ
0020 | 309 | 221 | OK | DEL
0021 | 15 | 23 | OK | INF DEL
0022 | 34 | 30 | OK | EXP DEL
_______________________additional checks_______________________
 | pso | pos | stat | check-type
 | 59b30d4d | 59b30d4d | OK | checksum
 | 0 | 0 | OK | not existing ids
 | 0 | 0 | OK | literals as subjects
 | 0 | 0 | OK | literals as predicates
 | 0 | 0 | OK | literals as contexts
 | 0 | 0 | OK | blanks as predicates
 | true | true | OK | page consistency
 | 80b9ad24 | 80b9ad24 | OK | cpso crc
 | - | - | OK | epool duplicate ids
 | - | - | OK | epool consistency
 | - | - | OK | literal index consistency
 | - | - | OK | triple entity index consistency

Scan determines that this repo image is consistent.

	when there are broken indexes

 _______________________scan results_______________________
mask | pso | pos | diff | flags
0001 | 29,284,580 | 29,284,580 | OK | INF
0002 | 63,559,252 | 63,559,252 | OK | EXP
0004 | 8,134 | 8,134 | OK | RO
0005 | 1,140 | 1,140 | OK | INF RO
0009 | 1,617,004 | 1,617,004 | OK | INF HID
000a | 3,068,289 | 3,068,289 | OK | EXP HID
0011 | 1,599,375 | 1,599,375 | OK | INF EQ
0012 | 2,167,536 | 2,167,536 | OK | EXP EQ
0020 | 327 | 254 | OK | DEL
0021 | 11 | 12 | OK | INF DEL
0022 | 31 | 24 | OK | EXP DEL
004a | 17 | 17 | OK | EXP HID MRK

_______________________additional checks_______________________
 | pso | pos | stat | check-type
 | ffffffff93e6a372 | ffffffff93e6a372 | OK | checksum
 | 0 | 0 | OK | not existing ids
 | 0 | 0 | OK | literals as subjects
 | 0 | 0 | OK | literals as predicates
 | 0 | 0 | OK | literals as contexts
 | 0 | 0 | OK | blanks as predicates
 | true | true | OK | page consistency
 | bf55ab00 | bf55ab00 | OK | cpso crc
 | - | - | OK | epool duplicate ids
 | - | - | OK | epool consistency
 | - | - | ERR | literal index consistency

Scan determines that this repo image is INCONSISTENT.

Literals index contains more statements than the literals in epool, and you have to rebuild it:

	scan the PSO index of a 40bit repository, print a status message every 60 seconds:

bin/storage-tool -command=scan -storage=/repo/storage -srcIndex=pso -esize=40 -statusPrintInterval=60

	compact the PSO index (self-rebuild equals compacting):

bin/storage-tool -command=rebuild -storage=/repo/storage -esize=40 -srcIndex=pso -destIndex=pso

	rebuild the POS index from the PSO index and compact POS:

bin/storage-tool -command=rebuild -storage=/repo/storage -esize=40 -srcIndex=pso -destIndex=pos

	rebuild the predicates statistics index:

bin/storage-tool -command=rebuild -storage=/repo/storage -esize=40 -destIndex=predicates

	replace http://onto.com#e1 with http://onto.com#e2:

bin/storage-tool -command=replace -storage=/repo/storage -origURI="<http://onto.com#e1>" -replURI="<http://onto.com#e2>"

	dump the repository data using the POS index into a f.trig file:

bin/storage-tool -command=export -storage=/repo/storage -srcIndex=pos -destFile=/repo/storage/f.trig

	scan the entity pool and create report with invalid IRIs, if such exist:

bin/storage-tool -command=epool -storage=/repo/storage -esize=40

Usage

	Loading Data

	Exploring data

	Querying Data

	Exporting Data

	Reasoning

	SHACL Validation

	Virtualization

	Using the Workbench REST API

	Using GraphDB with the RDF4J API

	SQL Access over JDBC

	Plugins

	GraphDB Connectors

	Internal SPARQL Federation

	GraphDB Dev Guide

	Experimental Features

Loading Data

GraphDB exposes multiple interfaces for loading RDF data. It also supports the conversion of tabular data into RDF and its direct
load into an active repository, using simple SPARQL queries and a virtual endpoint. This functionality is based on
OpenRefine [http://openrefine.org/], and the supported formats are TSV, CSV, Excel (.xls and .xlsx), JSON, XML, or Google Sheet.

GraphDB’s data loading interfaces

	Interface

	Use cases

	Mode

	Speed

	SPARQL endpoint

	No limits on the file size

	Online parallel

	Moderate speed

	Workbench import a local or a remote RDF file

	Small files limited up to 200MB

	Online parallel

	Moderate speed

	Workbench import a server file

	No limits on the file size

	Online parallel

	Fast ignoring all HTTP protocol overheads

	LoadRDF

	Batch import of very big files

	Initial offline import with no plugins

	Fast with a small speed degradation

	Preload

	Import huge datasets with no inference

	Initial offline import with no inference and plugins

	Ultra fast without speed degradation

	OntoRefine

	Import and clean non RDF based formats

	In-memory operation limited to the available heap

	Slow

	Loading data using the Workbench

	Loading data using the LoadRDF tool

	Loading data using the Preload tool

	Loading data using OntoRefine

Loading data using the Workbench

What’s in this document?

	Import settings

	Importing local files

	Importing remote content

	Importing RDF data from a text snippet

	Importing server files

	Import data with an INSERT query

There are several ways of importing data:

	from local files;

	from files on the server where the Workbench is located;

	from a remote URL (with a format extension or by specifying the data format);

	by pasting the RDF data in the Text area tab;

	from a SPARQL construct query directly.

All import methods support asynchronous running of the import tasks,
except for the text area import, which is intended for very fast
and simple import.

Note

Currently, only one import task of a type is executed at a time,
while the others wait in the queue as pending.

Note

For local repositories, we support interruption and additional settings, since the parsing is done by the Workbench.
When the location is a remote one, you just send the data to the remote endpoint, and the parsing and loading are performed there.

If you have many files, a file name filter is available to narrow the list down.

Import settings

The settings for each import are saved so that you can use them, in case
you want to re-import a file. You can see them in the dialog that opens after you have uploaded a document and press Import:

	Base IRI - specifies the base IRI against which to resolve any relative IRIs found in the uploaded data. When data does not contain relative IRIs, this field may be left empty.

	Target graphs - when specified, imports the data into one or more graphs. Some RDF formats may specify graphs, while others do not support that. The latter are treated as if they specify the default graph.

	From data - Imports data into the graph(s) specified by the data source.

	The default graph - Imports all data into the default graph.

	Named graph - Imports everything into a user-specified named graph.

	Enable replacement of existing data - Enable this to replace the data in one or more graphs with the imported data. When enabled:

	Replaced graph(s) - All specified graphs will be cleared before the import is run. If a graph ends in *, it will be treated as a prefix matching all named graphs starting with that prefix excluding the *. This option provides the most flexibility when the target graphs are determined from data.

	I understand that data in the replaced graphs will be cleared before importing new data - this option must be checked when the data replacement is enabled.

Advanced settings:

	Preserve BNnode IDs - assigns its own internal blank node identifiers or uses the blank node IDs it finds in the file.

	Fail parsing if datatypes are not recognized - determines whether to fail parsing if datatypes are unknown.

	Verify recognized datatypes - verifies that the values of the datatype properties in the file are valid.

	Normalize recognized datatypes values - indicates whether recognized datatypes need to have their values be normalized.

	Fail parsing if languages are not recognized - determines whether to fail parsing if languages are unknown.

	Verify language based on a given set of definitions for valid languages - determines whether languages tags are to be verified.

	Normalize recognized language tags - indicates whether languages need to be normalized, and to which format they should be normalized.

	Should stop on error - determines whether to ignore non-fatal errors.

	Force serial pipeline - enforces the use of the serial pipeline when importing data.

Note

Import without changing settings will import selected files or folders using their saved settings or default ones.

[image: _images/import_settings.png]

Importing local files

Go to Import -> RDF -> User data -> Upload RDF files.

This option allows you to select, configure, and import data from various formats.

Note

The limitation of this method is that it supports files of a limited
size. The default is 200 megabytes, and is controlled by the
graphdb.workbench.maxUploadSize property. The value is in
bytes (-Dgraphdb.workbench.maxUploadSize=20971520).

Loading data from your local machine directly streams the file to the
RDF4J’s statements endpoint:

	Click the icon to browse files for uploading.

	When the files appear in the table, either import a file by clicking
Import on its line, or select multiple files and click Import from the header.

	The import settings modal appears, just in case you want to add
additional settings.

[image: _images/import_local_file.png]

Importing remote content

Go to Import -> RDF -> User data -> Get RDF data from a URL.

You can import from a URL with RDF data. Each endpoint that returns RDF
data can be used.

[image: _images/import_remote_content.png]
If the URL has an extension, it is used to detect the correct data type
(e.g., http://linkedlifedata.com/resource/umls-concept/C0024117.rdf). Otherwise, you have to provide the Data Format parameter, which is sent as Accept header to the endpoint and then to the import loader.

Importing RDF data from a text snippet

Go to Import -> RDF -> User data -> Import RDF text snippet.

You can import data by typing or pasting it directly in the Text area control. This very simple text import sends the data to the Repository Statements Endpoint [https://rdf4j.eclipse.org/documentation/rest-api/#repository-statements].

[image: _images/import_text_area.png]

Importing server files

Go to Import -> RDF -> Server files.

The server files import allows you to load files of arbitrary sizes. Its
limitation is that the files must be put in a specific directory (symbolic links are supported). By default, it is
${user.home}/graphdb-import/.

If you want to tweak the directory location, see the
graphdb.workbench.importDirectory system property. The directory
is scanned recursively and all files with a semantic MIME type are visible in the Server files tab.

Import data with an INSERT query

You can also insert triples into a graph with an INSERT query in the SPARQL editor.

[image: _images/INSERT_query.png]

Loading data using the LoadRDF tool

What’s in this document?

	Command line options

	Load data in a repository created from the Workbench

	Load data in a new repository initialized by a config file

	A GraphDB repository configuration sample

	Tuning LoadRDF

LoadRDF is a tool designed for offline loading of datasets. It cannot be used against a running server.
Rationale for an offline tool is to achieve an optimal performance for loading large amounts of RDF data by directly serializing
them into GraphDB’s internal indices and producing a ready-to-use repository.

The LoadRDF tool resides in the bin/ folder of the GraphDB distribution. It loads data in a new repository created from the
Workbench or the standard configuration Turtle file found in configs/templates, or uses an existing repository. In the
latter case, the repository data is automatically overwritten.

Warning

During the bulk load, the GraphDB plugins are ignored in order to speed up the process. Afterwards, when the server is
started, the plugin data can be rebuilt.

Note

For loading datasets bigger than several billion RDF statements, consider using the Preload tool.

Command line options

usage: loadrdf [OPTION]... [FILE]...
Loads data in a newly created repository or overwrites an existing one.
 -c,--configFile <file_path> repo definition .ttl file
 -f,--force overwrite existing repo
 -i,--id <repository-id> existing repository id
 -m,--mode <serial|parallel> singlethread | multithread parse/load/infer
 -p,--partialLoad allow partial load of file that contains
 corrupt line
 -s,--stopOnFirstError stop process if the dataset contains a
 corrupt file
 -v,--verbose print metrics during load

The mode specifies the way the data is loaded in the repository:

	serial - parsing is followed by entity resolution, which is then followed by load, optionally followed by inference, all done in a single thread.

	parallel - using multi-threaded parse, entity resolution, load and inference. This gives a significant boost when loading large datasets with enabled inference.

Note

The LoadRDF Tool supports .zip and .gz files, and directories. If specified, the directories can be processed
recursively.

Note

To be able to load data using the below methods, make sure to set up
a valid GraphDB license after installing GraphDB.

There are two common cases for loading data with the LoadRDF tool:

Load data in a repository created from the Workbench

	Configure LoadRDF repositories location by setting the property graphdb.home.data in <graphdb_dist>/conf/graphdb.properties. If no property is set, the default repositories location will be: <graphdb_dist>/data.

	Start GraphDB.

	Start a browser and go to the Workbench Web application using a URL of this form: http://localhost:7200. Substitute localhost and the 7200 port number as appropriate.

	Go to Setup-> Repositories.

	Create and configure a repository.

	Shut down GraphDB.

	Start the bulk load with the following command:

$ <graphdb-dist>/bin/loadrdf -f -i <repo-name> -m parallel <RDF data file(s)>

	Start GraphDB.

Load data in a new repository initialized by a config file

	Stop GraphDB.

	Configure LoadRDF repositories location by setting the property graphdb.home.data in <graphdb_dist>/conf/graphdb.properties. If no property is set, the default repositories location will be: <graphdb_dist>/data.

	Create a configuration file.

	Start the bulk load with the following command:

$ <graphdb-dist>/bin/loadrdf -c <repo-config.ttl> -m parallel <RDF data file(s)>

	Start GraphDB.

A GraphDB repository configuration sample

Example configuration template, using minimal parameters set. However, you can add more optional parameters from the configs/templates example:

#
Configuration template for an GraphDB-SE repository
#
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix rep: <http://www.openrdf.org/config/repository#>.
@prefix sr: <http://www.openrdf.org/config/repository/sail#>.
@prefix sail: <http://www.openrdf.org/config/sail#>.
@prefix owlim: <http://www.ontotext.com/trree/owlim#>.

[] a rep:Repository ;
 rep:repositoryID "repo-test-1" ;
 rdfs:label "My first test repo" ;
 rep:repositoryImpl [
 rep:repositoryType "owlim:MonitorRepository" ;
 sr:sailImpl [
 sail:sailType "owlim:Sail" ;

 # ruleset to use
 owlim:ruleset "rdfsplus-optimized" ;

 # disable context index(because my data do not uses contexts)
 owlim:enable-context-index "false" ;

 # indexes to speed up the read queries
 owlim:enablePredicateList "true" ;
 owlim:enable-literal-index "true" ;
 owlim:in-memory-literal-properties "true" ;
]
].

Tuning LoadRDF

The LoadRDF tool accepts java command line options, using -D. To change them, edit the command line script.

The following options can tune the behavior of the parallel loading:

	-Dpool.buffer.size - the buffer size (the number of statements) for each stage. Defaults to 200,000 statements. You can use this parameter to tune the memory usage and the overhead of inserting data:

	less buffer size reduces the memory required;

	bigger buffer size reduces the overhead as the operations performed by threads have a lower probability to wait for the operations on which they rely, and the CPU is intensively used most of the time.

	-Dinfer.pool.size - the number of inference threads in parallel mode. The default value is the number of cores of the machine processor or 4, as set in the command line scripts. A bigger pool theoretically means faster load if there are enough unoccupied cores and the inference does not wait for the other load stages to complete.

Loading data using the Preload tool

What’s in this document?

	Preload vs LoadRDF

	Command line option

	A GraphDB repository configuration sample

	Tuning Preload

	Resuming data loading with Preload

Preload is a tool for converting RDF files into GraphDB indices on a very low level. A common use case is the initial load of
datasets larger than several billion RDF statements with no inference. Preload can perform only an initial load, which is transactional, supports stop requests, resume and consistent output even after failure. On a standard server with NVMe drive or fast SSD disks, it can
sustain a data loading speed of over 130,000 RDF statements per second with no speed degradation.

Preload vs LoadRDF

Despite the many similarities between LoadRDF and Preload, such as the fact that both tools do parallel offline transformation of RDF files into GraphDB image,
there are also substantial differences in their implementation. LoadRDF uses an algorithm very similar to online data loading. As the data variety grows,
the loading speed starts to drop, because the page splits and the tree is rebalancing. After a continuous data load, the disk image becomes fragmented
in the same way as it would happen if the RDF files were imported into the engine.

The Preload tool eliminates the performance drop by implementing a two-phase load. In the first phase, all RDF statements are processed in-memory in chunks,
which are later flushed on the disk as many GraphDB images. Then, all sorted chunks are merged into a single non-fragmented repository
image with a merge join algorithm. Thus, the Preload tool requires almost twice as much disk space to complete the import.

Command line option

usage: PreloadData [OPTION]... [FILE]...
 Loads data in newly created repository or overwrites existing one.
 -a,--iter.cache <arg> chunk iterator cache size. The value will be multiplied by 1024, default is 'auto' e.g. calculated by the tool
 -b,--chunk <arg> chunk size for partial sorting of the queues. Use 'm' for millions or 'k' for thousands, default is 'auto' e.g. calculated by the tool
 -c,--configFile <file_path> repo definition .ttl file
 -f,--force overwrite existing repo
 -i,--id <repository-id> existing repository id
 -p,--partialLoad allow partial load of file that contains corrupt line
 -q,--queue.folder <arg> where to store temporary data
 -r,--recursive walk folders recursively
 -s,--stopOnFirstError stop process if the dataset contains a corrupt file
 -t,--parsing.tasks <arg> number of rdf parsers
 -x,--restart restart load, ignoring an existing recovery point
 -y,--interval <arg> recover point interval in seconds

Note

To be able to load data using the below methods, make sure to set up
a valid GraphDB license after installing GraphDB.

There are two common cases for loading data with the Preload tool:

Loading data in a repository created from the Workbench

	Configure Preload repositories location by setting the property graphdb.home.data in <graphdb_dist>/conf/graphdb.properties. If no property is set, the default repositories location will be: <graphdb_dist>/data.

	Start GraphDB.

	Start a browser and go to the Workbench Web application using a URL of this form: http://localhost:7200. Substitute localhost and the 7200 port number as appropriate.

	Go to Setup-> Repositories.

	Create and configure a repository.

	Shut down GraphDB.

	Start the bulk load with the following command:

$ <graphdb-dist>/bin/preload -f -i <repo-name> <RDF data file(s)>

	Start GraphDB.

Loading data in a new repository initialized by a config file

	Stop GraphDB.

	Configure Preload repositories location by setting the property graphdb.home.data in <graphdb_dist>/conf/graphdb.properties. If no property is set, the default repositories location will be: <graphdb_dist>/data.

	Create a configuration file.

	Start the bulk load with the following command:

$ <graphdb-dist>/bin/preload -c <repo-config.ttl> <RDF data file(s)>

	Start GraphDB.

A GraphDB repository configuration sample

This is an example configuration template using a minimal parameters set. You can add more optional parameters from the configs/templates example.

#
Configuration template for a GraphDB-SE repository
#
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix rep: <http://www.openrdf.org/config/repository#>.
@prefix sr: <http://www.openrdf.org/config/repository/sail#>.
@prefix sail: <http://www.openrdf.org/config/sail#>.
@prefix owlim: <http://www.ontotext.com/trree/owlim#>.

[] a rep:Repository ;
 rep:repositoryID "repo-test-1" ;
 rdfs:label "My first test repo" ;
 rep:repositoryImpl [
 rep:repositoryType "owlim:MonitorRepository" ;
 sr:sailImpl [
 sail:sailType "owlim:Sail" ;

 # ruleset to use
 owlim:ruleset "empty" ;

 # disable context index(because my data do not uses contexts)
 owlim:enable-context-index "false" ;

 # indexes to speed up the read queries
 owlim:enablePredicateList "true" ;
 owlim:enable-literal-index "true" ;
 owlim:in-memory-literal-properties "true" ;
]
].

Tuning Preload

The Preload tool accepts command line options to fine tune its operation.

	chunk - the size of the in-memory buffer to sort RDF statements before flushing it to the disk. A bigger chunk consumes additional RAM and reduces the number of chunks to merge. We recommend the default value of 20 million for datasets of up to 20 billion RDF statements.

	iter.cache - the number of triples to cache from each chunk during the merge phase. A bigger value is likely to eliminate the I/O wait time at the cost of more RAM. We recommend the default value of 64,000 for datasets of up to 20 billion RDF statements.

	parsing.tasks - the number of parsing tasks controls how many parallel threads parse the input files.

	queue.folder - the parameter controls the file system location, where all temporary chunks are stored.

Resuming data loading with Preload

The loading of a huge dataset is a long batch processing, and every run may take many hours.
Preload supports resuming of the process if something goes wrong (insufficient disk space, out of memory, etc.) and the loading is terminated abnormally. In this case, the data processing will restart from intermediate restore point instead of at the beginning. The data collected for the restore points is sufficient to initialize all internal components correctly and to continue the load normally at that moment, thus saving time.
The following options can be used to configure data resuming:

	interval - sets the recovery point interval in seconds. The default is 3,600s (60min).

	restart - if set to true, the loading will start from the beginning, ignoring an existing recovery point. The default is false.

Loading data using OntoRefine

What’s in this document?

	OntoRefine – overview and features

	Example data

	Upload data in OntoRefine

	Open OntoRefine in the Workbench

	Create a project

	Import a project

	Open a project

	RDFize tabular data

	Mapping interface

	Value mapping

	Prefixes

	Triple configuration

	RDFize data using SPARQL

	Benchmarks

	Additional resources

OntoRefine – overview and features

GraphDB OntoRefine is an upgraded version of the open-source OpenRefine [http://openrefine.org/] data transformation tool. It allows the quick mapping of any structured data to a locally stored RDF schema in GraphDB. The visual interface is optimized to guide you in choosing the right predicates and types, defining the datatype to RDF mappings, and implementing complex transformation using OpenRefine’s GREL language. GREL is the Google Refine Expression Language that helps you define complex transformation.

OntoRefine is integrated in the GraphDB Workbench, and supports the formats TSV, CSV, *SV, XLS, XLSX, JSON, XML, RDF as XML, and Google sheet. It enables you to:

	Upload your data file(s) and create a project.

	Create an RDF model of the cleaned data.

	Transform your data using SPIN functions [http://spinrdf.org/].

	Further modify your RDFized data in the GraphDB SPARQL endpoint.

Example data

For the examples in this guide, we will be working with the following dataset:

	Netherlands_restaurants.csv

Upload data in OntoRefine

Open OntoRefine in the Workbench

To transform your data into RDF, you need a working GraphDB database.

	Start GraphDB in Workbench mode.

	Open http://localhost:7200/ in a browser.

	Create a repository.

	Go to Import -> Tabular (OntoRefine).

All data files in OntoRefine are organized as projects. One project can have more than one data file.

The Create Project action area consists of three tabs corresponding to the source of data. You can upload a file from your computer, specify the URL of a publicly accessible data, or paste data from the clipboard.

Create a project

	Click Create Project -> Get data from.

	Select one or more files to upload:

	from your computer

[image: _images/ontoRefine-upload-file.png]

	from web addresses (URLs)

[image: _images/ontoRefine-upload-file-url.png]

	from clipboard

[image: _images/ontoRefine-upload-file-clipboard.png]

	Click Next.

	(Optional) Change the table configurations and update the preview.

With the first opening of the file, OntoRefine tries to recognize the encoding of the text file and all delimiters.

[image: _images/ontoRefine-table-configurations.png]

	Click Create Project.

Import a project

To import an already existing OntoRefine project:

	Go to Import Project.

	Select a file (.tar or .tar.gz)

	Import it.

[image: _images/ontoRefine-import-project.png]

Open a project

Once the project is created:

	Go to Open Project.

	Click the one you want to work on.

	(Optional) You can also delete your project if you want to.

[image: _images/ontoRefine-rename-delete.png]
The result of each of these actions is a table similar to that of an Excel or a Google sheet:

[image: _images/ontoRefine-view-project.png]

RDFize tabular data

Mapping interface

This walk-through will show you how to map your tabular data against an existing ontology, in this case the schema-org.rdf ontology. Upload it into the repository as shown here. After that, go to Setup -> Autocomplete and enable the autocomplete index. Return to the OntoRefine project.

The RDF Mapping button will take you to the mapping editor, which is an extension of the OntoRefine functionality. Here, you can:

	configure and preview the mapping model of your data

	save your mapping

	download a JSON model of your mapping

	upload a JSON model of a mapping

	convert the result of the mapping to RDF data that is downloaded as a .ttl file

	generate a SPARQL query of your mapping and open it in a GraphDB SPARQL endpoint

	create a new mapping

You can close the mapping editor with the X button on the top right.

The headers of all columns in the tabular data that we imported are displayed as boxes that you can drag and drop into a mapping cell to configure them.

Each row in the table represents an RDF triple constructed from the tabular data.
If two (or more) triples have the same subject, they will be displayed as a triple with one subject and two (or more) predicates. Analogically, if two (or more) triples have the same subject + predicate, but different objects, they will be displayed as a triple with one subject + predicate and multiple different objects.

[image: _images/ontoRefine-mapping-home-screen.png]

Important

To save your mapping model in Git or to automate the import of structured data into GraphDB, you can download the JSON model and generate the SPARQL query of your mapping, which can be downloaded in several formats including JSON, Turtle, and TriG. The mapping API will then reference these files.

Value mapping

The value mapping describes how a single tabular cell is converted to an RDF value. Each such mapping requires a value source, a value type, and may have an optional value transformation.

Value type

The value type defines the type of RDF value that will be produced by the value mapping. The possible types are:

	Resource (abstract)
	An RDF resource. This is an abstract type that specifies the common features of IRIs and blank nodes. A resource value type may have type mappings and property mappings on its own.

	IRI
	An RDF IRI. the transformed value is the IRI with illegal characters escaped automatically. This is a subtype of the abstract Resource value type.

	Blank node based on value (value Bnode)
	An RDF blank node. The transformed value is used to calculate a reasonable blank node identifier such that identical transformed values produce the same blank node. This is a subtype of the abstract Resource value type.

	Unique blank node (unique Bnode)
	An RDF blank node. The transformed value is ignored and a unique blank node is created every time. This is a subtype of the abstract Resource value type.

	Any literal (abstract)
	Any kind of RDF literal (plain, language, or datatype). This is an abstract type that unifies all literal value types.

	Literal
	An RDF plain literal. The transformed value is the literal’s label.

	Literal with a language
	An RDF literal with a language. The transformed value is the literal’s label. The language is a simple literal value mapping, i.e., identical to a value mapping with type literal.

	Literal with a datatype
	An RDF literal with a datatype. The transformed value is the literal’s label. The datatype is a simple IRI value mapping.

Value source

Each value mapping has an associated value source: the row or record index, a column identified by name, or a constant value.

Value transformation

Each value mapping may have an optional transformation applied to the data received from the value source before the value is created. Each transformation has an associated language and expression. The expression is evaluated according to the rules of the language in the context of the value source. The languages are:

	Language “prefix”
	The expression is a namespace prefix applied to the value received from the source, if that value is not an absolute IRI already.

	Language “grel”
	The expression is a GREL expression.

Prefixes

The mapping tree contains a set of prefixes that are used in the cell configuration. They are defined in the prefix area and can be of three types:

	default prefixes from commonly used RDF schemas, such as foaf, geo, rdf, rdfs, skos, xsd. You can select entities from these schemas without importing them in your repository.

	prefixes that you select from the imported ontology,

	and such that you create ourself.

Add the following prefixes in the Prefix field:

PREFIX dbo: <http://dbpedia.org/ontology/>

PREFIX amsterdam: <https://data/amsterdam/nl/resource/>

Triple configuration

Tip

You may find it convenient to be able to preview the end RDF results while still being able to configure them. To do so, choose Both from the options on the top left.

Restaurant ID and type

For the RDF subject value, we will take the value of Trcid column. You do not need to know all the headers of your data, as typing @ in the field will display a drop-down list of all available column headers.

Set the rdf:type for the predicate - a.

As object value, enter schema:Restaurant as present in the schema-org ontology.

Now let’s edit the subject value. The edit icon will open the Subject mapping configuration window. We can see that the Source for this value is the value of the Trcid column. In the Prefix field, type amsterdam:restaurant/, which will extend the predefined amsterdam prefix.

[image: _images/ontoRefine-triple1.png]

Hint

The preview of an IRI is a clickable link that points to the corresponding resource in the repository, e.g., the below restaurant ID.

[image: _images/ontoRefine-clickable-iri-link.png]
To view the RDF results at any time, click the RDF button. This will download a result-triples.ttl file where we can see the @prefix amsterdam: <http://data.amsterdam.nl/resource/> namespace that we defined extended with restaurant, as well as the IDs of the restaurants that come from the values in the Trcid column.

Note

If you try to navigate away from the mapping screen, to close it, or to open a new mapping, a warning message will inform you that if you proceed with that action, all mappings will be lost.

As our goal here is to map the tabular data against the schema-org ontology, we will continue adding predicates and objects. Since the mapping table is modeled after the Turtle syntax, we can attach more than one predicate to one subject and more than one object to one predicate without having to repeat the same triples in every row.

Title

In the next row, let’s add the schema:title predicate by autocompleting it from the imported ontology: as Source, select Constant, and then enter for Prefix - schema and for Constant - title. The object’s RDF Type will be Literal, and its value will come from the Title column from the tabular data. As explained above, type @ and select Title from the invoked list.

We will also add another object that will be the title in English, i.e., TitleEN. When a type is a Literal, we can further specify its Literal attributes to be Language Literal or Datatype Literal. Here, we choose the secondary type to be Language Literal, which will configure a Language tag for that Literal.

[image: _images/ontoRefine-predicate-title.png]

Hint

Note that the names of the columns that are already being used in the mapping now appear in grey.

Description

In the next row, let’s add another predicate from the ontology – schema:description. As its object, we will use the value from the Shortdescription column.

If you download the .ttl file with the RDF results and open it, you will see that the data is now mapped the way we intended, e.g.:

@base <http://example/base/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix schema: <http://schema.org/> .
@prefix geo: <http://www.opengis.net/ont/geosparql#> .
@prefix amsterdam: <https://data.amsterdam.nl/resource/> .
@prefix sf: <http://www.opengis.net/ont/sf#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix dbo: <http://dbpedia.org/ontology/> .

<https://data.amsterdam.nl/resource/restaurant/669d7d82-8962-4e88-b2e1-7b8706633aa0>
 a schema:Restaurant;
 schema:title "Smits Noord-Zuid Hollandsch Koffiehuis", "Smits Noord-Zuid Hollandsch Koffiehuis"@en;
 schema:description "Het Smits Koffiehuis ontleent haar ontstaan aan de stoomtram die de verbinding onderhield met Amsterdam naar het noorden van de provincie en is in 1919 gebouwd. Nu is er een restaurant en een koffiebar. Ook is hier een informatiekantoor van Amsterdam Marketing gehuisvest.";

One block corresponds to one row in the OntoRefine mapping table.

Latitude

Another predicate that we can use from the ontology is schema:latitude. Its object will be the value of the Latitude column, but we want to edit it the following way: RDF Type -> Literal, Source - GREL with the following expression that will replace the comma in the latitude value with a decimal point: value.replace(',','.').
Then Literal attributes -> Datatype, and Datatype source -> Constant with prefix xsd and constant float.

The same can be done for Longitude.

Note

When writing GREL expressions, keep in mind that column names are case-sensitive.

Zip code

Next, we will map the zip code of the data. Since there is no prefix for it in the schema-org ontology, we will create one – amsterdam:zipcode. The object value will come from the Zipcode column.

Image

We can also map the images in the data. As predicate, use the ontology prefix schema:image, for which the corresponding column from the tabular data is Media. We will edit it to be an IRI as it is an image location - Type -> IRI.

Geographical point (as a nested triple)

Another thing we can map is a geographical point for the restaurant. To do this, we will define a GeoSPARQL point constructed by the latitude and longitude. For predicate, select geo:hasGeometry by autocompleting it from the pre-imported GeoSPARQL schema that we mentioned earlier. For the object, we will need a bridging IRI that will be the GeoSPARQL point. We will take it from the Trcid column: Type -> IRI, Source -> Column with value Trcid. In the Prefix field, enter amsterdam:restaurant/ which will extend the predefined amsterdam prefix.

When something is an IRI, we can continue with the mapping by attaching more predicates and subjects to it, so that it becomes the subject of the next triples. We call these nested triples. You can add one by clicking the Add nested triple (->) icon outside the right border of the object cell. This will open new predicate and object cells below, which are in a green frame together with the ones on top, thus indicating the nesting.

For this IRI that is now the subject of the nested triple, add in the next row a as predicate type, and sf:Point as object (Source -> Constant, and Point as its value). Then click -> again to add another nested triple, which will be the point that we will construct. As its predicate, enter geo:asWKT (Source -> Constant, then prefix geo and constant asWKT. For the object, we will use the row_index:

Hint

Besides using the values from the columns, we can also use the row index, for example: if we did not have a column for the ID in our data (Trcid), we could use the row index to construct an IRI.

Let’s edit this point. In the object field, set the RDF type to Literal and chose GREL as a source. Type the following GREL expression:
"http://www.opengis.net/def/crs/OGC/1.3/CRS84 POINT (" + cells["Longitude"].value.replace(',', '.') + " " + cells["Latitude"].value.replace(',', '.') + ")". It specifies how the value for Point will be constructed. Note that we combine the values of two columns from our table data here – Latitude and Longitude, to construct one single GeoSPARQL point from them.
While typing a GREL expression, a preview of the results is shown to guide you. Click the info icon to reach the GREL documentation.

Further, for Literal attributes we will set Datatype to configure the Datatype for this Literal. In the Constant field, add prefix geo and then constant wktLiteral to add the geo:wktLiteral Datatype to our Point.

[image: _images/ontoRefine-geosparql-point.png]
We can also use blank nodes in the mapping.

Unique Bnode example:

Add the following predicate: Source -> Constant with prefix amsterdam and value uniquelocation. For the object, set RDF type -> Unique Bnode, and the value of the Trcid column as Source. In the preview, we see that a unique blank node is created.

Now, let’s add a nested triple to it. Clicking the right-hand arrow, add a predicate as follows: Source -> Constant with prefix amsterdam and value address. For the object, set RDF type -> Literal, and the value of the Adres column as Source.

[image: _images/ontoRefine-unique-bnode.png]
Value Bnode example:

Let’s add another predicate: Source -> Constant with prefix amsterdam and value valuelocation. For the object, set RDF type -> Value Bnode, and the value of the Trcid column as Source. In the preview, we see that a blank node is created with the source value of the Trcid column.

We will also add a nested triple to it the way we did above: Source -> Constant with prefix amsterdam and value city. For the object, set RDF type -> Literal, and the value of the City column as Source.

[image: _images/ontoRefine-value-bnode.png]

Hint

The source for Bnode is needed as it allows for the distinguishing between these two types of nodes. Also, if a source is missing (i.e., that column does not have a value for that identifier), a Bnode will not be created.

This concludes our example of several basic parameters that are commonly used when RDFizing structured data.

[image: _images/ontoRefine-final-mapping.png]
* The last two examples with Bnodes are not included in the image for better visibility.

The RDF end result should look like this:

@base <http://example/base/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix schema: <http://schema.org/> .
@prefix geo: <http://www.opengis.net/ont/geosparql#> .
@prefix amsterdam: <https://data/amsterdam/nl/resource/> .
@prefix sf: <http://www.opengis.net/ont/sf#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

<https://data/amsterdam/nl/resource/restaurant/669d7d82-8962-4e88-b2e1-7b8706633aa0>
 a schema:Restaurant;
 schema:title "Smits Noord-Zuid Hollandsch Koffiehuis", "Smits Noord-Zuid Hollandsch Koffiehuis"@en;
 schema:description "Het Smits Koffiehuis ontleent haar ontstaan aan de stoomtram die de verbinding onderhield met Amsterdam naar het noorden van de provincie en is in 1919 gebouwd. Nu is er een restaurant en een koffiebar. Ook is hier een informatiekantoor van Amsterdam Marketing gehuisvest.";
 schema:latitude "0"^^xsd:float;
 amsterdam:zipcode "1012 AB";
 schema:image <https%3A//media.iamsterdam.com/ndtrc/Images/20101122/ec8faec5-5cd5-43d6-b0fa-eb0dab65e278.jpg>;
 geo:hasGeometry <https://data/amsterdam/nl/resource/geometry/669d7d82-8962-4e88-b2e1-7b8706633aa0>;
 amsterdam:uniquelocation _:node1em9j7qmhx179149;
 amsterdam:valuelocation _:669d7d82-8962-4e88-b2e1-7b8706633aa0 .

<https://data/amsterdam/nl/resource/geometry/669d7d82-8962-4e88-b2e1-7b8706633aa0>
 a sf:Point;
 geo:asWKT "<http://www.opengis.net/def/crs/OGC/1.3/CRS84> POINT (4.9003230 52.3775440)"^^geo:wktLiteral .

_:node1em9j7qmhx179149 amsterdam:address "Stationsplein 10" .

_:669d7d82-8962-4e88-b2e1-7b8706633aa0 amsterdam:city "AMSTERDAM" .

You can download the JSON file of the mapping we just created, and import it into the RDF mapper for a closer look.

RDFize data using SPARQL

If you are a more proficient SPARQL user and want to configure your data in a different way, OntoRefine provides that option as well. The SPARQL button will open a new SPARQL Query & Update endpoint where a CONSTRUCT query based on the newly configured RDF model is generated.

You can also download the mapping SPARQL query results in various formats, including JSON, Turtle, and TriG.

[image: _images/ontoRefine-sparql-view.png]

Benchmarks

The below table illustrates the expected scalability performance of OntoRefine during data load, operations, and export. The tests have been conducted on a 6-core/12-thread system with NVMe drive, and 2, 4, 8, and 16 gigabytes of RAM, respectively.

For the purpose of the test, we have used a tool that:

	Generates a CSV file with 4 columns.

	Creates a project and uploads the file.

	Performs some operations, such as creating and removing a column (see them in detail here [https://github.com/ostephens/openrefine-timer/blob/master/operations.json]).

	Exports the project in CSV format.

	Number of lines

	2GB RAM

	4GB RAM

	8GB RAM

	16GB RAM

	load (s)

	operations (s)

	export (s)

	load (s)

	operations (s)

	export (s)

	load (s)

	operations (s)

	export (s)

	load (s)

	operations (s)

	export (s)

	500,000

	0.80

	3.98

	0.38

	0.81

	4.31

	0.41

	0.76

	4.37

	0.41

	0.70

	4.00

	0.38

	1,000,000

	1.72

	8.27

	0.82

	1.72

	8.48

	0.80

	1.51

	8.48

	0.79

	1.38

	8.20

	0.75

	1,500,000

	2.39

	21.97

	1.34

	2.2

	24.10

	1.24

	2.15

	12.53

	1.18

	2.14

	11.86

	1.16

	2,000,000

	3.15

	18.13

	1.74

	3.08

	33.72

	1.63

	2.93

	16.17

	1.66

	2.79

	15.59

	1.55

The next table shows the expected scalability performance of OntoRefine mapping editor during the generation and downloading of an RDF file with the mapping results, as well as during the execution of the generated SPARQL CONSTRUCT query.

About 20 transformations have been made, including:

	Adding type to value from a column;

	Creating a new predicate with values from columns as objects;

	The same as the above two, but using GREL and prefixes;

	Reusing IRI cell to add triples (children);

	Using literal transformations on many columns;

	Using prefixes from the selected repository, adding new ones, and using them in OntoRefine.

The tests have also been conducted on a 6-core/12-thread system with NVMe drive, and 20 gigabytes of RAM (Xmx20g). The dataset contains 56 columns.

	
	RDF

	SPARQL CONSTRUCT

	Number of rows

	Execution time (ms)

	Execution time (min)

	Execution time (ms)

	Execution time (min)

	100,000

	11,26

	0,19

	16,33

	0,27

	200,000

	21,58

	0,36

	28,49

	0,47

	500,000

	53,70

	0,89

	70,15

	1,17

	1,000,000

	110,33

	1,84

	168,70

	2,81

	2,000,000

	223,13

	3,72

	331,70

	5,53

Additional resources

	OpenRefine Documentation [http://openrefine.org/documentation.html]

	OpenRefine Documentation for Users [https://github.com/OpenRefine/OpenRefine/wiki/Documentation-For-Users]

	Tutorial: OpenRefine, By Atima Han Zhuang Ishita Vedvyas Rishikesh Dole [http://casci.umd.edu/wp-content/uploads/2013/12/OpenRefine-tutorial-v1.5.pdf]

	Google Refine Tutorial, by David Huynh, Ph.D. [http://davidhuynh.net/spaces/nicar2011/tutorial.pdf]

Exploring data

What’s in this document?

	Class hierarchy

	Explore your data - different actions

	Domain-range graph

	Class relationships

	Explore resources

	Explore resources through the easy graph

	Create your own visual graph

	Save and share graphs

	View and edit resources

	View and add a resource

	Edit a resource

Class hierarchy

To explore your data, navigate to Explore -> Class hierarchy. You can see a diagram depicting the hierarchy of the imported RDF classes by the number of instances. The biggest circles are the parent classes, and the nested ones are their children.

Note

If your data has no ontology (hierarchy), the RDF classes are visualized as separate circles instead of nested ones.

[image: _images/rdf-class-hierarchy-diagram-dbpedia.png]

Explore your data - different actions

	To see what classes each parent has, hover over the nested circles.

	To explore a given class, click its circle. The selected class is highlighted with a dashed line and a side panel with its instances opens for further exploration. For each RDF class, you can see its local name, IRI and a list of its first 1,000 class instances. The class instances are represented by their IRIs, which, when clicked, lead to another view where you can further explore their metadata.

[image: _images/rdf-class-hierarchy-diagram-selected-class-dbpedia.png]

The side panel includes the following:

	Local name;

	IRI (Press Ctrl+C / Cmd+C to copy to clipboard and Enter to close);

	Domain-Range Graph button;

	Class instances count;

	Scrollable list of the first 1,000 class instances;

	View Instances in SPARQL View button. It redirects to the SPARQL view and executes an auto-generated query that lists all class instances without LIMIT.

	To go to the Domain-Range Graph diagram, double click a class circle or the Domain-Range Graph button from the side panel.

	To explore an instance, click its IRI from the side panel.

[image: _images/rdf-class-hierarchy-diagram-class-instance-resource-view-dbpedia.png]

	To adjust the number of classes displayed, drag the slider on the left-hand side of the screen. Classes are sorted by the maximum instance count, and the diagram displays only the current slider value.

[image: _images/rdf-class-hierarchy-diagram-slider-low-value-dbpedia.png]

	To administrate your data view, use the toolbar options on the right-hand side of the screen.

[image: _images/rdf-class-hierarchy-diagram-toolbar.png]

	To see only the class labels, click the Hide/Show Prefixes. You can still view the prefixes when you hover over the class that interests you.

[image: _images/rdf-class-hierarchy-diagram-no-prefix-classes-dbpedia.png]

	To zoom out of a particular class, click the Focus diagram icon.

	To reload the data on the diagram, click the Reload diagram icon. This is recommended when you have updated the data in your repository, or when you are experiencing some strange behavior, for example you cannot see a given class.

	To export the diagram as an .svg image, click the Export Diagram download icon.

	You can also filter the hierarchy by graph when there is more than one named graph in your repository. Just expand the All graphs drop-down menu next to the toolbar options and select the graph you want to explore.

[image: _images/rdf-class-hierarchy-filter-by-graph.png]

Domain-range graph

To see all properties of a given class as well as their domain and range, double click its class circle or the Domain-Range Graph button from the side panel. The RDF Domain-Range Graph view opens, enabling you to further explore the class connectedness by clicking the green nodes (object property class).

[image: _images/rdf-domain-range-graph-diagram-dbpedia.png]

	To administer your graph view, use the toolbar options on the right-hand side of the screen.

[image: _images/rdf-domain-range-graph-diagram-toolbar.png]

	To go back to your class in the RDF Class hierarchy, click the Back to Class hierarchy diagram button.

	To export the diagram as an .svg image, click the Export Diagram download icon.

Class relationships

To explore the relationships between the classes, navigate to Explore -> Class relationships. You can see a complicated diagram, which by default is showing only the top relationships. Each of them is a bundle of links between the individual instances of two classes. Each link is an RDF statement where the subject is an instance of one class, the object is an instance of another class, and the link is the predicate. Depending on the number of links between the instances of two classes, the bundle can be thicker or thinner, and has the color of the class with more incoming links. These links can be in both directions. Note that contrary to the Class hierarchy, the Class relationships diagram is based on the real statements between classes and not on the ontology schema.

In the example below, you can see that Person is the class with the biggest number of links. It is very strongly connected to Feature and City, and most of the links are from Person. Also, you notice that all classes have many outgoing links to opengis:_Feature.

[image: _images/dependencies.png]
Left of the diagram, you can see a list of all classes ordered by the number of links they have, as well as an indicator of the direction of the links. Click on it to see the actual classes this class is linked to, again ordered by the number of links with the actual number shown. The direction of the links is also displayed.

[image: _images/dependencies-menu.png]
Use the list of classes to control which classes to see in the diagram with the add/remove icons next to each class. Remove all classes with the X icon on the top right. The green background of a class indicates that the class is present in the diagram. You see that Person has much more connections to City than Village.

[image: _images/dependencies-add-class.png]
For each two classes in the diagram you can find the top predicates that connect them, again ordered and with the number of statements of this predicate and instances of these classes. Person is linked to City by the birthPlace and deathPlace predicates.

[image: _images/dependencies-predicates.png]
Just like in the Class hierarchy view, you can also filter the class relationships by graph when there is more than one named graph in the repository. Expand the All graphs drop-down menu next to the toolbar options and select the graph you want to explore.

Note

All of these statistics are built on top of the whole repository, so when you have a lot of data, the building of the diagram may be fairly slow.

You can also explore the class relationships of your data programmatically. To do so, go to the SPARQL tab of the Workbench menu and execute the following query:

PREFIX deps: <http://www.ontotext.com/plugins/dependencies#>

select ?typeSubj ?predicate ?typeObj ?count {
 _:b deps:listPredicates '' ;
 deps:fromClass ?typeSubj ;
 deps:toClass ?typeObj ;
 deps:predicate ?predicate ;
 deps:predicateCount ?count .

} order by DESC(?count) ?typeSubj ?predicate ?typeObj

Explore resources

Explore resources through the easy graph

Navigate to Explore -> Visual graph. Easy graph gives you the opportunity to explore the graph of your data without using SPARQL. You see a search input field to choose a resource as a starting point for graph exploration.

[image: _images/visual-graph-search.png]
A graph of the resource links is shown. Nodes that have the same type have the same color. All types for a node are listed when you hover over it.
By default, what you see are the first 20 links to other resources ordered by RDF rank if present. See the settings below to modify this limit and the types and predicates to hide or see with preference.

[image: _images/visual-graph-sofia.png]
The size of the nodes reflects the importance of the node by RDF rank. Hover over a node of interest to open a menu with four options. Click the expand icon to see the links for the chosen node. Another way to expand it is to double-click on it.

[image: _images/visual-graph-expand.png]
[image: _images/visual-graph-expanded.png]
Click on the node to know more about a resource.

[image: _images/visual-graph-info.png]

The side panel includes the following:

	a short description (rdfs:comment)

	labels (rdfs:label)

	RDF rank

	image (foaf:depiction) if present, and all DataType properties. You can search by DataType property if you are interested in a certain value.

You can click on the node again to hide the panel.

Note that you can switch between nodes without closing the side panel. Just click on the new node about which you want to see more, and the side panel will automatically show the information about it.

Once a node is expanded, you have the option to collapse it. This will remove all its links and their nodes, except those that are connected to other nodes also. See the example below. Collapsing “Eastern European Time” removes all nodes except Bulgaria, because Bulgaria is also linked to Sofia which is expanded.

[image: _images/visual-graph-collapse.png]
[image: _images/visual-graph-collapsed.png]
If you are not interested in a node anymore, you can hide it using the remove icon.
The focus icon is used to restart the graph with the node of interest. Use carefully, since it resets the state of the graph.

More global actions are available in the menu in the upper right corner. Use the arrows to visually rotate your graph for convenience.

[image: _images/visual-graph-global.png]
Click on the settings icon to configure your graph globally.

[image: _images/visual-graph-settings.png]

The following settings are available:

	Maximum links to show is the limit of links to use when you expand each node.

	If you have labels in different languages, you can choose which labels to display with preference. The order is of importance in this case.

	Show/hide predicate labels is an option for convenience when you are not interested which predicates link the nodes.

	Preferred and ignored types/predicates is an advanced option. If you know your data well, you will be able to control to a bigger extent what to see when you expand nodes. If a preferred type is present, nodes of that type will be shown before all other types (see example below). Again, order matters when you have more than one preferred types. Ignored types are used when you do not want to see instances of some types at all while exploring. The same is valid for predicates. Use full IRIs for types and predicates filters.

For example, add http://dbpedia.org/ontology/Person as preferred type and tick the option to see only preferred types. Only links to Person instances are shown, related to Sofia.

[image: _images/visual-graph-preferred-type.png]

Create your own visual graph

Create your own custom visual graph by modifying the queries that fetch the graph data. To do this, navigate to Explore -> Visual Graph. In the Advanced graph section, click Create graph config.

[image: _images/visGraphConfig.png]
The configuration consists of five queries separated in different tabs. A list of sample queries is provided to guide you in the process. Note that some bindings are required.

	Starting point - this is the initial state of your graph.

	Search box - start with a search box to choose a different start resource each time. This is similar to the initial state of the Easy graph.

	Fixed resource - you may want to start exploration with the same resource each time, i.e., select http://dbpedia.org/resource/Sofia from the autocomplete input as a start resource, so that every time you open the graph, you will see Sofia and its connections.

	Graph query results - visual graph can render a random SPARQL Graph Query result. Each result is a triple that is transformed to a link where the subject and object are shown as nodes, and the predicate is a link between them.

	Graph expansion - this is a CONSTRUCT query that determines which nodes and edges are added to the graph when the user expands an existing node. The ?node variable is required and will be replaced with the IRI of the expanded node. If empty, the Unfiltered object properties sample query will be used. Each triple from the result is visualized as an edge where subject and object are nodes, and each predicate is the link between them. If new nodes appear in the results, they are added to the graph.

	Node basics - This SELECT query determines the basic information about a node. Some of that information affects the color and size of the node. This query is executed each time a node is added to the graph to present it correctly. The ?node variable is required and will be replaced with the IRI of the expanded node. It is a SELECT query and the following bindings are expected in the results.

	?type determines the color. If missing, all nodes will have the same color.

	?label determines the label of the node. If missing, the IRI’s local name will be used.

	?comment determines the description of the node. If missing, no description will be provided.

	?rank determines the size of the node, and must be a real number between 0 and 1. If missing, all nodes will have the same size.

	Edge basics - This query SELECT the ?label binding that determines the text of the edge. If empty, the edge IRI’s local name is used.

	Node extra - This SELECT query determines the extra properties shown for a node when the info icon is clicked. It should return two bindings - ?property and ?value. Results are then shown as a list in the sidebar.

If you leave a query empty, the first sample will be taken as a default. You can execute a query to see some of the results it will produce. Except for the samples, you will also see the queries from the other configurations, in case you want to reuse some of them.
Explore your data with your custom visual graph.

Save and share graphs

During graph exploration, you can save a snapshot of the graph state with the Save icon in the top right to load it later. The graph config you are currently using is also saved, so when you load a saved graph you can continue exploring with the same config.

GraphDB also allows you to share your saved graphs with other users. When security is ON in Setup -> Users and Access menu, the system distinguishes between different users. The graphs that you choose to share are only editable by you.

[image: _images/share-visual-graph.png]
The graphs are located in Visual graph -> Saved graphs. Other users will be able to view them and copy their URL by clicking the Get URL to graph icon.

[image: _images/saved-graph.png]
When Users and Access -> Free Access is ON, the free access user will see shared graphs only and will not be able to save new graphs.

View and edit resources

View and add a resource

Important

Before using the View resource functionality, make sure you have enabled the Autocomplete index from Setup -> Autocomplete.

To view a resource in the repository, go to the GraphDB home page and start typing in the Explore -> View resource field.

You can also use the Search RDF resource icon in the top right, which is visible in all Workbench screens.

[image: _images/autocomplete-viewResource.png]
Viewing resources provides an easy way to see triples where a given IRI is the subject, predicate or object.

[image: _images/view_resource_triples.png]
Even when the resource is not in the database, you can still add it from the resource view. Type in the resource IRI and hit Enter.

[image: _images/create_new_resource.png]
[image: _images/new_resource.png]
Here, you can create as many triples as you need for it, using the resource edit. To add a triple, fill in the necessary fields and click on the orange tick on the right. The created triple appears, and the Predicate, Object, and Context fields are empty again for you to insert another triple if you want to do so. You can also edit or delete already created triples.

[image: _images/new_resource_edit.png]
To view the new statements in TriG, click the View TriG button.

[image: _images/view_resource_TriG1.png]
[image: _images/view_resource_TriG2.png]
When ready, save the new resource to the repository.

Edit a resource

Once you open a resource in View resource, you can also edit it. Click
the edit icon next to the resource namespace and add, change, or delete
the properties of this resource.

[image: _images/edit_existing_resource.png]

Note

You cannot change or delete the inferred statements.

Querying Data

What’s in this document?

	Save and share queries

	Interrupt queries

To manage and query your data, click the SPARQL menu. The SPARQL view integrates the YASGUI [http://about.yasgui.org/] query editor plus some additional features, which are described below.

Hint

SPARQL is an SQL-like query language for RDF graph databases with the
following types:

	SELECT - returns tabular results;

	CONSTRUCT - creates a new RDF graph based on query results;

	ASK - returns “YES”, if the query has a solution, otherwise
“NO”;

	DESCRIBE - returns RDF data about a resource; useful when you
do not know the RDF data structure in the data source;

	INSERT - inserts triples into a graph;

	DELETE - deletes triples from a graph.

The SPARQL editor offers two viewing/editing modes - horizontal and vertical.

[image: _images/sparql1.png]
Use the vertical mode switch to show the editor and the results next
to each other, which is particularly useful on wide screen. Click the
switch again to return to horizontal mode.

[image: _images/sparqlVertical.png]
Both in horizontal and vertical mode, you can also hide the editor or
the results to focus on query editing or result viewing. Click the
buttons Editor only, Editor and results, or Results only to
switch between the different modes.

	Manage your data by writing queries in the text area. It offers syntax highlighting and namespace autocompletion for easy reading and writing.

Tip

To add/remove namespaces, go to Setup -> Namespaces.

	Include or exclude inferred statements in the results by clicking the >> icon. When inferred statements are included, both elements of the arrow icon are the same color (ON), otherwise the left element is dark and the right one is greyed out (OFF).

	Execute the query by clicking the Run button or use Ctrl/Cmd + Enter.

Tip

You can find other useful shortcuts in the keyboard shortcuts link in the lower right corner of the SPARQL editor.

	The results can be viewed in different formats corresponding to the type of the query. By default, they are displayed as a table. Other options are Raw response, Pivot table and Google Charts. You can order the results by column values and filter them by table values. The total number of results and the query execution time are displayed in the query results header.

Note

The total number of results is obtained by an async request with a default-graph-uri parameter and the value http://www.ontotext.com/count.

	Navigate through all results by using pagination (SPARQL view can only show a limited number of results at a time). Each page executes the query again with query limit and offset for SELECT queries. For graph queries (CONSTRUCT and DESCRIBE), all results are fetched by the server and only the page of interest is gathered from the results iterator and sent to the client.

	The query results are limited to 1,000, since your browser cannot handle an infinite number of results. Obtain all results by using Download As and select the required format for the data (JSON, XML, CSV, TSV and Binary RDF for SELECT queries and all RDF formats for Graph query results).

Save and share queries

Use the editor’s tabs to keep several queries opened while working with GraphDB.
Save a query on the server with the Create saved query icon.

[image: _images/save-query.png]
When security is ON in Setup -> Users and Access menu, the system distinguishes between different users.
The user can choose whether to share a query with others, and shared queries are editable by the owner only.

Access existing queries (default, yours, and shared) from the Show saved queries icon.

[image: _images/open-query.png]
Copy your query as a URL by clicking the Get URL to current query icon.

When Free access is ON, the Free Access user will see shared queries only and will not be able to save new queries.

Interrupt queries

You can use the Abort query button in the SPARQL Editor to manually interrupt any query.

[image: _images/editorWithAbort.png]

Exporting Data

What’s in this document?

	Exporting a repository

	Exporting individual graphs

	Exporting query results

	Exporting resources

Data can be exported in several ways and formats.

Exporting a repository

	Go to Explore/Graphs overview.

	Click Export repository button and then the format that fits your needs.

[image: _images/export_repository.png]

Exporting individual graphs

	Go to Explore/Graphs overview.

	A list of contexts (graphs) in a repository is displayed. You can also search for particular graphs from the search field above it.

	Inspect a graph by clicking on it.

	Delete a graph by clicking the bucket icon.

	Or click to export the graph in the format of your choice.

[image: _images/export_repository_format.png]

Exporting query results

The SPARQL query results can also be exported from the SPARQL view by clicking Download As.

Exporting resources

After finding a resource from the View resource on GraphDB’s home page, you can download its RDF triples in a format of your choice:

[image: _images/export_resource.png]

Reasoning

What’s in this document?

	Logical formalism

	Rule format and semantics

	The ruleset file

	Prefices

	Axioms

	Rules

	Rulesets

	Predefined rulesets

	Custom rulesets

	Inference

	Reasoner

	Rulesets execution

	Retraction of assertions

	How To’s

	Operations on rulesets

	Reinferring

	Provenance

Hint

To get the full benefit from this section, you need some basic knowledge
of the two principle
Reasoning strategies for
rule-based inference - forward chaining and backward chaining.

GraphDB performs reasoning based on forward chaining of entailment rules
defined using RDF triple patterns with variables. GraphDB’s reasoning
strategy is one of Total materialization,
where the inference rules are applied repeatedly to the asserted
(explicit) statements until no further inferred (implicit) statements
are produced.

The GraphDB repository uses configured rulesets to compute all inferred
statements at load time. To some extent, this process increases the
processing cost and time taken to load a repository with a large amount
of data. However, it has the desirable advantage that subsequent query
evaluation can proceed extremely quickly.

Logical formalism

GraphDB uses a notation almost identical to R-Entailment defined by Horst [https://www.semanticscholar.org/paper/Combining-RDF-and-Part-of-OWL-with-Rules%3A-Horst/09f747b35d0e819baab202593476723c8c19d571].
RDFS inference is achieved via a set of axiomatic triples and
entailment rules. These rules allow the full set of valid inferences
using RDFS semantics to be determined.

Herman ter Horst defines RDFS extensions for more general rule support
and a fragment of OWL, which is more expressive than DLP and fully
compatible with RDFS. First, he defines R-entailment, which extends
RDFS-entailment in the following way:

	It can operate on the basis of any set of rules R (i.e., allows for
extension or replacement of the standard set, defining the semantics
of RDFS);

	It operates over so-called generalized RDF graphs, where blank nodes
can appear as predicates (a possibility disallowed in RDF);

	Rules without premises are used to declare axiomatic statements;

	Rules without consequences are used to detect inconsistencies
(integrity constraints).

Tip

To learn more, see OWL Compliance.

Rule format and semantics

The rule format and the semantics enforced in GraphDB is analogous to
R-entailment with the following differences:

	Free variables in the head (without binding in the body) are treated
as blank nodes. This feature must be used with extreme caution because
custom rulesets can easily be created, which recursively infer an
infinite number of statements making the semantics intractable;

	Variable inequality constraints can be specified in addition to the
triple patterns (they can be placed after any premise or
consequence). This leads to less complexity compared to R-entailment;

	the cut operator can be associated with rule premises.
This is an optimization that tells the rule compiler not to generate
a variant of the rule with the identified rule premise as the first
triple pattern;

	Context can be used for both rule premises and rule consequences
allowing more expressive constructions that utilize ‘intermediate’
statements contained within the given context URI;

	Consistency checking rules do not have consequences and will indicate
an inconsistency when the premises are satisfied;

	Axiomatic triples can be provided as a set of statements, although
these are not modeled as rules with empty bodies.

The ruleset file

GraphDB can be configured via rulesets - sets of axiomatic triples,
consistency checks and entailment rules, which determine the applied
semantics.

A ruleset file has three sections named Prefices, Axioms, and
Rules. All sections are mandatory and must appear sequentially in
this order. Comments are allowed anywhere and follow the Java
convention, i.e.,. "/* ... */" for block comments and "//" for end
of line comments.

For historic reasons, the way in which terms (variables, URLs and literals) are written differs from Turtle and SPARQL:

	URLs in Prefices are written without angle brackets

	variables are written without ? or $ and can include multiple alphanumeric chars

	URLs are written in brackets, no matter if they are use prefix or are spelled in full

	datatype URLs are written without brackets, e.g.,

a <owl:maxQualifiedCardinality> "1"^^xsd:nonNegativeInteger

See the examples below and be careful when writing terms.

Prefices

This section defines the abbreviations for the namespaces used in the
rest of the file. The syntax is:

shortname : URI

The following is an example of what a typical prefices section might look
like:

Prefices
{
 rdf : <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
 rdfs : <http://www.w3.org/2000/01/rdf-schema#>
 owl : <http://www.w3.org/2002/07/owl#>
 xsd : <http://www.w3.org/2001/XMLSchema#>
}

Axioms

This section asserts axiomatic triples, which usually describe the
meta-level primitives used for defining the schema such as rdf:type,
rdfs:Class, etc. It contains a list of the (variable free) triples,
one per line.

For example, the RDF axiomatic triples are defined in the following way:

Axioms
{
 // RDF axiomatic triples
 <rdf:type> <rdf:type> <rdf:Property>
 <rdf:subject> <rdf:type> <rdf:Property>
 <rdf:predicate> <rdf:type> <rdf:Property>
 <rdf:object> <rdf:type> <rdf:Property>
 <rdf:first> <rdf:type> <rdf:Property>
 <rdf:rest> <rdf:type> <rdf:Property>
 <rdf:value> <rdf:type> <rdf:Property>
 <rdf:nil> <rdf:type> <rdf:List>
}

Note

Axiomatic statements are considered to be inferred for the purpose
of query answering because they are a result of semantic
interpretation defined by the chosen ruleset.

Rules

This section is used to define entailment rules and consistency checks,
which share a similar format. Each definition consists of premises and
corollaries that are RDF statements defined with subject, predicate,
object and optional context components. The subject and
object can each be a variable, blank node, literal, a full URI, or the
short name for a URI. The predicate can be a variable, a full URI, or a short name for a URI.
If given, the context must be a full URI or a
short name for a URI. Variables are alpha-numeric and must begin with a
letter.

If the context is provided, the statements produced as rule
consequences are not ‘visible’ during normal query answering. Instead,
they can only be used as input to this or other rules and only when the
rule premise explicitly uses the given context (see the example below).

Furthermore, inequality constraints can be used to state that the values
of the variables in a statement must not be equal to a specific full URI
(or its short name) or to the value of another variable within the same
rule. The behavior of an inequality constraint depends on whether it is
placed in the body or the head of a rule. If it is placed in the body of a
rule, then the whole rule will not ‘fire’ if the constraint fails, i.e.,
the constraint can be next to any statement pattern in the body of a
rule with the same behavior (the constraint does not have to be placed
next to the variables it references). If the constraint is in the head,
then its location is significant because a constraint that does not hold
will prevent only the statement it is adjacent to from being inferred.

Entailment rules

The syntax of a rule definition is as follows:

Id: <rule_name>
 <premises> <optional_constraints>

 <consequences> <optional_constraints>

where each premise and consequence is on a separate line.

The following example helps to illustrate the possibilities:

Rules
{
Id: rdf1_rdfs4a_4b
 x a y

 x <rdf:type> <rdfs:Resource>
 a <rdf:type> <rdfs:Resource>
 y <rdf:type> <rdfs:Resource>

Id: rdfs2
 x a y [Constraint a != <rdf:type>]
 a <rdfs:domain> z [Constraint z != <rdfs:Resource>]

 x <rdf:type> z

Id: owl_FunctProp
 p <rdf:type> <owl:FunctionalProperty>
 x p y [Constraint y != z, p != <rdf:type>]
 x p z [Constraint z != y] [Cut]

 y <owl:sameAs> z
}

The symbols p, x, y, z and a are variables. The
second rule contains two constraints that reduce the number of bindings
for each premise, i.e., they ‘filter out’ those statements where the
constraint does not hold.

In a forward chaining inference step, a rule is interpreted as meaning
that for all possible ways of satisfying the premises, the bindings for
the variables are used to populate the consequences of the rule. This
generates new statements that will manifest themselves in the
repository, e.g., by being returned as query results.

The last rule contains an example of using the Cut operator,
which is an optimization hint for the rule compiler. When rules are
compiled, a different variant of the rule is created for each premise,
so that each premise occurs as the first triple pattern in one of the
variants. This is done so that incoming statements can be efficiently
matched to appropriate inferences rules. However, when a rule contains
two or more premises that match identical triples patterns, but using
different variable names, the extra variant(s) are redundant and
better efficiency can be achieved by simply not creating the extra rule
variant(s).

In the above example, the rule owl_FunctProp would by default be
compiled in three variants:

p <rdf:type> <owl:FunctionalProperty>
x p y
x p z

y <owl:sameAs> z

x p y
p <rdf:type> <owl:FunctionalProperty>
x p z

y <owl:sameAs> z

x p z
p <rdf:type> <owl:FunctionalProperty>
x p y

y <owl:sameAs> z

Here, the last two variants are identical apart from the rotation of
variables y and z, so one of these variants is not needed. The
use of the Cut operator above tells the rule compiler to
eliminate this last variant, i.e., the one beginning with the premise x
p z.

The use of context in rule bodies and rule heads is also best explained
by an example. The following three rules implement the OWL2-RL property
chain rule prp-spo2, and are inspired by the Rule Interchange Format
(RIF) implementation:

Id: prp-spo2_1
 p <owl:propertyChainAxiom> pc
 start pc last [Context <onto:_checkChain>]

 start p last

Id: prp-spo2_2
 pc <rdf:first> p
 pc <rdf:rest> t [Constraint t != <rdf:nil>]
 start p next
 next t last [Context <onto:_checkChain>]

 start pc last [Context <onto:_checkChain>]

Id: prp-spo2_3
 pc <rdf:first> p
 pc <rdf:rest> <rdf:nil>
 start p last

 start pc last [Context <onto:_checkChain>]

The RIF rules that implement prp-spo2 use a relation (unrelated to the
input or generated triples) called _checkChain. The GraphDB
implementation maps this relation to the ‘invisible’ context of the same
name with the addition of [Context <onto:_checkChain>] to certain
statement patterns. Generated statements with this context can only be
used for bindings to rule premises when the exact same context is
specified in the rule premise. The generated statements with this
context will not be used for any other rules.

Same as optimization

The built-in OWL property owl:sameAs indicates that two URI references actually refer to the same thing. The following lines express the transitive and symmetric semantics of the rule:

/**
Id: owl_sameAsCopySubj
// Copy of statement over owl:sameAs on the subject. The support for owl:sameAs
// is implemented through replication of the statements where the equivalent
// resources appear as subject, predicate, or object. See also the couple of
// rules below
//
x <owl:sameAs> y [Constraint x != y]
x p z //Constraint p [Constrain p != <owl:sameAs>]

y p z

Id: owl_sameAsCopyPred
// Copy of statement over owl:sameAs on the predicate
//
p <owl:sameAs> q [Constraint p != q]
x p y

x q y

Id: owl_sameAsCopyObj
// Copy of statement over owl:sameAs on the object
//
x <owl:sameAs> y [Constraint x != y]
z p x //Constraint p [Constrain p != <owl:sameAs>]

z p y
**/

So, all nodes in the transitive and symmetric chain make relations to all other nodes, i.e., the relation coincides with the Cartesian \(NxN\), hence the full closure contains \(N^2\) statements. GraphDB optimizes the generation of excessive links by nominating an equivalence class representative to represent all resources in the symmetric and transitive chain. By default, the owl:sameAs optimization is enabled in all rulesets except when the ruleset is empty, rdfs or rdfs plus. For addition information check Optimization of owl:sameAs.

Consistency checks

Consistency checks are used to ensure that the data model is in a
consistent state and are applied whenever an update transaction is
committed. GraphDB supports consistency
violation checks using standard OWL2RL semantics. You can define rulesets that contain consistency rules. When creating a new repository,
set the check-for-inconsistencies configuration parameter to true. It is
false by default.

The syntax is similar to that of rules, except that Consistency
replaces the Id tag that introduces normal rules. Also, consistency
checks do not have any consequences and indicate an inconsistency
whenever their premises can be satisfied, e.g.:

Consistency: something_can_not_be_nothing
 x rdf:type owl:Nothing

Consistency: both_sameAs_and_differentFrom_is_forbidden
 x owl:sameAs y
 x owl:differentFrom y

Consistency checks features

	Materialization and consistency mix: the rulesets support the
definition of a mixture of materialization and consistency rules.
This follows the existing naming syntax id: and Consistency:

	Multiple named rulesets: GraphDB supports multiple named rulesets.

	No downtime deployment: The deployment of new/updated rulesets
can be done to a running instance.

	Update transaction ruleset: Each update transaction can specify
which named ruleset to apply. This is done by using ‘special’
RDF statements within the update transaction.

	Consistency violation exceptions: if a consistency rule is
violated, GraphDB throws exceptions. The exception includes
details such as which rule has been violated and to which RDF
statements.

	Consistency rollback: if a consistency rule is violated within an
update transaction, the transaction will be rolled back and no
statements will be committed.

In case of any consistency check(s) failure, when a transaction is
committed and consistency checking is switched on (by default it is
off), then:

	A message is logged with details of what consistency checks
failed;

	An exception is thrown with the same details;

	The whole transaction is rolled back.

Rulesets

GraphDB offers several predefined semantics by way of standard rulesets
(files), but can also be configured to use custom rulesets with
semantics better tuned to the particular domain. The required semantics
can be specified through the ruleset for each specific repository
instance. Applications that do not need the complexity of the most
expressive supported semantics can choose one of the less complex,
which will result in faster inference.

Note

Each ruleset defines both rules and some schema statements,
otherwise known as axiomatic triples. These (read-only) triples are
inserted into the repository at initialization time and count towards
the total number of reported ‘explicit’ triples. The variation may
be up to the order of hundreds depending upon the ruleset.

Predefined rulesets

The pre-defined rulesets provided with GraphDB cover various well-known
knowledge representation formalisms, and are layered in such a way that
each extends the preceding one.

	Ruleset

	Description

	empty

	No reasoning, i.e., GraphDB operates as a plain RDF store.

	rdfs

	Supports the standard model-theoretic RDFS semantics. This includes support for subClassOf and related type inference, as well as subPropertyOf.

	rdfs plus

	Extended version of RDFS with the support also symmetric, inverse and transitive properties, via the OWL vocabulary: owl:SymmetricProperty, owl:inverseOf and owl:TransitiveProperty.

	owl-horst

	OWL dialect close to OWL Horst - essentially pD*

	owl-max

	RDFS and that part of OWL Lite that can be captured in rules (deriving functional and inverse functional properties, all-different, subclass by union/enumeration; min/max cardinality constraints, etc.).

	owl2-ql

	The OWL2 QL profile - a fragment of OWL2 Full designed so that sound and complete query answering is LOGSPACE with respect to the size of the data. This OWL2 profile is based on DL-LiteR, a variant of DL-Lite that does not require the unique name assumption.

	owl2-rl

	The OWL2 RL profile - an expressive fragment of OWL2 Full that is amenable for implementation on rule engines.

Note

Not all rulesets support data-type reasoning, which is the main
reason why OWL-Horst is not the same as pD*. The ruleset you
need to use for a specific repository is defined through the
ruleset parameter. There are optimized versions of all rulesets
that avoid some little used inferences.

Note

The default ruleset is RDFS-Plus (optimized).

OWL2 QL non-conformance

The implementation of OWL2 QL is non-conformant with the W3C OWL2
profiles recommendation as shown in the following table:

	Conformant behavior

	Implemented behavior

	Given a list of disjoint (data or object) properties and an entity that is related with these properties to objects {a, b, c, d,...}, infer an owl:AllDifferent restriction on an anonymous list of these objects.

	For each pair {p, q} (p != q) of disjoint (data or object) properties, infer the triple:
p owl:propertyDisjointWith q
Which is more likely to be useful for query answering.

	For each class C in the knowledge base, infer the existence of an anonymous class that is the union of a list of classes containing only C.

	Not supported. Even if this infinite expansion were possible in a forward chaining rule-based implementation, the resulting statements are of no use during query evaluation.

	If a instance of C1, and b instance of C2, and C1 and C2 disjoint, infer:
a owl:differentFrom b

	Impractical for knowledge bases with many members of pairs of disjoint classes, e.g., Wordnet. Instead, this is implemented as a consistency check:
If x instance of C1 and C2, and C1 and C2 disjoint, then inconsistent.

Custom rulesets

GraphDB has an internal rule compiler that can be configured with a
custom set of inference rules and axioms. You may define a custom
ruleset in a .pie file (e.g., MySemantics.pie). The easiest way
to create a custom ruleset is to start modifying one of the .pie
files that were used to build the precompiled rulesets.

Note

All pre-defined .pie files are included in configs/rules folder of the GraphDB distribution.

If the code generation or compilation cannot be completed successfully,
a Java exception is thrown indicating the problem. It will state either
the Id of the rule, or the complete line from the source file where
the problem is located. Line information is not preserved during the
parsing of the rule file.

You must specify the custom ruleset via the ruleset configuration parameter. There are optimized versions of all rulesets. The value of the ruleset parameter is interpreted as a
filename and .pie is appended when not present. This file is processed
to create Java source code that is compiled using the compiler from the
Java Development Kit (JDK). The compiler is invoked using the mechanism
provided by the JDK version 1.6 (or later).

Therefore, a prerequisite for using custom rulesets is that you use the
Java Virtual Machine (JVM) from a JDK version 1.6 (or later) to run the
application. If all goes well, the class is loaded dynamically and
instantiated for further use by GraphDB during inference. The
intermediate files are created in the folder that is pointed by the
java.io.tmpdir system property. The JVM should have sufficient
rights to read and write to this directory.

Note

Using GraphDB, this is more difficult. It
will be necessary to export/backup all explicit statements and
recreate a new repository with the required ruleset. Once created,
the explicit statements exported from the old repository can be
imported to the new one.

Inference

Reasoner

The GraphDB reasoner requires a .pie file of each ruleset to be
compiled in order to instantiate. The process includes several steps:

	Generate a java code out of the .pie file contents using the built-in
GraphDB rule compiler.

	Compile the java code (it requires JDK instead of JRE, hence the java
compiler will be available through the standard java instrumentation
infrastructure).

	Instantiate the java code using a custom byte-code class loader.

Note

GraphDB supports dynamic extension of the reasoner with new rulesets.

Rulesets execution

	For each rule and each premise (triple pattern in the rule head), a
rule variant is generated. We call this the ‘leading premise’ of the variant.
If a premise has the Cut annotation, no variant is generated for it.

	Every incoming triple (inserted or inferred) is checked against the
leading premise of every rule variant.
Since rules are compiled to Java bytecode on startup, this checking is very fast.

	If the leading premise matches, the rest of the premises are checked.
This checking needs to access the repository, so it can be much slower.

	GraphDB first checks premises with the least number of unbound
variables.

	For premises that have the same number of unbound variables,
GraphDB follows the textual order in the rule.

	If all premises match, the conclusions of the rule are inferred.

	For each inferred statement:

	If it does not exist in the default graph, it is stored in the
repository and is queued for inference.

	If it exists in the default graph, no duplicate statement is
recorded.
However, its ‘inferred’ flag is still set. (see
How to manage explicit and implicit statements).

Retraction of assertions

GraphDB stores explicit and implicit statements, i.e., the statements
inferred (materialized) from the explicit statements. So, when explicit
statements are removed from the repository, any implicit statements that
rely on the removed statement must also be removed.

In the previous versions of GraphDB, this was achieved with a
re-computation of the full closure (minimal model), i.e., applying the
entailment rules to all explicit statements and computing the
inferences. This approach guarantees correctness, but does not scale -
the computation is increasingly slow and computationally expensive in
proportion to the number of explicit statements and the complexity of
the entailment ruleset.

Removal of explicit statements is now achieved in a more efficient
manner, by invalidating only the inferred statements that can no longer
be derived in any way.

One approach is to maintain track information for every statement -
typically the list of statements that can be inferred from this
statement. The list is built up during inference as the rules are
applied and the statements inferred by the rules are added to the lists
of all statements that triggered the inferences. The drawback of this
technique is that track information inflates more rapidly than the
inferred closure - in the case of large datasets up to 90% of the
storage is required just to store the track information.

Another approach is to perform backward chaining. Backward chaining does
not require track information, since it essentially re-computes the
tracks as required. Instead, a flag for each statement is used so that
the algorithm can detect when a statement has been previously visited
and thus avoid an infinite recursion.

The algorithm used in GraphDB works as follows:

	Apply a ‘visited’ flag to all statements (false by default).

	Store the statements to be deleted in the list L.

	For each statement in L that is not visited yet, mark it as visited
and apply the forward chaining rules. Statements marked as visited
become invisible, which is why the statement must be first marked and
then used for forward chaining.

	If there are no more unvisited statements in L, then END.

	Store all inferred statements in the list L1.

	For each element in L1 check the following:

	If the statement is a purely implicit statement (a statement can
be both explicit and implicit and if so, then it is not considered
purely implicit), mark it as deleted (prevent it from being
returned by the iterators) and check whether it is supported by
other statements. The isSupported() method uses queries that
contain the premises of the rules and the variables of the rules
are preliminarily bound using the statement in question. That is
to say, the isSupported() method starts from the projection of
the query and then checks whether the query will return results
(at least one), i.e., this method performs backward chaining.

	If a result is returned by any query (every rule is represented by
a query) in isSupported(), then this statement can be still
derived from other statements in the repository, so it must not be
deleted (its status is returned to ‘inferred’).

	If all queries return no results, then this statement can no
longer be derived from any other statements, so its status remains
‘deleted’ and the number of statements counter is updated.

	L := L1 and GOTO 3.

Special care is taken when retracting owl:sameAs statements, so that
the algorithm still works correctly when modifying equivalence classes.

Note

One consequence of this algorithm is that deletion can still have
poor performance when deleting schema statements, due to the
(probably) large number of implicit statements inferred from them.

Note

The forward chaining part of the algorithm terminates as soon as it
detects that a statement is read-only, because if it cannot be
deleted, there is no need to look for statements derived from it.
For this reason, performance can be greatly improved when all schema
statements are made read-only by importing ontologies (and OWL/RDFS
vocabularies) using the imports repository parameter.

Schema update transactions

When fast statement retraction is required, but it is also necessary to
update schemas, you can use a special statement pattern. By including an
insert for a statement with the following form in the update:

[] <http://www.ontotext.com/owlim/system#schemaTransaction> []

GraphDB will use the smooth-delete algorithm, but will also traverse
read-only statements and allow them to be deleted/inserted. Such
transactions are likely to be much more computationally expensive to
achieve, but are intended for the occasional, offline update to
otherwise read-only schemas. The advantage is that fast-delete can still
be used, but no repository export and import is required when making a
modification to a schema.

For any transaction that includes an insert of the above special
predicate/statement:

	Read-only (explicit or inferred) statements can be deleted;

	New explicit statements are marked as read-only;

	New inferred statements are marked:

	Read-only if all the premises that fired the rule are read-only;

	Normal otherwise.

Schema statements can be inserted or deleted using SPARQL UPDATE as
follows:

DELETE {
 # [[schema statements to delete]]
}
INSERT {
 [] <http://www.ontotext.com/owlim/system#schemaTransaction> [] .
 # [[schema statements to insert]]
}
WHERE { }

How To’s

Operations on rulesets

All examples below use the sys: namespace, defined as:

prefix sys: <http://www.ontotext.com/owlim/system#>

Add a custom ruleset from .pie file

The predicate sys:addRuleset adds a custom ruleset from the specified .pie file.
The ruleset is named after the filename, without the .pie extension.

	Example 1
	This creates a new ruleset ‘test’. If the absolute path to the file resides on,
for example, /opt/rules/test.pie, it can be specified as <file:/opt/rules/test.pie>,
<file://opt/rules/test.pie>, or <file:///opt/rules/test.pie>, i. e., with 1, 2, or 3
slashes. Relative paths are specified without the slashes or with a dot between the
slashes: <file:opt/rules/test.pie>, <file:/./opt/rules/test.pie>,
<file://./opt/rules/test.pie>, or even <file:./opt/rules/test.pie> (with a dot
in front of the path). Relative paths can be used if you know the work directory
of the Java process in which GraphDB runs.

INSERT DATA {
 _:b sys:addRuleset <file:c:/graphdb/test-data/test.pie>
}

	Example 2
	Same as above but creates a ruleset called ‘custom’ out of the test.pie file
found in the given absolute path.

INSERT DATA {
 <_:custom> sys:addRuleset <file:c:/graphdb/test-data/test.pie>
}

	Example 3
	Retrieves the .pie file from the given URL. Again, you can use <_:custom> to change
the name of the ruleset to “custom” or as necessary.

INSERT DATA {
 _:b sys:addRuleset <http://example.com/test-data/test.pie>
}

Add a built-in ruleset

The predicate sys:addRuleset adds a built-in ruleset (one of the rulesets
that GraphDB supports natively).

	Example
	This adds the "owl-max" ruleset to the list of rulesets in the repository.

INSERT DATA {
 _:b sys:addRuleset "owl-max"
}

Add a custom ruleset with SPARQL INSERT

The predicate sys:addRuleset adds a custom ruleset from the specified .pie file.
The ruleset is named after the filename, without the .pie extension.

	Example
	This creates a new ruleset "custom".

INSERT DATA {
 <_:custom> sys:addRuleset
 '''Prefices { a : http://a/ }
 Axioms {}
 Rules
 {
 Id: custom
 a b c
 a <a:custom1> c

 b <a:custom1> a
 }'''
}

Note

Effects on the axiom set

When dealing with more than one ruleset, the result set of axioms is the UNION of all axioms of rulesets added so far. There is a special kind of statements that behave much like axioms in the sense that they can never be removed: <P rdf:type rdf:Property>, <P rdfs:subPropertyOf P>, <X rdf:type rdfs:Resource>.
These statements enter the repository just once - at the moment the property or resource is met for the first time, and remain in the repository forever, even if there are no more nodes related to that particular property or resource. (See Rules optimizations)

List all rulesets

The predicate sys:listRulesets lists all rulesets available in the repository.

	Example
	SELECT ?state ?ruleset {
 ?state sys:listRulesets ?ruleset
}

Explore a ruleset

The predicate sys:exploreRuleset explores a ruleset.

	Example
	SELECT * {
 ?content sys:exploreRuleset "test"
}

Set a default ruleset

The predicate sys:defaultRuleset switches the default ruleset to the one
specified in the object literal.

	Example
	This sets the default ruleset to “test”. All transactions use this ruleset,
unless they specify another ruleset as a first operation in the transaction.

INSERT DATA {
 _:b sys:defaultRuleset "test"
}

Rename a ruleset

The predicate sys:renameRuleset renames the ruleset from “custom” to “test”.
Note that “custom” is specified as the subject URI in the default namespace.

	Example
	This renames the ruleset “custom” to “test”.

INSERT DATA {
 <_:custom> sys:renameRuleset "test"
}

Delete a ruleset

The predicate sys:removeRuleset deletes the ruleset "test" specified
in the object literal.

	Example
	INSERT DATA {
 _:b sys:removeRuleset "test"
}

Note

Effects on the axiom set when removing a ruleset

When removing a ruleset, we just remove the mapping from the ruleset name to the corresponding inferencer.
The axioms stay untouched.

Consistency check

The predicate sys:consistencyCheckAgainstRuleset checks if the repository
is consistent with the specified ruleset.

	Example
	INSERT DATA {
 _:b sys:consistencyCheckAgainstRuleset "test"
}

Reinferring

Statements are inferred only when you insert new statements. So, if
reconnected to a repository with a different ruleset, it does not take
effect immediately. However, you can cause reinference with an Update
statement such as:

INSERT DATA { [] <http://www.ontotext.com/owlim/system#reinfer> [] }

This removes all inferred statements and reinfers from scratch using the current ruleset. If a
statement is both explicitly inserted and inferred, it is not removed.
Statements of the type <P rdf:type rdf:Property>, <P rdfs:subPropertyOf P>, <X rdf:type rdfs:Resource>, and the axioms from all rulesets will stay untouched.

Tip

To learn more, see
How to manage explicit and implicit statements.

Provenance

GraphDB’s Provenance plugin enables the generation of inference closure from a specific named graph at query time. This is useful in situations where you want to trace what the implicit statements generated from a specific graph are and the axiomatic triples part of the configured ruleset, i.e., the ones inserted with a special predicate sys:schemaTransaction. Find more about it in the plugin’s documentation.

SHACL Validation

What’s in this document?

	What is SHACL validation?

	Usage

	Creating and configuring a SHACL repository

	Loading shapes and data graphs

	Deleting shapes and data graphs

	Updating shapes and data graphs

	Viewing shapes and data graphs

	Validation logging and report

	Supported SHACL features

What is SHACL validation?

W3C standard Shapes Constraint Language (SHACL) [https://www.w3.org/TR/shacl/] validation is a valuable tool for efficient data consistency checking, and is supported by GraphDB via RDF4J’s ShaclSail [https://rdf4j.org/documentation/programming/shacl/] . It is useful in efforts towards data integration, as well as examining data compliance, e.g., every GeoName URI must start with http://geonames.com/, or age must be above 18 years.

The language validates RDF graphs against a set of conditions. These conditions are provided as shapes and other constructs expressed in the form of an RDF graph. In SHACL, RDF graphs that are used in this manner are called shapes graphs, and the RDF graphs that are validated against a shapes graph are called data graphs.

A shape is an IRI or a blank node s that fulfills at least one of the following conditions in the shapes graph:

	s is a SHACL instance of sh:NodeShape or sh:PropertyShape.

	s is subject of a triple that has sh:targetClass, sh:targetNode, sh:targetObjectsOf or sh:targetSubjectsOf as predicate.

	s is subject of a triple that has a parameter as predicate.

	s is a value of a shape-expecting, non-list-taking parameter such as sh:node, or a member of a SHACL list that is a value of a shape-expecting and list-taking parameter such as sh:or.

Every SHACL repository contains the ShaclSail reserved graph http://rdf4j.org/schema/rdf4j#SHACLShapeGraph, where all the data is inserted.

Usage

Creating and configuring a SHACL repository

A repository with SHACL validation must be created from scratch, i.e., Create new. You cannot modify an already existing repository by enabling the validation afterwards.

Create a repository, enabling the Support SHACL validation option. Several additional checkboxes are opened:

	Cache select nodes - The ShaclSail retrieves a lot of its relevant data through running SPARQL SELECT queries against the underlying Sail and against the changes in the transaction. This is usually good for performance, but it is recommended to disable this cache while validating large amounts of data as it will be less memory-consuming. Default value is true.

	Log the executed validation plans - Logs (INFO) the executed validation plans as GraphViz DOT. It is recommended to disable Run parallel validation. Default value is false.

	Run parallel validation - Runs validation in parallel. May cause deadlock, especially when using NativeStore. Default value is true.

	Log the execution time per shape - Logs (INFO) the execution time per shape. It is recommended to disable Run parallel validation and Cache select nodes. Default value is false.

	Validate subjects when target is undefined - If no target is defined for a NodeShape, that NodeShape will be ignored. Enabling this will make such NodeShapes wildcard shapes and validate all subjects. Equivalent to setting sh:targetClass to owl:Thing or rdfs:Resource in an environment with a reasoner. Default value is false.

	Log validation violations - Logs (INFO) a list of violations and the triples that caused the violations (BETA). It is recommended to disable Run parallel validation. Default value is false.

	Log every execution step of the SHACL validation - Logs (INFO) every execution step of the SHACL validation. This is fairly costly and should not be used in production. It is recommended to disable Run parallel validation. Default value is false.

	RDF4J SHACL extensions - Activates RDF4J’s SHACL extensions (RSX) that provide additional functionality. RSX currently contains rsx:targetShape which will allow a Shape to be the target for your constraints. For more information about the RSX features, see the RSX section [https://rdf4j.org/documentation/programming/shacl/#rsx---eclipse-rdf4j-shacl-extensions] of RDF4J documentation.

	DASH data shapes extensions - Activates DASH Data Shapes [http://datashapes.org/dash] extensions. DASH Data Shapes Vocabulary is a collection of reusable extensions to SHACL for a wide range of use cases. Currently, this enables support for dash:hasValueIn, dash:AllObjectsTarget and dash:AllSubjectsTargetIt.

[image: _images/enable_shacl.png]

Some of these are used for logging and validation - you can find more about it further down in this page.

Loading shapes and data graphs

You can load shapes using all three key methods for loading data into GraphDB: through the Workbench, with an INSERT query in the SPARQL editor, and through the REST API.

Here is how to do it through the Workbench:

	Go to Import → RDF → User data → Import RDF text snippet, and insert the following shape:

prefix ex: <http://example.com/ns#>
prefix sh: <http://www.w3.org/ns/shacl#>
prefix xsd: <http://www.w3.org/2001/XMLSchema#>

ex:PersonShape
 a sh:NodeShape ;
 sh:targetClass ex:Person ;
 sh:property [
 sh:path ex:age ;
 sh:datatype xsd:integer ;
] .

It indicates that entities of the class Person have a property “age” of the type xsd:integer.

Click Import. In the dialog that opens, select Target graphs → Named graph. Insert the ShaclSail reserved graph http://rdf4j.org/schema/rdf4j#SHACLShapeGraph as shown below:

[image: _images/shaclsail_reserved_graph.png]

	After the shape has been imported, let’s test it with some data:

	Again from Import → RDF → User data → Import RDF text snippet, insert correct data (i.e., age is an integer):

prefix ex: <http://example.com/ns#>
prefix sh: <http://www.w3.org/ns/shacl#>
prefix xsd: <http://www.w3.org/2001/XMLSchema#>

ex:Alice
 rdf:type ex:Person ;
 ex:age 12 ;
.

Leave the Import settings as they are, and click Import. You will see that the data has been imported successfully, as it is compliant with the shape you just inserted.

	Now import incorrect data (i.e., age is a double):

prefix ex: <http://example.com/ns#>
prefix sh: <http://www.w3.org/ns/shacl#>
prefix xsd: <http://www.w3.org/2001/XMLSchema#>

ex:Alice
 rdf:type ex:Person ;
 ex:age 12.1 ;
.

The import will fail, returning a detailed error message with all validation violations in both the Workbench and the command line.

Deleting shapes and data graphs

There are two ways to delete a SHACL shape: from the GraphDB Workbench and with the RDF4J API.

From the Workbench

	Go to the SPARQL Editor in the Workbench.

	Clear the RDF4J graph for storing shapes by running the following update query:

CLEAR GRAPH <http://rdf4j.org/schema/rdf4j#SHACLShapeGraph>

Note

Keep in mind that the Clean Repository option in the Explore -> Graphs overview tab would not delete the shape graph, as it removes all data from the repository, but not SHACL shapes.

With the RDF4J API

Use the following code snippet:

HTTPRepository repository = new HTTPRepository("http://address:port/", "repositoryname");
try (RepositoryConnection connection = repository.getConnection()) {
 connection.begin();
 connection.clear(RDF4J.SHACL_SHAPE_GRAPH);
 connection.commit();
}

Updating shapes and data graphs

To successfully update a shape graph, proceed as follows:

	Go to the SPARQL Editor in the Workbench.

	Clear the RDF4J graph for storing shapes by running the following update query:

CLEAR GRAPH <http://rdf4j.org/schema/rdf4j#SHACLShapeGraph>

	Load the updated shape graph following the instructions in Loading shapes and data graphs.

Note

As shape graphs are stored separately from data, importing a new shape graph by enabling the Enable replacement of existing data box option in the Import settings dialog box would not work. This is why the above steps must be followed.

Viewing shapes and data graphs

Currently, shape graphs cannot be accessed with SPARQL inside GraphDB, as they are not part of the data. You can view the graph by using the RDF4J client to connect to the GraphDB repository. The following code snippet will return all statements inside the shape graph:

HTTPRepository repository = new HTTPRepository("http://address:port/", "repositoryname");
try (RepositoryConnection connection = repository.getConnection()) {
 Model statementsCollector = new LinkedHashModel(connection.getStatements(null, null, null, RDF4J.SHACL_SHAPE_GRAPH)
 .stream()
 .collect(Collectors.toList()));
}

Validation logging and report

ShaclSail validates the data changes on commit(). In case of a violation, it will throw an exception that contains
a validation report where you can find details about the noncompliance of your data. The exception will be shown in
the Workbench if it was caused by an update executed in the same Workbench window.

In addition to that, you may also enable ShaclSail logging to get additional validation information in the log files.
To enable logging, check one of the three logging options when creating the SHACL repository:

	Log the executed validation plans

	Log validation violations

	Log every execution step of the SHACL validation

All three will log as INFO and appear in the main-[yyyy-mm-dd].log file in the logs directory of your GraphDB installation.

Supported SHACL features

The supported SHACL features are:

	sh:targetClass - specifies a target class. Each value of sh:targetClass in a shape is an IRI.

	sh:targetNode - specifies a node target. Each value of sh:targetNode in a shape is either an IRI or a literal.

	sh:targetSubjectsOf - specifies a subjects-of target in a shape. The values are IRIs.

	sh:targetObjectsOf - specifies an objects-of target in a shape. The values are IRIs.

	sh:path - Points at the IRI of the property that is being restricted. Alternative, it may point at a path expression, which would allow you to constrain values that may be several “hops” away from the starting point.

	sh:inversePath - An inverse path is a blank node that is the subject of exactly one triple in a graph. This triple has sh:inversePath as predicate, and the object is a well-formed SHACL property path.

	sh:property - specifies that each value node has a given property shape.

	sh:or - specifies the condition that each value node conforms to at least one of the provided shapes.

	sh:and - specifies the condition that each value node conforms to all provided shapes. This is comparable to conjunction and the logical “and” operator.

	sh:not - specifies the condition that each value node cannot conform to a given shape. This is comparable to negation and the logical “not” operator.

	sh:minCount - specifies the minimum number of value nodes that satisfy the condition. If the minimum cardinality value is 0 then this constraint is always satisfied and so may be omitted.

	sh:maxCount - specifies the maximum number of value nodes that satisfy the condition.

	sh:minLength - specifies the minimum string length of each value node that satisfies the condition. This can be applied to any literals and IRIs, but not to blank nodes.

	sh:maxLength - specifies the maximum string length of each value node that satisfies the condition. This can be applied to any literals and IRIs, but not to blank nodes.

	sh:pattern - specifies a regular expression that each value node matches to satisfy the condition.

	sh:flags - an optional string of flags, interpreted as in SPARQL 1.1 REGEX [https://www.w3.org/TR/sparql11-query/#func-regex]. The values of sh:flags in a shape are literals with datatype xsd:string.

	sh:nodeKind - specifies a condition to be satisfied by the RDF node kind of each value node.

	sh:languageIn - specifies that the allowed language tags for each value node are limited by a given list of language tags.

	sh:datatype - specifies a condition to be satisfied with regards to the datatype of each value node.

	sh:class - specifies that each value node is a SHACL instance of a given type.

	sh:in - specifies the condition that each value node is a member of a provided SHACL list.

	sh:uniqueLang - can be set to true to specify that no pair of value nodes may use the same language tag.

	sh:minInclusive - specifies the minimum inclusive value. The values of sh:minInclusive in a shape are literals. A shape has at most one value for sh:minInclusive.

	sh:maxInclusive - specifies the maximum inclusive value. The values of sh:maxInclusive in a shape are literals. A shape has at most one value for sh:maxInclusive.

	sh:minExclusive - specifies the minimum exclusive value. The values of sh:minExclusive in a shape are literals. A shape has at most one value for sh:minExclusive.

	sh:maxExclusive - specifies the maximum exclusive value. The values of sh:maxExclusive in a shape are literals. A shape has at most one value for sh:maxExclusive.

	sh:deactivated - A shape that has the value true for the property sh:deactivated is called deactivated. The value of sh:deactivated in a shape must be either true or false.

	sh:hasValue - specifies the condition that at least one value node is equal to the given RDF term.

	dash:hasValueIn - can be used to state that at least one value node must be a member of a provided SHACL list. This constraint component only makes sense for property shapes. It takes a list argument similar to sh:in but is “open” like sh:hasValue since it allows values outside of the list.

	sh:target for use with DASH targets.

	rsx:targetShape - Part of RDF4J’s SHACL extensions (RSX) and allows a shape to be the target for your constraints. For more information about the RSX features, see the RSX section [https://rdf4j.org/documentation/programming/shacl/#rsx---eclipse-rdf4j-shacl-extensions].

Implicit sh:targetClass is supported for nodes that are rdfs:Class and either of sh:PropertyShape or sh:NodeShape. Validation for all nodes that are equivalent to owl:Thing in an environment with a reasoner can be enabled by setting setUndefinedTargetValidatesAllSubjects(true).

sh:path is limited to single predicate paths, e.g., ex:age. Sequence paths, alternative paths, inverse paths and the like are not supported.

sh:or is limited to statement based restrictions such as sh:datatype, or aggregate based restrictions such as sh:minCount, but not both at the same time.

Virtualization

What’s in this document?

	Overview and features

	Usage scenario

	Setup and configuration

	JDBC driver

	Configuration files

	Creating a virtual repository from the Workbench

	With generic JDBC driver

	With one of the other supported database drivers

	Creating a virtual repository using cURL

	Mapping language

	SPARQL endpoint

	Query federation

	Limitations

Overview and features

The data virtualization in GraphDB enables direct access to relational databases with SPARQL queries, which eliminates the need to replicate data. The implementation exposes a virtual SPARQL endpoint, which translates the queries to SQL using a declarative mapping. To achieve this functionality, GraphDB integrates with the open-source Ontop project and extends it with multiple GraphDB specific features.

The following SPARQL features are supported:

	SELECT and CONSTRUCT queries

	Default and named graph triple patterns

	Triple pattern combining: OPTIONAL, UNION, blank node path

	Result filtering and value bindings: FILTER, BIND, VALUES

	Projection modifiers: DISTINCT, LIMIT, ORDER BY

	Aggregates (GROUP BY, SUM, COUNT, AVG, MIN, MAX, GROUP_CONCAT)

	SPARQL functions (STR, IRI, LANG, REGEX)

	SPARQL data type support and their mapping to SQL types

	SUBQUERY

The most common scenario for using data virtualization is when the integrated data is highly dynamic or too big to be replicated. For practical reasons, it is easier to not copy it and accept all limitations like data quality, integrity, and type of supported queries of the underlying information source.

A second common scenario is to maintain a declarative mapping between the relational model and RDF, where the user periodically dumps all statements and writes them to a native RDF database so it can support property paths and faster data joins.

Note

The virtual repository has the following specifics:

	it is read-only, meaning that write operations cannot be executed in it;

	COUNT queries cannot be executed;

	sameAs is disabled;

	executing an explain plan is disabled, meaning that graph queries are converted to simple SELECT queries without the graph segment. This will convert a graph query of the type

SELECT * from <some_graph> WHERE {
 ?s ?p ?o .
}

to

SELECT * WHERE {
 ?s ?p ?o .
}

See more about the Ontop framework in its official documentation [https://ontop-vkg.org/].

Usage scenario

Exposing a virtual endpoint as a repository in GraphDB is done in the following way:

The relational database is loaded in an RDBMS of your choice. After that, a relational database JDBC driver is necessary (e.g., PostgreSQL JDBC driver [https://jdbc.postgresql.org/]). It is placed in the lib directory of the GraphDB distribution.

Four additional files are needed as well:

	An OBDA or R2RML file describing the mapping of SPARQL queries to SQL data

	An OWL file describing the ontology of your data (optional)

	A properties file for the configuration of the JDBC driver parameters of the following type (here with example values from the sample data we will look at further down in this tutorial):

jdbc.url=<database-jdbc-driver-connection-string>
jdbc.driver=<database-jdbc-driver-class>
jdbc.user=<your-database-username>
jdbc.password=<your-database-password>

	A repository config file of the following type, here again with example values (optional):

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix rep: <http://www.openrdf.org/config/repository#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<#university-virtual> a rep:Repository;
 rep:repositoryID "university-virtual";
 rep:repositoryImpl [
 <http://inf.unibz.it/krdb/obda/quest#obdaFile> "university.obda";
 <http://inf.unibz.it/krdb/obda/quest#owlFile> "university.ttl";
 <http://inf.unibz.it/krdb/obda/quest#propertiesFile> "university.properties";
 rep:repositoryType "graphdb:OntopRepository"
];
 rdfs:label "Ontop virtual store with OBDA" .

that references the aforementioned OBDA (or R2RML), ontology, and properties files. This file is automatically generated when creating a virtual repository through the Workbench, and is used when creating such a repository via cURL command as described further below.

These files are used to create a virtual repository in GraphDB, in which you can then query the relational database.

Let’s consider the following relational database containing university data.

It has tables describing students, academic staff, courses and two relation schemas (uni1 and uni2) with many-to-many links between academic staff -> course and students -> course. The descriptions below are for the uni1 tables.

uni1.student

	s_id

	first_name

	last_name

	1

	Mary

	Smith

	2

	John

	Doe

This table contains the local ID, first and last names of the students.
The column s_id is a primary key.

uni1.academic

	a_id

	first_name

	last_name

	position

	1

	Anna

	Chambers

	1

	2

	Edward

	May

	9

	3

	Rachel

	Ward

	8

Similarly, this table contains the local ID, first and last names of the academic staff, but also information about their position. The column a_id is a primary key.

The column position is populated with magic numbers:

	1 -> Full Professor

	2 -> Associate Professor

	3 -> Assistant Professor

	8 -> External Teacher

	9 -> PostDoc

uni1.course

	c_id

	title

	1234

	Linear Algebra

This table contains the local ID and the title of the courses. The column c_id is a primary key.

uni1.teaching

	c_id

	a_id

	1234

	1

	1234

	2

This table contains the n-n relation between courses and teachers. There is no primary key, but two foreign keys to the tables uni1.course and uni1.academic.

uni1.course-registration

	c_id

	s_id

	1234

	1

	1234

	2

This table contains the n-n relation between courses and students. There is no primary key, but two foreign keys to the tables uni1.course and uni1.student.

Setup and configuration

JDBC driver

As mentioned above, in order to create a virtual repository in GraphDB, you need to first install a JDBC driver for your respective relational database.

Place the driver .jar file in the lib directory of the GraphDB distribution. Restart GraphDB if it is running.

Configuration files

Before creating a virtual repository, you will need the following files (available for download below):

	an OBDA mapping file describing the mapping of SPARQL queries to SQL data

	an OWL ontology file describing the ontology of your data

	a properties file with the JDBC configuration parameters

Creating a virtual repository from the Workbench

With generic JDBC driver

	When creating a repository from the Workbench, select the Ontop option.

	GraphDB supports several database JDBC drivers. When creating an Ontop repository, the default setting is Generic JDBC Driver. This means that you need to configure and upload your own JDBC properties file (available as a template for download above).

	In the fields for JDBC properties file and OBDA or R2RML file, upload the corresponding files. The Ontology and Constraint files are optional.

	You can also test the connection to your SQL database with the button on the right.

	Click Create.

[image: _images/create-ontop-repo.png]

Note

Once you have created an Ontop repository, its type cannot be changed.

With one of the other supported database drivers

For ease of use, GraphDB also supports drivers for five other commonly used databases integrated into the Ontop framework: MySQL, PostgreSQL, Oracle, MS SQL Server, and DB2. Selecting one of them offers the advantage of not having to configure the JDBC properties file yourself, as its Driver class and URL property values are generated by GraphDB.

To use one of these database drivers:

	Select the type of SQL database you want to use from the drop-down menu.

	Download the corresponding driver by clicking the Download JDBC driver link on the right of the Driver class field, place it in the lib directory of the GraphDB distribution, and restart GraphDB if it is running.

	Fill in the required fields for each driver (Hostname, Database name, etc.).

	Upload the OBDA/R2RML file. (The Ontology and Constraint files are optional, just as with the generic JDBC driver)

	You can also test the connection to your SQL database with the button on the right.

	Click Create.

[image: _images/create-ontop-repo-other-drivers.png]

Creating a virtual repository using cURL

To create a virtual repository with this method, you need to have the following repository config file described above: repo-config.ttl.

Place it in the same directory where the OBDA/R2RML, ontology, and properties files are.

Execute the following cURL command:

curl -X POST http://localhost:7200/rest/repositories -H 'Content-Type: multipart/form-data' -F "config=@repo-config.ttl"

You will see the newly created repository under Setup -> Repositories in the GraphDB Workbench.

Mapping language

The underlying Ontop engine supports two mapping languages. The first one is the official W3C RDB2RDF mapping language known as R2RML [https://www.w3.org/TR/r2rml/], which provides excellent interoperability between the various tools. The second one is the native Ontop mapping known as OBDA [https://cs.uwaterloo.ca/~gweddell/cs848/papers/OBDA-Ontop.pdf], which is much shorter and easier to learn, and supports an automatic bidirectional transformation to R2RML.

Mappings represent OWL assertions: one set of OWL assertions for each result row is returned by the SQL query in the mapping. The assertions are those that are obtained by replacing the placeholders with the values from the relational database.

Mappings consist of:

	source: an SQL query that retrieves some data from the database

	target: a form of template that indicates how to generate OWL assertions in a Turtle-like syntax.

All examples in this documentation use the internal OBDA mapping language.

Let’s map the uni1-student table using an OBDA template.

The information source is the following:

SELECT *
FROM "uni1"."student"

And the target mapping file is:

ex:uni1/student/{s_id} a :Student ;
 foaf:firstName {first_name}^^xsd:string ;
 foaf:lastName {last_name}^^xsd:string .

The target part is described using a Turtle-like syntax while the source part is a regular SQL query.

We used the primary key s_id to create the URI. This practice enables Ontop to remove self-joins, which is very important for optimizing the query performance.

This entry could be split into three mapping assertions:

ex:uni1/student/{s_id} a :Student .
ex:uni1/student/{s_id} foaf:firstName {first_name}^^xsd:string .
ex:uni1/student/{s_id} foaf:lastName {last_name}^^xsd:string .

Mapping the uni1-course table would look as follows:

The source will be:

SELECT *
FROM "uni1"."course"

And the target:

ex:uni1/course/{c_id} a :Course ;
 :title {title} ;
 :isGivenAt ex:uni1/university .

SPARQL endpoint

Below are some examples of the SPARQL queries that are supported in a GraphDB virtual repository.

	Return the IDs of all persons that are faculty members:

PREFIX : <http://example.org/voc#>

SELECT ?p
WHERE {
 ?p a :FacultyMember .
}

	Return the IDs of all full Professors together with their first and last names:

PREFIX : <http://example.org/voc#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT DISTINCT ?prof ?lastName ?firstName {
 ?prof a :FullProfessor ;
 foaf:firstName ?firstName ;
 foaf:lastName ?lastName .
}

	Return all Associate Professors, Assistant Professors, and Full Professors with their last names and first name if available, and the title of the course they are teaching:

PREFIX : <http://example.org/voc#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?title ?fName ?lName {
 ?teacher rdf:type :Professor .
 ?teacher :teaches ?course .
 ?teacher foaf:lastName ?lName .

 ?course :title ?title .
 OPTIONAL {
 ?teacher foaf:firstName ?fName .
 }
}

Query federation

GraphDB also supports querying the virtual read-only repositories using the highly efficient Internal SPARQL Federation.

Its usage is the same as with the internal federation of regular repositories. Instead of providing a URL to a remote repository, you need to provide a special URL of the form repository:NNN, where NNN is the ID of the virtual repository you want to access.

Let’s see how this works with our university database example.

	Create a new, empty RDF repository called university-rdf.

	From the ontop_repo virtual repository with university data, insert some data in the new, empty university-rdf repository: teachers with first name and last name that give courses that are not held at university2:

PREFIX : <http://example.org/voc#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
insert {
 ?person a :UniversityTeacher;
 :firstName ?firstName;
 :lastName ?lastName .
} where {
 service <repository:ontop_repo> {
 SELECT DISTINCT ?person ?firstName ?lastName
 WHERE {
 ?person foaf:firstName ?firstName ;
 foaf:lastName ?lastName ;
 :teaches [:isGivenAt ?institution]
 FILTER(?institution != "http://example.org/voc#uni2/university")
 }
 }
}

	To observe the results, again in the university-rdf repository, execute the following query that will return the teachers that were inserted with their first and last name:

PREFIX : <http://example.org/voc#>
SELECT * WHERE {
 ?teacherId a :UniversityTeacher;
 :firstName ?firstName;
 :lastName ?lastName;
} LIMIT 200

Result:

[image: _images/ontop-federation-query2.png]

	Then:

	get the teachers from the virtual repository that teach courses in an institution that is not university2

	merge the result of that with the RDF repository by getting the firstName and lastName of those teachers

	the IDs of the teachers are the common property for both repositories which makes the selection possible. For the purposes of our demonstration, this query filters them by firstName that contains the letter “a”.

PREFIX : <http://example.org/voc#>
select * where {
 SERVICE <repository:ontop_repo> {
 ?teacherId :teaches [:isGivenAt ?institution] .
 FILTER (?institution != "http://example.org/voc#uni2/university")
 }
 ?teacherId :firstName ?firstName;
 :lastName ?lastName
 FILTER (regex(?firstName, "a"))
}

Result:

[image: _images/ontop-federation-query3.png]

Limitations

Data virtualization also comes with certain limitations due to the distributed nature of the data. In this sense, it works best for information that requires little or no integration. For instance, if in databases X and Y, we have two instances of the person John Smith, which do not share a unique key or other exact match attributes like “John Smith” and “John E. Smith”, it will be quite inefficient to match the records at runtime.

One potential drawback is also the type of supported queries. If the underlying storage has no indexes, it will be slow to answer queries such as “tell me how resource X connects to resource Y”.

The number of stacked data sources also significantly affects the efficiency of data retrieval.

Due to certain limitations in the Ontop library, exports of such repositories may cause out of memory exceptions when there is a significant amount of data in the underlying SQL database.

Lastly, it is not possible to efficiently perform auto-suggest/auto-complete type of indexes nor graph traversals or inferencing.

Using the Workbench REST API

What’s in this document?

	Data import

	Location management

	Repository management

	Saved queries

	Security management

	SQL views management

	Authentication

The Workbench REST API can be used to automate various tasks without having to open the Workbench in a browser and doing them manually.

The REST API calls fall into these major categories:

Data import

Use the data import API to import data in GraphDB. You can choose between server files and a remote URL.

See these cURL examples for data import.

Location management

Use the location management API to attach, activate, edit, or detach locations.

See these cURL examples for location management.

Repository management

Use the repository management API to add, edit, or remove a repository to/from any attached location. Unlike the RDF4J API, you can work with multiple remote locations from a single access point. When combined with the location management, it can be used to automate the creation of multiple repositories across your network.

See these cURL examples for repository management.

Saved queries

Use the saved queries API to create, edit or remove saved queries. It is a convenient way to automate the creation of saved queries that are important to your project.

See these cURL examples for saved queries.

Security management

Use the security management API to enable or disable security and free access, as well as add, edit, or remove users, thus integrating the Workbench security into an existing system.

See these cURL examples for security management.

SQL views management

Use the SQL views management to access, create, and edit SQL views (tables), as well as to delete existing saved queries and see all SQL views for the active repository.

See these cURL examples for SQL views management.

Authentication

Use this login REST API endpoint to obtain a GDB token in exchange for username and password.

See this cURL example for authentication.

You can find more information about each REST API functionality group and its operations in Help -> REST API Documentation, as well as execute them directly from there and see the results.

[image: _images/swagger.png]
Click on a functionality group to expand it and see the operations that it includes. Click on an operation to see details about it.

[image: _images/swagger_API_call_details.png]

Using GraphDB with the RDF4J API

What’s in this document?

	RDF4J API

	Accessing a local repository

	Accessing a remote repository

	SPARQL endpoint

	Graph Store HTTP Protocol

This section describes how to use the RDF4J API to create and access GraphDB
repositories, both on the local file system and remotely via the RDF4J
HTTP server.

RDF4J comprises a large collection of libraries, utilities and APIs.
The important components for this section are:

	the RDF4J classes and interfaces (API), which provide a uniform access
to the SAIL components from multiple vendors/publishers;

	the RDF4J server application.

RDF4J API

Programmatically, GraphDB can be used via the RDF4J Java framework of
classes and interfaces. Documentation for these interfaces (including
Javadoc [http://docs.rdf4j.org/javadoc/latest/]). Code snippets in the
sections below are taken from, or are variations of, the
developer-getting-started examples that come with the GraphDB
distribution.

Accessing a local repository

With RDF4J 2, repository configurations are represented as RDF
graphs. A particular repository configuration is described as a
resource, possibly a blank node, of type:
http://www.openrdf.org/config/repository#Repository.

This resource has an ID, a label, and an implementation, which in
turn has a type, SAIL type, etc. A short repository configuration is taken
from the developer-getting-started template file repo-defaults.ttl.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix rep: <http://www.openrdf.org/config/repository#>.
@prefix sr: <http://www.openrdf.org/config/repository/sail#>.
@prefix sail: <http://www.openrdf.org/config/sail#>.
@prefix owlim: <http://www.ontotext.com/trree/owlim#>.

[] a rep:Repository ;
 rep:repositoryID "graphdb-repo" ;
 rdfs:label "GraphDB Getting Started" ;
 rep:repositoryImpl [
 rep:repositoryType "openrdf:SailRepository" ;
 sr:sailImpl [
 sail:sailType "graphdb:FreeSail" ;
 owlim:ruleset "owl-horst-optimized" ;
 owlim:storage-folder "storage" ;
 owlim:base-URL "http://example.org/owlim#" ;
 owlim:repository-type "file-repository" ;
 owlim:imports "./ontology/owl.rdfs" ;
 owlim:defaultNS "http://example.org/owlim#" .
]
].

The Java code that uses the configuration to instantiate a repository
and get a connection to it is as follows:

// Instantiate a local repository manager and initialize it
RepositoryManager repositoryManager = new LocalRepositoryManager(new File("."));
repositoryManager.initialize();

// Instantiate a repository graph model
TreeModel graph = new TreeModel();

// Read repository configuration file
InputStream config = EmbeddedGraphDB.class.getResourceAsStream("/repo-defaults.ttl");
RDFParser rdfParser = Rio.createParser(RDFFormat.TURTLE);
rdfParser.setRDFHandler(new StatementCollector(graph));
rdfParser.parse(config, RepositoryConfigSchema.NAMESPACE);
config.close();

// Retrieve the repository node as a resource
Resource repositoryNode = GraphUtil.getUniqueSubject(graph, RDF.TYPE, RepositoryConfigSchema.REPOSITORY);

// Create a repository configuration object and add it to the repositoryManager
RepositoryConfig repositoryConfig = RepositoryConfig.create(graph, repositoryNode);
repositoryManager.addRepositoryConfig(repositoryConfig);

// Get the repository from repository manager, note the repository id set in configuration .ttl file
Repository repository = repositoryManager.getRepository("graphdb-repo");

// Open a connection to this repository
RepositoryConnection repositoryConnection = repository.getConnection();

// ... use the repository

// Shutdown connection, repository and manager
repositoryConnection.close();
repository.shutDown();
repositoryManager.shutDown();

The procedure is as follows:

	Instantiate a local repository manager with the data directory to use
for the repository storage files (repositories store their data
in their own subdirectory from here).

	Add a repository configuration for the desired repository type to the
manager.

	‘Get’ the repository and open a connection to it.

From then on, most activities will use the connection object to interact
with the repository, e.g., executing queries, adding statements,
committing transactions, counting statements, etc. See the
developer-getting-started examples.

Note

Example above assumes that GraphDB Free edition is used. If using Standard or Enterprise
editions, a valid license file should be set to the system property graphdb.license.file.

Accessing a remote repository

The RDF4J server is a Web application that allows interaction with
repositories using the HTTP protocol. It runs in a JEE compliant servlet
container, e.g., Tomcat, and allows client applications to interact with
repositories located on remote machines. In order to connect to and use
a remote repository, you have to replace the local repository manager
with a remote one. The URL of the RDF4J server must be provided, but no
repository configuration is needed if the repository already exists on
the server. The following lines can be added to the developer-getting-started
example program, although a correct URL must be specified:

RepositoryManager repositoryManager =
 new RemoteRepositoryManager("http://192.168.1.25:7200");
repositoryManager.initialize();

The rest of the example program should work as expected, although the
following library files must be added to the class-path:

	commons-httpclient-3.1.jar

	commons-codec-1.10.jar

SPARQL endpoint

The RDF4J HTTP server is a fully fledged SPARQL endpoint - the RDF4J
HTTP protocol is a superset of the SPARQL 1.1
protocol [http://www.w3.org/TR/sparql11-protocol/]. It provides an
interface for transmitting SPARQL queries and updates to a SPARQL
processing service and returning the results via HTTP to the entity that
requested them.

Any tools or utilities designed to interoperate with the SPARQL protocol
will function with GraphDB because it exposes a SPARQL-compliant endpoint.

Graph Store HTTP Protocol

The Graph Store HTTP Protocol is fully supported for direct and indirect
graph names. The SPARQL 1.1 Graph Store HTTP
Protocol [http://www.w3.org/TR/sparql11-http-rdf-update/] has the
most details, although further information can be found in the RDF4J Server REST API [https://rdf4j.org/documentation/reference/rest-api/#graph-store-support].

This protocol supports the management of RDF statements in named graphs
in the REST style by providing the ability to get, delete, add to, or
overwrite statement in named graphs using the basic HTTP methods.

SQL Access over JDBC

What’s in this document?

	Configuration

	Prerequisites

	Creating a SQL view

	Updating a SQL view

	Deleting a SQL view

	Type mapping

	WHERE to FILTER conversion

	Table verification

	Usage examples

	Tableau

	Microsoft Power BI over ODBC protocol

	How it works: Table description

As a data scientist or an engineer with experience in specific SQL-based tools, you might want to consume RDF data from your knowledge graph or other RDF databases by accessing GraphDB via a BI tool of your choice (e.g., Tableau [https://www.tableau.com/] or Microsoft Power BI [https://powerbi.microsoft.com/en-us/]). This capability is provided by GraphDB’s JDBC [https://en.wikipedia.org/wiki/Java_Database_Connectivity] driver, which enables you to create SQL views using SPARQL SELECT queries, and to access all GraphDB features including plugins and SPARQL federation. The functionality is based on the Apache Calcite [https://calcite.apache.org/] protocol and on performing optimizations and mappings.

The JDBC driver works with preconfigured SQL views (tables) that are saved under each repository whose data we want to access. For simplicity of the table creation process, we have integrated the SQL View Manager in the GraphDB Workbench.
It allows you to configure, store, update, preview, and delete SQL views that can be used with the JDBC driver, where each SQL view is based on a SPARQL SELECT query and requires additional metadata in order to configure the SQL columns.

Important

Over this functionality, you can only read data from the repository. Write operations are not enabled.

Configuration

Prerequisites

You need to download the GraphDB JDBC driver (graphdb-jdbc-remote-9.6.0.jar) [https://maven.ontotext.com/repository/owlim-releases/com/ontotext/graphdb/graphdb-jdbc-remote/9.6.0/graphdb-jdbc-remote-9.6.0.jar], a self-contained .jar file. The driver needs to be installed according to the requirements of the software that supports JDBC. See below for specific instructions.

For the purposes of this guide, we will be using the Netherlands restaurants RDF dataset. Upload it into a GraphDB repository, name it nl_restaurants, and set it as the active repository.

Now, let’s access its data over the JDBC driver.

Creating a SQL view

	Go to Setup -> JDBC. Initially, the list of SQL table configurations will be empty as none are configured.

	Click Create new SQL table configuration.

In the view that opens, there are two tabs:

	Data query: input the SPARQL SELECT query that is abstracted as a SQL view for the JDBC driver

	Column types: configure the SQL column types and other metadata of the SQL table. Note that in order to create a table, it must contain at least one column.

	First, we need to add a SPARQL SELECT query in the Data query body and a table name, e.g., restaurant_data. Note that the table name field is mandatory, and cannot be changed once the table has been created.

Enter the following SPARQL query in the editor below:

PREFIX ex:<http://example.com/ex>
PREFIX base:<http://example/base/>
PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>

select ?restaurant_name ?short_description ?long_description ?calendar where {
 ?s a base:Restaurant;
 rdfs:label ?restaurant_name;
 ex:shortDescription ?short_description;
 ex:longDescription ?long_description;
 ex:calendar ?calendar.
 # !filter
}

Note

The query contains a special comment in the query body that specifies the position of the filter clause that will be generated on the SQL side. Make sure that it is spelled out in lowercase, as otherwise the query parser would not recognize it.

	After adding the SPARQL SELECT query, go to the Column types tab, where all the possible columns will be auto-generated based on the bindings inside the SELECT query. Additionally, SQL types will be suggested based on the XSD types from the first 100 results of the execution of the input query:

[image: _images/jdbc-column-type-config.png]

	Here, you can update the SQL type of every column. If the SQL type you have selected has precision and/or scale (e.g., decimal), this can be configured as well. You can also make the column nullable and provide a custom RDF type for it (not required). The only mandatory field is the SQL type.

	You can also remove a column from the configuration with the delete icon on the right. If you want to add it again later, you can do so with the Suggest button, which will automatically add it again and suggest types for the columns.

	After configuring the table columns, return to the Data query tab and preview the table that it would return. It does not need to be saved in order to be previewed.

[image: _images/jdbc-query-preview.png]

Note

If you click on Cancel before saving, a warning will notify you that you have unsaved changes.

	After successfully configuring the SQL view, we can Save it. It will appear in the list of configured tables that can be used with the JDBC driver.

For the purposes of the BI tool examples further below, let’s also create another SQL view with the following query:

PREFIX ex:<http://example.com/ex>
PREFIX base:<http://example/base/>
PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>

select ?restaurant_name ?city ?country ?address ?zipcode ?latitude ?longitude where {
 ?s a base:Restaurant;
 rdfs:label ?restaurant_name;
 ex:inCity ?city_id;
 ex:address ?address;
 ex:zipcode ?zipcode;
 ex:latitude ?latitude;
 ex:longitude ?longitude.

 ?city_id rdfs:label ?city.
 ?city_id ex:in ?country_id.
 ?country_id rdfs:label ?country.
 # !filter
}

Name it restaurant_location and save it.

Updating a SQL view

To edit and update a SQL view, select it from the list of available SQL views that are configured for the selected repository. The configuration is identical to that used for creation, with the only difference that here you cannot update the name of the SQL view. You can edit and update the query and SQL column metadata.

After updating the configuration, you can Save and see that all changes have been reflected.

Deleting a SQL view

To delete a SQL view, click the delete icon next to its name in the available SQL views list.

[image: _images/jdbc-delete-sql-table.png]

Type mapping

This table shows all RDF data types, their type equivalent in SQL, and the conversion (or mapping) of RDF to SQL values.

	Metadata type

	SQL type

	Default precision and scale

	RDF to SQL

	Default RDF type in FILTER()

	string

	VARCHAR

	1,000

	Literal.stringValue()

	plain literal or literal with language tag

	IRI

	VARCHAR

	500

	IRI.stringValue()

	IRI

	boolean

	BOOLEAN

	
	Literal.booleanValue()

	literal with xsd:boolean

	byte

	BYTE

	
	Literal.byteValue()

	literal with xsd:byte

	short

	SHORT

	
	Literal.shortValue()

	literal with xsd:short

	int

	INT

	
	Literal.intValue()

	literal with xsd:int

	long

	LONG

	
	Literal.longValue()

	literal with xsd:long

	float

	FLOAT

	
	Literal.floatValue()

	literal with xsd:float

	double

	DOUBLE

	
	Literal.doubleValue()

	literal with xsd:double

	decimal

	DECIMAL

	19, 0

	Literal.decimalValue()

	literal with xsd:decimal

	date

	DATE

	
	See below

	literal with xsd:date, no timezone

	time

	TIME

	
	See below

	literal with xsd:time, no timezone

	timestamp

	TIMESTAMP

	
	See below

	literal with xsd:datetime, no timezone

Each metadata type may be followed by optional precision and scale in parentheses, e.g., decimal(15,2) or string(100) and
an optional nullability specification that consists of the literal null or not null. By default, all columns are nullable.

RDF values are converted to SQL values on a best effort basis. For example, if something was specified as “long” in SQL, it will
convert to a long value if the corresponding literal looks like a long number regardless of its datatype.
If the conversion fails (e.g., “foo” cannot be parsed as a long value), the SQL value will become null.

The default RDF type is used only to construct values when a condition from SQL WHERE is pushed to a SPARQL FILTER().

Dates, times, and timestamps are tricky as there is no time zone support in those types in SQL. There are SQL types with
time zone support but they are not implemented fully in Calcite. In order to provide a most common use case, we proceed as follows:

	Ignore the time zone on date and time literals.

Dates such as 2020-07-01, 2020-07-01Z, 2020-07-01+03:00, and 2020-07-01-03:00 will all be converted to 2020-07-01.

Times such as 12:00:01, 12:00:01Z, 12:00:01+03:00, and 12:00:01-03:00 will all be converted to 12:00:01.

No time zone will be added when constructing a value for filtering.

	On datetime values we consider “no timezone” to be equivalent to “Z” (i.e., +00:00), all other time zones will be converted by adjusting the datetime value by the respective offset.

No time zone will be added when constructing a value for filtering.

WHERE to FILTER conversion

The following SQL operators are converted to FILTER and pushed to SPARQL, if possible:

	Equality: =, <>, <, <=, >=

	Nullability: IS NULL, IS NOT NULL

	Text search: LIKE, SIMILAR TO

The conversion happens only if one of the operands is a column and the other one is a constant.

Table verification

We can also use an external tool such as SQuirrel Universal SQL Client [http://squirrel-sql.sourceforge.net/] to verify that the SQL table that we created through the Workbench is functioning properly.

After installing it, execute the following steps:

	Download the GraphDB JDBC driver (graphdb-jdbc-remote-9.6.0.jar) [https://maven.ontotext.com/repository/owlim-releases/com/ontotext/graphdb/graphdb-jdbc-remote/9.6.0/graphdb-jdbc-remote-9.6.0.jar], a self-contained .jar file.

	Open SQuirrel and add the JDBC driver: go to the Drivers tab on the left, and click the + icon to create a new driver.

	In the dialog window, select Extra Class Path and click Add.

	Go to the driver’s location on your computer, select it, and click Choose.

	In the Name field, choose a name for the driver, e.g., GraphDB.

	For Example URL, enter the string jdbc:graphdb:url=http://localhost:7200 (or the respective endpoint URL if your repository is in a remote location).

	For Class Name, enter com.ontotext.graphdb.jdbc.remote.Driver. Click OK.

[image: _images/squirrel-add-jdbc-driver.png]

	Now go to the Aliases tab on the left, and again click click the + to create a new one.

	You will see the newly created driver and its URL visible in the dialog window. Choose a name for the alias, e.g., GraphDB localhost. Username “admin” and password “root” are only necessary if GraphDB security is enabled.

[image: _images/squirrel-add-alias.png]

	You can now see your repository with the two tables that it contains:

[image: _images/squirrel-view-tables.png]

	In the SQL tab, you can see information about the tables, such as their content. Write your SQL query in the empty field and hit Ctrl+Enter (or the Run SQL icon above):

[image: _images/squirrel-sql-results.png]
You can also see the metadata:

[image: _images/squirrel-sql-metadata.png]

Usage examples

Tableau

Now let’s transform your RDF data into SQL:

	Download the GraphDB JDBC driver (graphdb-jdbc-remote-9.6.0.jar) [https://maven.ontotext.com/repository/owlim-releases/com/ontotext/graphdb/graphdb-jdbc-remote/9.6.0/graphdb-jdbc-remote-9.6.0.jar].

	Place it in the in the Tableau directory corresponding to your operating system:

	Windows: C:\Program Files\Tableau\Drivers

	MacOS: ~/Library/Tableau/Drivers

	Start Tableau and under Connect, select Other Databases (JDBC).

	Enter the JDBC connection string in the URL field: jdbc:graphdb:url=http://localhost:7200 (or the respective endpoint URL if your repository is in a remote location).

[image: _images/tableau-connect-jdbc.png]

	On the next screen, under Databases you will see GraphDB. Select it.

	On the drop-down Schema menu, you should see the name of the GraphDB repository, in our case NL_Restaurants. Select it.

	Tableau is now showing the SQL tables that we created earlier - restaurant_data and restaurant_location.

	Drag the Restaurant_Location table into the field in the centre of the screen and click Update Now.

[image: _images/tableau-table-screen.png]

	Go to Sheet 1 where we will visualize the restaurants in the dataset based on:

	their location:

	On the left side of the screen, select the parameters: Country, City, Restaurant_Name, Zipcode.

	On the right side of the screen, select the symbol maps option.

[image: _images/tableau-location.png]

	Drag the Restaurant_Name parameter, which is now in the Rows field, into Marks -> Colors.

The resulting map should look like this:

[image: _images/tableau-restaurants-location.png]

	the number of restaurants in a given location:

	On the left side of the screen, select the parameters: Country, City, Restaurant_Name.

	On the right side of the screen, again select the symbol maps option.

	Drag the Restaurant_Name parameter, which is now in the Rows field, into Marks -> Size.

The resulting map should look like this:

[image: _images/tableau-restaurants-size.png]

Microsoft Power BI over ODBC protocol

When working with BI tools that do not support JDBC, as is the case with Microsoft Power BI, you need to use an ODBC-JDBC bridge, e.g., Easysoft’s ODBC-JDBC Gateway [https://www.easysoft.com/products/data_access/odbc_jdbc_gateway/index.html#section=tab-1].

After downloading and installing the gateway in your Windows operating system, connect it to GraphDB the following way:

	Download the GraphDB JDBC driver (graphdb-jdbc-remote-9.6.0.jar) [https://maven.ontotext.com/repository/owlim-releases/com/ontotext/graphdb/graphdb-jdbc-remote/9.6.0/graphdb-jdbc-remote-9.6.0.jar].

	From the main menu, go to ODBC Data Sources (64-bit).

	In the dialog window, go to System DSN and click Add.

	In the next window, select Easysoft ODBC-JDBC Gateway and click Finish.

	In the next window, we will configure the connection to GraphDB:

	in the DSN field, enter the name of the new driver, for example “GraphDB-Test”. The Description field is optional.

	for User Name, enter “admin”, and for Password - “root”. These are not mandatory, except when GraphDB security is enabled.

	for Driver Class, enter com.ontotext.graphdb.jdbc.remote.Driver.

	for Class Path, click Add and go to the location of the driver’s .jar file on your computer. Select it and click Open.

	for URL, enter the same string as in the Tableau example above: jdbc:graphdb:url=http://localhost:7200/ (or the respective endpoint URL if your repository is in a remote location).

[image: _images/odbc-gateway-configuration.png]

	Click Test to make sure that the connection is working, then click OK.

	In the previous dialog window, you should now see the GraphDB-Test connection.

This concludes the gateway configuration, and we are now ready to use it with Microsoft Power BI.

Let’s use the Netherlands Restaurants example again:

	Start Power BI Desktop [https://powerbi.microsoft.com/en-us/desktop/] and go to Get Data.

	From the pop-up Get Data window, go to Other -> ODBC. Click Connect.

	From drop-down menu in the next dialog, select GraphDB-Test.

	In the next dialog window, enter username “admin” and password “root” (the password is only mandatory if GraphDB security is enabled).

	in the Navigator window that appears, you can now see the GraphDB directory and the tables it contains - Restaurant_Data and Restaurant_Location. Select the tables and click Load.

[image: _images/powerBI-tables.png]

	To visualize the data as a geographic map (similar to the Tableau example above), select the Report option on the left, and then the Map icon from the Visualizations options on the right.

	You can experiment with the Fields that you want visualized, for example: selecting City will display all the locations in the dataset.

[image: _images/powerBI-locations.png]

	You can also view the data in table format, as well as see the way the two tables are connected, by using the Data and Model views on the left.

How it works: Table description

As mentioned above, each SQL table is described by a SPARQL query that also includes some metadata defining the SQL columns, their types, and the expected RDF type. For the restaurant_data example, it will look the following way:

!column : restaurant_name : string not null
!column : short_description : string
!column : long_description : string
!column : calendar : string

PREFIX ex:<http://example.com/ex>
PREFIX base:<http://example/base/>
PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>

select ?restaurant_name ?short_description ?long_description ?calendar where {
 ?s a base:Restaurant;
 rdfs:label ?restaurant_name;
 ex:shortDescription ?short_description;
 ex:longDescription ?long_description;
 ex:calendar ?calendar.
 # !filter
}

It is generated as an .rq file upon creation of a SQL table from the Workbench, and is automatically saved in a newly created sql subdirectory in the respective repository folder. In our case, this would be:

<graphdb-distribution>/data/repositories/nl_restaurants/sql/restaurant_data

You can download and have a look at the two SPARQL queries that we used for the above examples:

	restaurant_data.rq

	restaurant_location.rq

Plugins

Hint

When migrating to a newer GraphDB version, see how to start and stop a plugin here.

	Plugin API
	A framework and a set of public classes and interfaces that allow developers to extend GraphDB in many useful ways.

	RDF Rank
	An algorithm that identifies the more important or more popular entities in the repository by examining their interconnectedness.

	Semantic similarity searches
	Exploring and searching semantic similarity in RDF resources.

	JavaScript functions
	Defining and executing JavaScript code, further enhancing data manipulation with SPARQL.

	Change tracking
	Tracking changes within the context of a transaction identified by a unique ID.

	Provenance
	Generation of inference closure from a specific named graph at query time.

	Proof plugin
	Finding out how a given statement has been derived by the inferencer.

Several of the plugins are user-defined indexes. They are created with SPARQL, and differ from the system indexes
in that they can be configured dynamically at runtime. Each user with write access to a certain repository can define
such an index. These plugins are:

	Autocomplete index
	Suggestions for the IRIs` local names in the SPARQL editor and the View Resource page.

	GeoSPARQL support
	GeoSPARQL is a standard for representing and querying geospatial linked data for the Semantic Web from the Open Geospatial Consortium (OGC). The plugin allows the conversion of Well-Known Text from different coordinate reference systems (CRS) into the CRS84 format, which is the default CRS according to the OGC.

	Geospatial extensions
	Support of 2-dimensional geospatial data that uses the WGS84 Geo Positioning RDF vocabulary (World Geodetic System 1984).

	Lucene full-text search
	Support of full-text search capabilities with a variety of indexing options and the ability to simultaneously use multiple, differently configured indexes in the same query using Apache Lucene, a high-performance, full-featured text search engine.

	Data history and versioning
	Accessing past states of your database through versioning of the RDF data model level.

The GraphDB Connectors are such indexes as well.

Plugin API

What’s in this document?

	What is the GraphDB Plugin API

	Description of a GraphDB plugin

	The life cycle of a plugin

	Discovery

	Configuration

	Initialization

	Request processing

	Shutdown

	Repository internals

	Statements and Entities

	System properties

	Repository properties

	Query processing

	Pre-processing

	Pattern interpretation

	Post-processing

	Update processing

	Updates involving specific predicates

	Removal of entire contexts

	Intercepting data for specific contexts

	Transactions

	Exceptions

	Accessing other plugins

	List of plugin interfaces and classes

	Basics

	Data structures

	Query request handlers

	Update request handlers

	Notification listeners

	Plugin dependencies

	Health checks

	Exceptions

	Putting it all together: example plugins

	ExampleBasicPlugin

	ExamplePlugin

What is the GraphDB Plugin API

The GraphDB Plugin API is a framework and a set of public classes and
interfaces that allow developers to extend GraphDB in many useful ways.
These extensions are bundled into plugins, which GraphDB discovers
during its initialization phase and then uses to delegate parts of its
query or update processing tasks. The plugins are given low-level access to the
GraphDB repository data, which enables them to do their job efficiently.
They are discovered via the Java service discovery mechanism, which
enables dynamic addition/removal of plugins from the system without
having to recompile GraphDB or change any configuration files.

Description of a GraphDB plugin

A GraphDB plugin is a Java class that implements the
com.ontotext.trree.sdk.Plugin interface. All public classes and
interfaces of the plugin API are located in this Java package, i.e.,
com.ontotext.trree.sdk. Here is what the plugin interface looks like in
an abbreviated form:

/**
 * The base interface for a GraphDB plugin. As a minimum a plugin must implement this interface.
 * <p>
 * Plugins also need to be listed in META-INF/services/com.ontotext.trree.sdk.Plugin so that Java's services
 * mechanism may discover them automatically.
 */
public interface Plugin extends Service {
 /**
 * A method used by the plugin framework to configure each plugin's file system directory. This
 * directory should be used by the plugin to store its files
 *
 * @param dataDir file system directory to be used for plugin related files
 */
 void setDataDir(File dataDir);

 /**
 * A method used by the plugin framework to provide plugins with a {@link Logger} object
 *
 * @param logger {@link Logger} object to be used for logging
 */
 void setLogger(Logger logger);

 /**
 * Plugin initialization method called once when the repository is being initialized, after the plugin has been
 * configured and before it is actually used. It enables plugins to execute whatever
 * initialization routines they consider appropriate, load resources, open connections, etc., based on the
 * specific reason for initialization, e.g., backup.
 * <p>
 * The provided {@link PluginConnection} instance may be used to create entities needed by the plugin.
 *
 * @param reason the reason for initialization
 * @param pluginConnection an instance of {@link PluginConnection}
 */
 void initialize(InitReason reason, PluginConnection pluginConnection);

 /**
 * Sets a new plugin fingerprint.
 * Every plugin should maintain a fingerprint of its data that could be used by GraphDB to determine if the
 * data has changed or not. Initially, on system initialization the plugins are injected their
 * fingerprints as they reported them before the last system shutdown
 *
 * @param fingerprint the last known plugin fingerprint
 */
 void setFingerprint(long fingerprint);

 /**
 * Returns the fingerprint of the plugin.
 * <p>
 * Every plugin should maintain a fingerprint of its data that could be used by GraphDB to determine if the
 * data has changed or not. The plugin fingerprint will become part of the repository fingerprint.
 *
 * @return the current plugin fingerprint based on its data
 */
 long getFingerprint();

 /**
 * Plugin shutdown method that is called when the repository is being shutdown. It enables plugins to execute whatever
 * finalization routines they consider appropriate, free resources, buffered streams, etc., based on the
 * specific reason for shutdown.
 *
 * @param reason the reason for shutdown
 */
 void shutdown(ShutdownReason reason);
}

As it derives from the Service interface, the plugin is
automatically discovered at run-time, provided that the following
conditions also hold:

	The plugin class is located in the classpath.

	It is mentioned in a
META-INF/services/com.ontotext.trree.sdk.Plugin file in the
classpath or in a .jar that is in the classpath. The full class
signature has to be written on a separate line in such a file.

The only method introduced by the Service interface is
getName(), which provides the plugin’s (service’s) name. This name
must be unique within a particular GraphDB repository, and serves as
a plugin identifier that can be used at any time to retrieve a
reference to the plugin instance.

/**
 * Interface implemented by all run-time discoverable services (e.g. {@link Plugin} instances). Classes
 * implementing this interface should furthermore be declared in the respective
 * META-INF/services/<class.signature> file and will then be discoverable at run-time.
 * <p>
 * Plugins need not implement this interface directly but rather implement {@link Plugin}.
 */
public interface Service {
 /**
 * Gets the service name (serves as a key for discovering the service)
 *
 * @return service name
 */
 String getName();
}

There are many more functions (interfaces) that a plugin could
implement, but these are all optional and are declared in separate
interfaces. Implementing any such complementary interface is the means
to announce to the system what this particular plugin can do in
addition to its mandatory plugin responsibilities. It is then
automatically used as appropriate. See List of plugin interfaces and classes.

The life cycle of a plugin

A plugin’s life cycle consists of several phases:

Discovery

This phase is executed at repository initialization.
GraphDB searches for all plugin services in the classpath registered in the
META-INF/services/com.ontotext.trree.sdk.Plugins service registry
files, and constructs a single instance of each plugin found.

Configuration

Every plugin instance discovered and constructed
during the previous phase is then configured. During this phase,
plugins are injected with a Logger object, which they use for
logging (setLogger(Logger logger)), and the path to their own
data directory (setDataDir(File dataDir)), which they create, if
needed, and then use to store their data. If a plugin does not need
to store anything to the disk, it can skip the creation of its data
directory. However, if it needs to use it, it is guaranteed that this
directory will be unique and available only to the particular plugin
that it was assigned to.

This phase is also called when a plugin is enabled after repository initialization.

Initialization

After a plugin has been configured, the
framework calls its initialize(InitReason reason, PluginConnection pluginConnection)
method so it gets the chance to
do whatever initialization work it needs to do.
The passed instance of PluginConnection provides access to various other structures and interfaces,
such as Statements and Entities instances (Repository internals), and
a SystemProperties instance, which gives the plugins access to the
system-wide configuration options and settings. Plugins typically use this phase to create IRIs
that will be used to communicate with the plugin.

This phase is also called when a plugin is enabled after repository initialization.

Request processing

The plugin participates in the request processing. The request phase applies to the evaluation of SPARQL queries,
getStatements calls, the transaction stages and the execution of SPARQL updates. Various event notifications
can also be part of this phase.

This phase is optional for the plugins but no plugin is useful without implementing at least
one of its interfaces.

Request processing can be divided roughly into query processing and update processing.

Query processing

Query processing includes several sub-phases that can be used on their own or combined together:

	Pre-processing
	Plugins are given the chance to modify the
request before it is processed. In this phase, they could also
initialize a context object, which will be visible till the end of
the request processing (Pre-processing).

	Pattern interpretation
	Plugins can choose to provide
results for requested statement patterns
(Pattern interpretation). This sub-phase applies only to queries.

	Post-processing
	Before the request results are returned to
the client, plugins are given a chance to modify them, filter
them out, or even insert new results
(Post-processing);

Update processing

Update processing includes several layers of processing:

	Transaction events
	Plugins are notified about the beginning and end of a transaction.

	Update handling
	Plugins can choose to handle certain updates (additions or removals) instead of letting the repository
handle the updates as regular data.

	Entities and statements notifications
	Plugins can be notified about the creation of entities, the addition and removal of statements.

Shutdown

During repository shutdown, each plugin is prompted to execute its own shutdown routines, free resources,
flush data to disk, etc. This must be done in the shutdown(ShutdownReason reason) method.

This phase is also called when a plugin is disabled after repository initialization.

Repository internals

The repository internals are accessed via an instance of PluginConnection:

/**
 * The {@link PluginConnection} interface provides access to various objects that can be used to query data
 * or get the properties of the current transaction. An instance of {@link PluginConnection} will be passed to almost
 * all methods that a plugin may implement.
 */
public interface PluginConnection {
 /**
 * Returns an instance of {@link Entities} that can be used to retrieve or create RDF entities.
 *
 * @return an {@link Entities} instance
 */
 Entities getEntities();

 /**
 * Returns an instance of {@link Statements} that can be used to retrieve RDF statements.
 *
 * @return a {@link Statements} instance
 */
 Statements getStatements();

 /**
 * Returns the transaction ID of the current transaction or 0 if no explicit transaction is available.
 *
 * @return the transaction ID
 */
 long getTransactionId();

 /**
 * Returns the update testing status. In a multi-node GraphDB configuration (currently only GraphDB EE) an update
 * will be sent to multiple nodes. The first node that receives the update will be used to test if the update is
 * successful and only if so, it will be send to other nodes. Plugins may use the update test status to perform
 * certain operations only when the update is tested (e.g. indexing data via an external service). The method will
 * return true if this is a GraphDB EE worker node testing the update or this is GraphDB Free or SE. The method will
 * return false only if this is a GraphDB EE worker node that is receiving a copy of the original update
 * (after successful testing on another node).
 *
 * @return true if this update is sent for the first time (testing the update), false otherwise
 */
 boolean isTesting();

 /**
 * Returns an instance of {@link SystemProperties} that can be used to retrieve various properties that identify
 * the current GraphDB installation and repository.
 *
 * @return an instance of {@link SystemProperties}
 */
 SystemProperties getProperties();

 /**
 * Returns the repository fingerprint. Note that during an active transactions the fingerprint will be updated
 * at the very end of the transaction. Call it in {@link com.ontotext.trree.sdk.PluginTransactionListener#transactionCompleted(PluginConnection)}
 * if you want to get the updated fingerprint for the just-completed transaction.
 *
 * @return the repository fingerprint
 */
 String getFingerprint();

 /**
 * Returns the "worker attached" status for the repository. A GraphDB EE worker repository is attached when it is
 * connected to a master. GraphDB SE and Free repository are never attached. This is useful in cases where
 * a plugin may modify the fingerprint via a query. To protect cluster integrity the fingerprint may be changed
 * only via an update.
 *
 * @return true if the repository is a worker repository and is attached to a master, false otherwise
 */
 boolean isWorkerAttached();

 /*
 * Creates a thread-safe instance of this {@link PluginConnection} that can be used by other threads.
 * Note that every {@link ThreadsafePluginConnecton} must be explicitly closed when no longer needed.
 *
 * @return an instance of {@link ThreadsafePluginConnecton}
 */
 ThreadsafePluginConnecton getThreadsafeConnection();
}

PluginConnection instances passed to the plugin are not thread-safe and not guaranteed to operate normally
once the called method returns. If the plugin needs to process data asynchronously in another thread it must
get an instance of ThreadsafePluginConnection via PluginConnection.getThreadsafeConnection().
Once the allocated thread-safe connection is no longer needed it should be closed.

PluginConnection provides access to various other interfaces that access the repository’s data
(Statements and Entities), the current transaction’s properties, the repository fingerprint and various
system and repository properties (SystemProperties).

Statements and Entities

In order to enable efficient request processing, plugins are given
low-level access to the repository data and internals. This is done
through the Statements and Entities interfaces.

The Entities interface represents a set of RDF objects (IRIs, blank
nodes, literals, and RDF-star embedded triples). All such objects are termed entities and are
given unique long identifiers. The Entities instance is
responsible for resolving these objects from their identifiers and
inversely for looking up the identifier of a given entity. Most plugins
process entities using their identifiers, because dealing with integer
identifiers is a lot more efficient than working with the actual RDF
entities they represent. The Entities interface is the single entry
point available to plugins for entity management. It supports the
addition of new entities, look-up of entity type and
properties, resolving entities, etc.

It is possible to declare two RDF objects to be
equivalent in a GraphDB repository, e.g., by using owl:sameAs optimization. In order to provide a way to
use such declarations, the Entities interface assigns a class
identifier to each entity. For newly created entities, this class
identifier is the same as the entity identifier. When two entities are
declared equivalent, one of them adopts the class identifier of the
other, and thus they become members of the same equivalence class. The
Entities interface exposes the entity class identifier for plugins
to determine which entities are equivalent.

Entities within an Entities instance have a certain scope. There
are three entity scopes:

	Default – entities are persisted on the disk and can be used in statements that are also physically stored on disk.
They have positive (non-zero) identifiers, and are often
referred to as physical or data entities.

	System – system entities have negative identifiers and are not
persisted on the disk. They can be used, for example, for system (or
magic) predicates that can provide configuration to a plugin
or request something to be handled by a plugin.
They are available throughout the whole
repository lifetime, but after restart, they have to be recreated again.

	Request – entities are not persisted on disk and have negative identifiers.
They only live in the scope of a particular request, and are
not visible to other concurrent requests. These entities disappear immediately
after the request processing finishes. The request scope is useful for
temporary entities such as those entities that are returned by a plugin
as a response to a particular query.

The Statements interface represents a set of RDF statements, where
‘statement’ means a quadruple of subject, predicate, object, and
context RDF entity identifiers. Statements can be searched for but not modified.

Consuming or returning statements

An important abstract class, which is related to GraphDB internals, is
StatementIterator. It has a boolean next() method, which
attempts to scroll the iterator onto the next available statement and
returns true only if it succeeds. In case of success, its subject,
predicate, object, and context fields are initialized with
the respective components of the next statement. Furthermore, some
properties of each statement are available via the following methods:

	boolean isReadOnly() – returns true if the statement is in the Axioms
part of the rule-file or is imported at initialization;

	boolean isExplicit() – returns true if the statement is explicitly
asserted;

	boolean isImplicit() – returns true if the statement is produced by
the inferencer (raw statements can be both explicit and implicit).

Here is a brief example that puts Statements, Entities, and
StatementIterator together in order to output all literals that are
related to a given URI:

// resolve the URI identifier
long id = entities.resolve(SimpleValueFactory.getInstance().createIRI("http://example/uri"));

// retrieve all statements with this identifier in subject position
StatementIterator iter = statements.get(id, 0, 0, 0);
while (iter.next()) {
 // only process literal objects
 if (entities.getType(iter.object) == Entities.Type.LITERAL) {
 // resolve the literal and print out its value
 Value literal = entities.get(iter.object);
 System.out.println(literal.stringValue());
 }
}

StatementIterator is also used to return statements via one of
the pattern interpretation interfaces.

Each GraphDB transaction has several properties accessible via PluginConnection:

	Transaction ID (PluginConnection.getTransactionId())
	An integer value. Bigger values indicate newer transactions.

	Testing (PluginConnection.isTesting())
	A boolean value indicating the testing status of transaction. In GraphDB EE the testing transaction is
the first execution of a given transaction that determines if the transaction can be executed successfully
before being propagated to the entire cluster. Despite the _testing_ name it is a full-featured transaction
that will modify the data. In GraphDB Free and SE the transaction is always executed only once so it is always
testing there.

System properties

PluginConnection provides access to various static repository and system properties via
getProperties(). The values of these properties are set at repository initialization time and will not
change while the repository is operating.

The getProperties() method returns an instance of SystemProperties:

/**
 * This interface represents various properties for the running GraphDB instance and the repository as seen by the Plugin API.
 */
public interface SystemProperties {
 /**
 * Returns the read-only status of the current repository.
 *
 * @return true if read-only, false otherwise
 */
 boolean isReadOnly();

 /**
 * Returns the number of bits needed to represent an entity id
 *
 * @return the number of bits as an integer
 */
 int getEntityIdSize();

 /**
 * Returns the type of the current repository.
 *
 * @return one of {@link RepositoryType#FREE}, {@link RepositoryType#SE} or {@link RepositoryType#EE}
 */
 RepositoryType getRepositoryType();

 /**
 * Returns the full GraphDB version string.
 *
 * @return a string describing the GraphDB version
 */
 String getVersion();

 /**
 * Returns the GraphDB major version component.
 *
 * @return the major version as an integer
 */
 int getVersionMajor();

 /**
 * Returns the GraphDB minor version component.
 *
 * @return the minor version as an integer
 */
 int getVersionMinor();

 /**
 * Returns the GraphDB patch version component.
 *
 * @return the patch version as an integer
 */
 int getVersionPatch();

 /**
 * Returns the number of cores in the currently set license up to the physical number of cores on the machine.
 *
 * @return the number of cores as an integerÒ
 */
 int getNumberOfLicensedCores();

 /**
 * The possible editions for GraphDB repositories.
 */
 enum RepositoryType {
 /**
 * GraphDB Free repository
 */
 FREE,
 /**
 * GraphDB SE repository
 */
 SE,
 /**
 * GraphDB EE worker repository
 */
 EE
 }
}

Repository properties

There are some dynamic repository properties that may change once a repository has been initialized.
These properties are:

	Repository fingerprint (PluginConnection.getFingerprint())
	The repository fingerprint. Note that the fingerprint will be updated at the very end of a transaction
so the updated fingerprint after a transaction should be accessed within
PluginTransactionListener.transactionCompleted().

	Whether the repository is attached to a cluster (PluginConnection.isAttached())
	GraphDB EE worker repositories are typically attached to a master repository and not accessed directly.
When this is the case this method will return true and the plugin may use it to refuse to perform
actions that may cause the fingerprint to change outside of a transaction. In GraphDB Free and SE the
method always returns false.

Query processing

As already mentioned, a plugin’s interaction with each of the
request-processing phases is optional. The plugin declares if it plans
to participate in any phase by implementing the appropriate interface.

Pre-processing

A plugin that will be participating in request pre-processing must
implement the Preprocessor interface. It looks like this:

/**
 * Interface that should be implemented by all plugins that need to maintain per-query context.
 */
public interface Preprocessor {
 /**
 * Pre-processing method called once for every SPARQL query or getStatements() request before it is
 * processed.
 *
 * @param request request object
 * @return context object that will be passed to all other plugin methods in the future stages of the
 * request processing
 */
 RequestContext preprocess(Request request);
}

The preprocess(Request request) method receives the request object and returns a
RequestContext instance. The passed request parameter is an instance of one
the interfaces extending Request, depending on the type of the
request (QueryRequest for a SPARQL query or StatementRequest for “get statements”).
The plugin changes the request object accordingly, initializes, and returns its
context object, which is passed back to it in every other method during
the request processing phase. The returned request context may be
null, but regardless of it is, it is only visible to the plugin that
initializes it. It can be used to store data visible for (and only for)
this whole request, e.g., to pass data related to two different
statement patterns recognized by the plugin. The request context gives
further request processing phases access to the Request object
reference. Plugins that opt to skip this phase do not have a request
context, and are not able to get access to the original Request
object.

Plugins may create their own RequestContext implementation or use the default one, RequestContextImpl.

Pattern interpretation

This is one of the most important phases in the life cycle of a plugin.
In fact, most plugins need to participate in exactly this phase. This
is the point where request statement patterns need to get evaluated and
statement results are returned.

For example, consider the following SPARQL query:

SELECT * WHERE {
 ?s <http://example.com/predicate> ?o
}

There is just one statement pattern inside this query:
?s <http://example/predicate> ?o. All plugins that have implemented
the PatternInterpreter interface (thus declaring that they intend to
participate in the pattern interpretation phase) are asked if they can
interpret this pattern. The first one to accept it and return results
will be used. If no plugin interprets the pattern, it will look to use the repository’s physical statements, i.e., the ones
persisted on the disk.

Here is the PatternInterpreter interface:

/**
 * Interface implemented by plugins that want to interpret basic triple patterns
 */
public interface PatternInterpreter {
 /**
 * Estimate the number of results that could be returned by the plugin for the given parameters
 *
 * @param subject subject ID (alternatively {@link Entities#BOUND} or {@link Entities#UNBOUND})
 * @param predicate predicate ID (alternatively {@link Entities#BOUND} or {@link Entities#UNBOUND})
 * @param object object ID (alternatively {@link Entities#BOUND} or {@link Entities#UNBOUND})
 * @param context context value (alternatively {@link Entities#BOUND} or {@link Entities#UNBOUND})
 * @param pluginConnection an instance of {@link PluginConnection}
 * @param requestContext context object as returned by {@code Preprocessor.preprocess()} or null
 * @return approximate number of results that could potentially be returned for this parameters by the
 * interpret() method
 */
 double estimate(long subject, long predicate, long object, long context, PluginConnection pluginConnection,
 RequestContext requestContext);

 /**
 * Interpret basic triple pattern and return {@link StatementIterator} with results
 *
 * @param subject subject ID (alternatively {@link Entities#BOUND} or {@link Entities#UNBOUND})
 * @param predicate predicate ID (alternatively {@link Entities#BOUND} or {@link Entities#UNBOUND})
 * @param object object ID (alternatively {@link Entities#BOUND} or {@link Entities#UNBOUND})
 * @param context context value (alternatively {@link Entities#BOUND} or {@link Entities#UNBOUND})
 * @param pluginConnection an instance of {@link PluginConnection}
 * @param requestContext context object as returned by {@code Preprocessor.preprocess()} or null
 * @return statement iterator of results
 */
 StatementIterator interpret(long subject, long predicate, long object, long context,
 PluginConnection pluginConnection, RequestContext requestContext);
}

The estimate() and interpret() methods take the same arguments
and are used in the following way:

	Given a statement pattern (e.g., the one in the SPARQL query
above), all plugins that implement PatternInterpreter are asked
to interpret() the pattern. The subject, predicate,
object and context values are either the identifiers of the
values in the pattern or 0, if any of them is an unbound variable. The
statements and entities objects represent respectively the
statements and entities that are available for this particular
request. For instance, if the query contains any
FROM <http://some/graph> clauses, the statements object will
only provide access to the statements in the defined named graphs.
Similarly, the entities object contains entities that might be
valid only for this particular request. The plugin’s interpret()
method must return a StatementIterator if it intends to interpret
this pattern, or null if it refuses.

	In case the plugin signals that it will interpret the given
pattern (returns a non-null value), GraphDB’s query optimizer will
call the plugin’s estimate() method, in order to get an estimate
on how many results will be returned by the StatementIterator
returned by interpret(). This estimate does not need to be precise. But
the more precise it is, the more likely the optimizer will make an efficient
optimization. There is a slight difference in the values that will be
passed to estimate(). The statement components (e.g., subject)
might not only be entity identifiers, but they can also be set to 2
special values:

	Entities.BOUND – the pattern component is said to be bound,
but its particular binding is not yet known;

	Entities.UNBOUND – the pattern component will not be bound.
These values must be treated as hints to the estimate() method
to provide a better approximation of the result set size, although its
precise value cannot be determined before the query is actually run.

	After the query has been optimized, the interpret() method of
the plugin might be called again should any variable become bound due
to the pattern reordering applied by the optimizer. Plugins must be
prepared to expect different combinations of bound and unbound
statement pattern components, and return appropriate iterators.

The requestContext parameter is the value returned by the
preprocess() method if one exists, or null otherwise.

Results are returned as statements.

The plugin framework also supports the interpretation of an extended type of a list pattern.

Consider the following SPARQL queries:

SELECT * WHERE {
 ?s <http://example.com/predicate> (?o1 ?o2)
}

SELECT * WHERE {
 (?s1, ?s2) <http://example.com/predicate> ?o
}

Internally the object or subject list will be converted to a series of triples conforming to
rdf:List [https://www.w3.org/TR/rdf-schema/#ch_collectionvocab]. These triples can be handled with
PatternInterpreter but the whole list semantics will have to be implemented by the plugin.

In order to make this task easier the Plugin API defines two additional interfaces very similar to the
PatternInterpreter interface – ListPatternInterpreter and SubjectListPatternInterpreter.

ListPatternInterpreter handles lists in the object position:

/**
 * Interface implemented by plugins that want to interpret list-like triple patterns
 */
public interface ListPatternInterpreter {
 /**
 * Estimate the number of results that could be returned by the plugin for the given parameters
 *
 * @param subject subject ID (alternatively {@link Entities#BOUND} or {@link Entities#UNBOUND})
 * @param predicate predicate ID (alternatively {@link Entities#BOUND} or {@link Entities#UNBOUND})
 * @param objects object IDs (alternatively {@link Entities#BOUND} or {@link Entities#UNBOUND})
 * @param context context value (alternatively {@link Entities#BOUND} or {@link Entities#UNBOUND})
 * @param pluginConnection an instance of {@link PluginConnection}
 * @param requestContext context object as returned by {@code Preprocessor.preprocess()} or null
 * @return approximate number of results that could potentially be returned for this parameters by the
 * interpret() method
 */
 double estimate(long subject, long predicate, long[] objects, long context, PluginConnection pluginConnection,
 RequestContext requestContext);

 /**
 * Interpret list-like triple pattern and return {@link StatementIterator} with results
 *
 * @param subject subject ID (alternatively {@link Entities#BOUND} or {@link Entities#UNBOUND})
 * @param predicate predicate ID (alternatively {@link Entities#BOUND} or {@link Entities#UNBOUND})
 * @param objects object IDs (alternatively {@link Entities#BOUND} or {@link Entities#UNBOUND})
 * @param context context value (alternatively {@link Entities#BOUND} or {@link Entities#UNBOUND})
 * @param pluginConnection an instance of {@link PluginConnection}
 * @param requestContext context object as returned by {@code Preprocessor.preprocess()} or null
 * @return statement iterator of results
 */
 StatementIterator interpret(long subject, long predicate, long[] objects, long context,
 PluginConnection pluginConnection, RequestContext requestContext);
}

It differs from PatternInterpreter by having multiple objects passed as an array of
long, instead of a single long object. The semantics of both
methods is equivalent to the one in the basic pattern interpretation
case.

SubjectListPatternInterpreter handles lists in the subject position:

/**
 * Interface implemented by plugins that want to interpret list-like triple patterns
 */
public interface SubjectListPatternInterpreter {
 /**
 * Estimate the number of results that could be returned by the plugin for the given parameters
 *
 * @param subjects subject IDs (alternatively {@link Entities#BOUND} or {@link Entities#UNBOUND})
 * @param predicate predicate ID (alternatively {@link Entities#BOUND} or {@link Entities#UNBOUND})
 * @param object object ID (alternatively {@link Entities#BOUND} or {@link Entities#UNBOUND})
 * @param context context value (alternatively {@link Entities#BOUND} or {@link Entities#UNBOUND})
 * @param pluginConnection an instance of {@link PluginConnection}
 * @param requestContext context object as returned by {@code Preprocessor.preprocess()} or null
 * @return approximate number of results that could potentially be returned for this parameters by the
 * interpret() method
 */
 double estimate(long[] subjects, long predicate, long object, long context, PluginConnection pluginConnection,
 RequestContext requestContext);

 /**
 * Interpret list-like triple pattern and return {@link StatementIterator} with results
 *
 * @param subjects subject IDs (alternatively {@link Entities#BOUND} or {@link Entities#UNBOUND})
 * @param predicate predicate ID (alternatively {@link Entities#BOUND} or {@link Entities#UNBOUND})
 * @param object object ID (alternatively {@link Entities#BOUND} or {@link Entities#UNBOUND})
 * @param context context value (alternatively {@link Entities#BOUND} or {@link Entities#UNBOUND})
 * @param pluginConnection an instance of {@link PluginConnection}
 * @param requestContext context object as returned by {@code Preprocessor.preprocess()} or null
 * @return statement iterator of results
 */
 StatementIterator interpret(long[] subjects, long predicate, long object, long context,
 PluginConnection pluginConnection, RequestContext requestContext);
}

It differs from PatternInterpreter by having multiple subjects passed as an array of
long, instead of a single long subject. The semantics of both
methods is equivalent to the one in the basic pattern interpretation
case.

Post-processing

There are cases when a plugin would like to modify or otherwise filter
the final results of a request. This is where the Postprocessor
interface comes into play:

/**
 * Interface that should be implemented by plugins that need to post-process results from queries.
 */
public interface Postprocessor {
 /**
 * A query method that is used by the framework to determine if a {@link Postprocessor} plugin really wants to
 * post-process the request results.
 *
 * @param requestContext the request context reference
 * @return boolean value
 */
 boolean shouldPostprocess(RequestContext requestContext);

 /**
 * Method called for each {@link BindingSet} in the query result set. Each binding set is processed in
 * sequence by all plugins that implement the {@link Postprocessor} interface, piping the result returned
 * by each plugin into the next one. If any of the post-processing plugins returns null the result is
 * deleted from the result set.
 *
 * @param bindingSet binding set object to be post-processed
 * @param requestContext context objected as returned by {@link Preprocessor#preprocess(Request)} (in case this plugin
 * implemented this interface)
 * @return binding set object that should be post-processed further by next post-processing plugins or
 * null if the current binding set should be deleted from the result set
 */
 BindingSet postprocess(BindingSet bindingSet, RequestContext requestContext);

 /**
 * Method called after all post-processing has been finished for each plugin. This is the point where
 * every plugin could introduce its results even if the original result set was empty
 *
 * @param requestContext context objected as returned by {@link Preprocessor#preprocess(Request)} (in case this plugin
 * implemented this interface)
 * @return iterator for resulting binding sets that need to be added to the final result set
 */
 Iterator<BindingSet> flush(RequestContext requestContext);
}

The postprocess() method is called for each binding set that is to
be returned to the repository client. This method may modify the binding
set and return it, or alternatively, return null, in which case the
binding set is removed from the result set. After a binding set is
processed by a plugin, the possibly modified binding set is passed to
the next plugin having post-processing functionality enabled. After the
binding set is processed by all plugins (in the case where no plugin
deletes it), it is returned to the client. Finally, after all results
are processed and returned, each plugin’s flush() method is called
to introduce new binding set results in the result set. These in turn
are finally returned to the client.

Update processing

Updates involving specific predicates

As well as query/read processing, plugins are able to process update
operations for statement patterns containing specific predicates. In
order to intercept updates, a plugin must implement the
UpdateInterpreter interface. During initialization, the
getPredicatesToListenFor() is called once by the framework, so that
the plugin can indicate which predicates it is interested in.

From then onwards, the plugin framework filters updates for
statements using these predicates and notifies the plugin.
The plugin may do whatever processing is required and must return a boolean
value indicating whether the statement should be skipped. Skipped
statements are not processed further by GraphDB, so the insert or delete will
have no effect on actual data in the repository.

/**
 * An interface that should be implemented by the plugins that want to be notified for particular update
 * events. The getPredicatesToListenFor() method should return the predicates of interest to the plugin. This
 * method will be called once only immediately after the plugin has been initialized. After that point the
 * plugin's interpretUpdate() method will be called for each inserted or deleted statement sharing one of the
 * predicates of interest to the plugin (those returned by getPredicatesToListenFor()).
 */
public interface UpdateInterpreter {
 /**
 * Returns the predicates for which the plugin needs to get notified when a statement with such a predicate is added or removed.
 *
 * @return array of predicates as entity IDs
 */
 long[] getPredicatesToListenFor();

 /**
 * Hook that is called whenever a statement containing one of the registered predicates
 * (see {@link #getPredicatesToListenFor()} is added or removed.
 *
 * @param subject subject value of the updated statement
 * @param predicate predicate value of the updated statement
 * @param object object value of the updated statement
 * @param context context value of the updated statement
 * @param isAddition true if the statement was added, false if it was removed
 * @param isExplicit true if the updated statement was explicit one
 * @param pluginConnection an instance of {@link PluginConnection}
 * @return true - when the statement was handled by the plugin only and should <i>NOT</i> be added to/removed from the repository,
 * false - when the statement should be added to/removed from the repository
 */
 boolean interpretUpdate(long subject, long predicate, long object, long context, boolean isAddition,
 boolean isExplicit, PluginConnection pluginConnection);
}

Removal of entire contexts

Statement deletion in GraphDB is specified as a quadruple (subject, predicate, object, context), where each
position can be explicit or null. Null in this case means all subjects, predicates, objects or contexts depending
on the position where null was specified.

When at least one of the positions is non-null, the plugin framework will fire individual events for each
matching and removed statement.

When all positions are null (i.e., delete everything in the repository) the operation will be optimized
internally and individual events will not be fired. This means that UpdateInterpreter
and StatementListener will not be called.

ClearInterpreter is an interface that allows plugins to detect the removal of entire contexts or removal
of all data in the repository:

/**
 * This interface can be implemented by plugins that want to be notified on clear()
 * or remove() (all statements in any context).
 */
public interface ClearInterpreter {
 /**
 * Notification called before the statements are removed from the given context.
 *
 * @param context the ID of the context or 0 if all contexts
 * @param pluginConnection an instance of {@link PluginConnection}
 */
 void beforeClear(long context, PluginConnection pluginConnection);

 /**
 * Notification called after the statements have been removed from the given context.
 *
 * @param context the ID of the context or 0 if all contexts
 * @param pluginConnection an instance of {@link PluginConnection}
 */
 void afterClear(long context, PluginConnection pluginConnection);
}

Intercepting data for specific contexts

The Plugin API provides a way to intercept data inserted into or removed from a particular predefined context.
The ContextUpdateHandler interface:

/**
 * This interface provides a mechanism for plugins to handle updates to certain contexts.
 * When a plugin requests handling of a context, all data for that context will forwarded to the plugin
 * and not inserted into any GraphDB collections.
 * <p>
 * Note that unlike other plugin interfaces, {@link ContextUpdateHandler} does not use entity IDs but works directly
 * with the RDF values. Data handled by this interface does not reach the entity pool and so no entity IDs are created.
 */
public interface ContextUpdateHandler {
 /**
 * Returns the contexts for which the plugin will handle the updates.
 *
 * @return array of {@link Resource}
 */
 Resource[] getUpdateContexts();

 /**
 * Hook that handles updates for the configured contexts.
 *
 * @param subject subject value of the updated statement
 * @param predicate predicate value of the updated statement
 * @param object object value of the updated statement
 * @param context context value of the updated statement (can be null when not an addition, then it means remove from all contexts)
 * @param isAddition true if statement is being added, false if statement is being removed
 * @param pluginConnection an instance of {@link PluginConnection}
 */
 void handleContextUpdate(Resource subject, IRI predicate, Value object, Resource context, boolean isAddition,
 PluginConnection pluginConnection);
}

This is similar to Updates involving specific predicates with some important differences:

	ContextUpdateHandler

	Configured via a list of contexts specified as IRI objects.

	Statements with these contexts are passed to the plugin as Value objects and never enter any of the database collections.

	The plugin is assumed to always handle the update.

	UpdateInterpreter

	Configured via a list of predicates specified as integer IDs.

	Statements with these predicates are passed to the plugin as integer IDs after their RDF values are converted to integer IDs in the entity pool.

	The plugin decides whether to handle the statement or pass it on to other plugins and eventually to the database.

This mechanism is especially useful for the creation of virtual contexts (graphs) whose data is stored within
a plugin and never pollutes any of the database collections with unnecessary values.

Unlike the rest of the Plugin API this interface uses RDF values as objects bypassing the use of integer IDs.

Transactions

A plugin may require to participate in the transaction workflow, e.g., because the plugin needs to update
certain data structures such that they reflect the actual data in the repository. Without being part
of the transaction the plugin would not know when to persist or discard a given state.

Transactions can be easily tracked by implementing the PluginTransactionListener interface:

/**
 * The {@link PluginTransactionListener} allows plugins to be notified about transactions (start, commit+completed or abort)
 */
public interface PluginTransactionListener {
 /**
 * Notifies the listener about the start of a transaction.
 *
 * @param pluginConnection an instance of {@link PluginConnection}
 */
 void transactionStarted(PluginConnection pluginConnection);

 /**
 * Notifies the listener about the commit phase of a transaction. Plugins should use this event to perform their own
 * commit work if needed or to abort the transaction if needed.
 *
 * @param pluginConnection an instance of {@link PluginConnection}
 */
 void transactionCommit(PluginConnection pluginConnection);

 /**
 * Notifies the listener about the completion of a transaction. This will be the last event in a successful transaction.
 * The plugin is not allowed to throw any exceptions here and if so they will be ignored. If a plugin needs to abort
 * a transaction it should be done in {@link #transactionCommit(PluginConnection)}.
 *
 * @param pluginConnection an instance of {@link PluginConnection}
 */
 void transactionCompleted(PluginConnection pluginConnection);

 /**
 * Notifies the listener about the abortion of a transaction. This will be the last event in an aborted transaction.
 * <p>
 * Plugins should revert any modifications caused by this transaction, including the fingerprint.
 *
 * @param pluginConnection an instance of {@link PluginConnection}
 */
 void transactionAborted(PluginConnection pluginConnection);

 /**
 * Notifies the listener about a user abort request. A user abort request is a request by an end-user to abort the
 * transaction. Unlike the other events this will be called asynchronously whenever the request is received.
 * <p>
 * Plugins may react and terminate any long-running computation or ignore the request. This is just a handy way
 * to speed up abortion when a user requests it. For example, this event may be received asynchronously while
 * the plugin is indexing data (in {@link #transactionCommit(PluginConnection)} running in the main thread).
 * The plugin may notify itself that the indexing should stop. Regardless of the actions taken by the plugin
 * the transaction may still be aborted and {@link #transactionAborted(PluginConnection)} will be called.
 * All clean up of the abortion should be handled in {@link #transactionAborted(PluginConnection)}.
 *
 * @param pluginConnection an instance of {@link PluginConnection}
 */
 default void transactionAbortedByUser(PluginConnection pluginConnection) {

 }
}

Each transaction has a beginning signalled by a call to transactionStarted(). Then the transaction can
proceed in several ways:

	Commit and completion:

	transactionCommit() is called;

	transactionCompleted() is called.

	Commit followed by abortion (typically because another plugin aborted the transaction in its own transactionCommit()):

	transactionCommit() is called;

	transactionAborted() is called.

	Abortion before entering commit:

	transactionAborted() is called.

Plugins should strive to do all heavy transaction work in transactionCommit() in such a way that
call to transactionAborted() can revert the changes. Plugins may throw exceptions in
transactionCommit() in order to abort the transaction, e.g., if some constraint was violated.

Plugins should do no heavy processing in transactionCompleted() and are not allowed to throw exceptions there.
Such exceptions will be logged and ignored, and the transaction will still go through normally.

The transactionAbortedByUser() will be called asynchronously (e.g. while the plugin is executing
transactionCommit() in the main update thread) when a user requests the transaction to be aborted.
The plugin may use this to signal its other thread to abort processing at earliest convenience or simply
ignore the request.

Exceptions

Plugins may throw exceptions on invalid input, constraint violations or unexpected events (e.g. out of disk
space). It is possible to throw such exceptions almost everywhere with the notable exception of
PluginTransactionListener.transactionCompleted().

A good practice is to construct an instance of PluginException or one of its subclasses:

	ClientErrorException – for example when the user provided invalid input.

	ServerErrorException – for example when an unexpected server error occurred, such as lack of disk permissions.

Accessing other plugins

Plugins can make use of the functionality of other plugins. For
example, the Lucene-based full-text search plugin can make use of the
rank values provided by the RDF Rank plugin, to facilitate query result
scoring and ordering. This is not a matter of re-using program code
(e.g., in a .jar with common classes), but rather it is about re-using
data. The mechanism to do this allows plugins to obtain references to
other plugin objects by knowing their names. To achieve this, they only
need to implement the PluginDependency interface:

/**
 * Interface that should be implemented by plugins that depend on other plugins and want to be able to
 * retrieve references to them at runtime.
 */
public interface PluginDependency {
 /**
 * Method used by the plugin framework to inject a {@link PluginLocator} instance in the plugin.
 *
 * @param locator a {@link PluginLocator} instance
 */
 void setLocator(PluginLocator locator);
}

They are then injected into an instance of the PluginLocator
interface (during the configuration phase), which does the actual
plugin discovery for them:

/**
 * Interface that supports obtaining of a plugin instance by plugin name. An object implementing this
 * interface is injected into plugins that implement the {@link PluginDependency} interface.
 */
public interface PluginLocator {
 /**
 * Retrieves a {@link Plugin} instance by plugin name
 *
 * @param name name of the plugin
 * @return a {@link Plugin} instance or null if a plugin with that name is not available
 */
 Plugin locate(String name);

 /**
 * Retrieves a {@link RDFRankProvider} instance.
 *
 * @return a {@link RDFRankProvider} instance or null if no {@link RDFRankProvider} is available
 */
 RDFRankProvider locateRDFRankProvider();
}

Having a reference to another plugin is all that is needed to call its
methods directly and make use of its services.

An important interface related to accessing other plugins is the RDFRankProvider interface.
The sole implementation is the RDF Rank plugin but it can be easily replaced by another implementation.
By having a dedicated interface it is easy for plugins to get access to RDF ranks without relying
on a specific implementation.

List of plugin interfaces and classes

Basics

	Plugin
	The basic interface that defines a plugin.

	PluginBase
	A reference abstract implementation of Plugin that can serve as the base for implementing plugins.

There are a couple of extensions of the Plugin interface that add additional configuration or behavior to plugins:

	ParallelPlugin
	
Marks a plugin as aware of parallel processing. The plugin will be injected an instance of PluginExecutorService via setExecutorService(PluginExecutorService executorService).

PluginExecutorService is a simplified version of Java’s ExecutorService and provides an easy mechanism for plugins to
schedule parallel tasks safely.

No open-source plugins use ParallelPlugin.

	StatelessPlugin
	
Marks a plugin as stateless. Stateless plugins do not contribute to the repository fingerprint and their
fingerprint will not be queried.

It is suitable for plugins that are unimportant for query results or update executions, e.g., plugins that
are not typically used in the normal data flow.

Open-source plugins using StatelessPlugin:

	Autocomplete [https://github.com/Ontotext-AD/graphdb-autocomplete-plugin]

	Notifications logger [https://github.com/Ontotext-AD/graphdb-notifications-logger-plugin]

On initialize() and shutdown() plugins receive an enum value, InitReason and ShutdownReason
respectively, describing the reason why the plugin is being initialized or shut down.

	InitReason
	
	DEFAULT: initialized as part of the repository initialization or the plugin was enabled;

	CREATED_BACKUP: initialized after a shutdown for backup;

	RESTORED_FROM_BACKUP: initialized after a shutdown for restore.

	ShutdownReason
	
	DEFAULT: shutdown as part of the repository shutdown or the plugin was disabled;

	CREATE_BACKUP: shutdown before backup;

	RESTORE_FROM_BACKUP: shutdown before restore.

Plugins may use the reason to handle their own backup scenarios. In most cases it is unnecessary
since the plugin’s files will be backed up or restored together with the rest of the repository data.

Data structures

For more information, see Repository internals.

	PluginConnection
	The main entry to repository internals. Passed to almost all methods in Plugin API interfaces.

	ThreadsafePluginConnection
	Thread-safe version of PluginConnection. Requested explicitly from PluginConnection and must be
explicitly closed when no longer needed.

Open-source plugins using ThreadsafePluginConnection:

	Autocomplete [https://github.com/Ontotext-AD/graphdb-autocomplete-plugin]

	Entities
	Provides access to the repository’s entities. Entities are mappings from integer IDs to RDF values
(IRIs, blank nodes, literals, and RDF-star embedded triples).

	Statements
	Provides access to the repository’s statements. Results are returned as StatementIterator instances.

	StatementIterator
	Interface for returning statements. Used both by Statements to list repository data and by plugins to
return data via Pattern interpretation.

	SystemProperties
	Provides access to static repository and system properties such as the GraphDB version and repository type.

All open-source plugins use the repository internals.

Query request handlers

For more information, see Query processing.

Pattern interpretation handlers

The pattern interpretation handlers interpret the evaluation of triple patterns. Each triple pattern
will be sent to plugins that implement the respective interface.

For more information, see Pattern interpretation.

	PatternInterpreter
	
Interprets a simple triple pattern, where the subject, predicate, object and context are single values.

This interface handles all triple patterns: subject predicate object context.

Open-source plugins using PatternInterpreter:

	Autocomplete [https://github.com/Ontotext-AD/graphdb-autocomplete-plugin]

	GeoSPARQL [https://github.com/Ontotext-AD/graphdb-geosparql-plugin]

	Geospatial [https://github.com/Ontotext-AD/graphdb-geospatial-plugin]

	Lucene FTS [https://github.com/Ontotext-AD/graphdb-lucene-fts-plugin]

	MongoDB [https://github.com/Ontotext-AD/graphdb-mongodb-plugin]

	RDF Rank [https://github.com/Ontotext-AD/graphdb-rdfrank-plugin]

	ListPatternInterpreter
	
Interprets a triple pattern, where the subject, predicate and context are single values while the object is a list of values.

This interface handles triple patterns of this form: subject predicate (object1 object2 ...) context.

Open-source plugins using ListPatternInterpreter:

	Geospatial [https://github.com/Ontotext-AD/graphdb-geospatial-plugin]

	SubjectListPatternInterpreter
	
Interprets a triple pattern, where the predicate, object and context are single values while the subject is a list of values.

This interface handles triple patterns of this form: (subject1 subject2 ...) predicate object context.

No open-source plugins use SubjectListPatternInterpreter but the usage is similar to ListPatternInterpreter.

Pre- and postprocessing handlers

For more information, see Pre-processing and Post-processing.

	Preprocessor
	Allows plugins to maintain a per-query context and have access to query/getStatements() properties.

Open-source plugins using Preprocessor:

	Lucene FTS [https://github.com/Ontotext-AD/graphdb-lucene-fts-plugin]

	MongoDB [https://github.com/Ontotext-AD/graphdb-mongodb-plugin]

	Postprocessor
	Allows plugins to modify the final result of a query/getStatements() request.

No open-source plugins use Postprocessor but the example plugins do.

Query request support classes

	Request
	A basic read request. Passed to Preprocess.preprocess().
Provides access to the isIncludeInferred property.

	QueryRequest
	An extension of Request for SPARQL queries. It provides access to the various constituents
of the query such as the FROM clauses and the parsed query.

	StatementsRequest
	An extension of Request for RepositoryConnection.getStatements(). It provides access to each
of the individual constituents of the request quadruple (subject, predicate, object, and context).

	RequestContext
	Plugins may create an instance of this interface in Preprocess.preprocess() to keep track of
request-global data. The instance will be passed to PatternInterpreter, ListPatternInterpreter,
SubjectListPatternInterpreter and Postprocessor.

	RequestContextImpl
	A default implementation of RequestContext that provides a way to keep arbitrary values by key.

Update request handlers

The update request handlers are responsible for processing updates. Unlike the query request handlers,
the update handlers will be called only for statements that match a predefined pattern.

For more information, see Update processing.

	UpdateInterpreter
	
Handles the addition or removal of statements. Only statements that have one of a set of predefined predicates will be passed to the handler.

The return value determines if the statement will be added or deleted as real data (in the repository) or processed only by the plugin.

Note that this handler will not be called for each individual statement when removing all statements from all contexts.

Open-source plugins using UpdateInterpreter:

	Autocomplete [https://github.com/Ontotext-AD/graphdb-autocomplete-plugin]

	GeoSPARQL [https://github.com/Ontotext-AD/graphdb-geosparql-plugin]

	Geospatial [https://github.com/Ontotext-AD/graphdb-geospatial-plugin]

	Lucene FTS [https://github.com/Ontotext-AD/graphdb-lucene-fts-plugin]

	MongoDB [https://github.com/Ontotext-AD/graphdb-mongodb-plugin]

	Notifications logger [https://github.com/Ontotext-AD/graphdb-notifications-logger-plugin]

	RDF Rank [https://github.com/Ontotext-AD/graphdb-rdfrank-plugin]

	ClearInterpreter
	
Handles the removal of all statements in a given context or in all contexts.

This handler is especially useful when all statements in all contexts are removed since UpdateInterpreter will not be called in this case.

No open-source plugins use ClearInterpreter.

	ContextUpdateHandler
	
Handles the addition or removal of statements in a set of predefined contexts.

This can be used to implement virtual contexts and is the only part of the Plugin API that does not use integer identifiers but RDF values directly.

No open-source plugins use ContextUpdateHandler.

Notification listeners

In general the listeners are used as simple notifications about a certain event, such as the beginning of a new transaction
or the creation of a new entity.

	EntityListener
	Notified about the creation of a new data entity (IRI, blank node, or literal).

Open-source plugins using EntityListener:

	Autocomplete [https://github.com/Ontotext-AD/graphdb-autocomplete-plugin]

	StatementListener
	
Notifications about the addition or removal of a statement.

Unlike UpdateInterpreter, this listener will be notified about all statements and not just statements
with a predefined predicate. The statement will be added or removed regardless of the return value.

Open-source plugins using StatementListener:

	Autocomplete [https://github.com/Ontotext-AD/graphdb-autocomplete-plugin]

	GeoSPARQL [https://github.com/Ontotext-AD/graphdb-geosparql-plugin]

	Notifications logger [https://github.com/Ontotext-AD/graphdb-notifications-logger-plugin]

	PluginTransactionListener and ParallelTransactionListener
	
Notifications about the different stages of a transaction (started, followed by either commit + completed or aborted).

Plugins should do the bulk of their transaction work within the commit stage.

ParallelTransactionListener is a marker extensions of PluginTransactionListener whose commit stage is safe to call in parallel with
the commit stage of other plugins.

If the plugin does not perform any lengthy operations in the commit stage, it is better to stick to PluginTransactionListener.

Open-source plugins using PluginTransactionListener or ParallelTransactionListener:

	Autocomplete [https://github.com/Ontotext-AD/graphdb-autocomplete-plugin]

	GeoSPARQL [https://github.com/Ontotext-AD/graphdb-geosparql-plugin]

	MongoDB [https://github.com/Ontotext-AD/graphdb-mongodb-plugin]

	Notifications logger [https://github.com/Ontotext-AD/graphdb-notifications-logger-plugin]

Plugin dependencies

For more information, see Accessing other plugins.

	PluginDependency
	Plugins that need to use other plugins directly must implement this interface. They will be injected
an instance of PluginLocator.

	PluginLocator
	Provides access to other plugins by name or to the default implementation of RDFRankProvider.

	RDFRankProvider
	A plugin that provides an RDF rank. The only implementation is the RDF Rank plugin.

Health checks

The health check classes can be used to include a plugin in the repository health check.

	HealthCheckable
	Marks a component (a plugin or part of a plugin) as able to provide health checks. If a plugin implements
this interface it will be included in the repository health check.

	HealthResult
	The result from a health check. In general health results can be green (everything ok),
yellow (needs attention) or red (something broken).

	CompositeHealthResult
	A composite health result that aggregates several HealthResult instances into a single HealthResult.

No open-source implement health checks.

Exceptions

A set of predefined exception classes that can be used by plugins.

	PluginException
	Generic plugin exception. Extends RuntimeException.

	ClientErrorException
	User (client) error, e.g. invalid input. Extends PluginException.

	ServerErrorException
	Server error, e.g. something unexpected such as lack of disk permissions. Extends PluginException.

Putting it all together: example plugins

A project containing two example plugins, ExampleBasicPlugin and ExamplePlugin can be found
here [https://github.com/Ontotext-AD/graphdb-example-plugin/].

ExampleBasicPlugin

ExampleBasicPlugin has the following functionality:

	It interprets the pattern ?s <http://example.com/now> ?o and binds the object to a literal containing
the system date/time of the machine running GraphDB. The subject position is not used and its value does
not matter.

The plugin implements the PatternInterpreter interface. A date/time literal is created as a
request-scope entity to avoid cluttering the repository with extra literals.

The plugin extends the PluginBase class that provides a default implementation of the Plugin interface:

public class ExampleBasicPlugin extends PluginBase {
 // The predicate we will be listening for
 private static final String TIME_PREDICATE = "http://example.com/now";

 private IRI predicate; // The predicate IRI
 private long predicateId; // ID of the predicate in the entity pool

 // Service interface methods
 @Override
 public String getName() {
 return "exampleBasic";
 }

 // Plugin interface methods
 @Override
 public void initialize(InitReason reason, PluginConnection pluginConnection) {
 // Create an IRI to represent the predicate
 predicate = SimpleValueFactory.getInstance().createIRI(TIME_PREDICATE);
 // Put the predicate in the entity pool using the SYSTEM scope
 predicateId = pluginConnection.getEntities().put(predicate, Entities.Scope.SYSTEM);

 getLogger().info("ExampleBasic plugin initialized!");
 }
}

In this basic implementation, the plugin name is defined and during initialization, a single system-scope
predicate is registered.

Note

It is important not to forget to register the plugin in the
META-INF/services/com.ontotext.trree.sdk.Plugin file in the
classpath.

The next step is to implement the first of the plugin’s requirements – the pattern interpretation part:

public class ExamplePlugin extends PluginBase implements PatternInterpreter {

 // ... initialize() and getName()

 // PatternInterpreter interface methods
 @Override
 public StatementIterator interpret(long subject, long predicate, long object, long context,
 PluginConnection pluginConnection, RequestContext requestContext) {
 // Ignore patterns with predicate different than the one we are interested in. We want to return the
 // SystemDate only when we detect the <http://example.com/time> predicate.
 if (predicate != predicateId)
 // This will tell the PluginManager that we cannot interpret the statement so the statement can be passed
 // to another plugin.
 return null;

 // Create the date/time literal. Here it is important to create the literal in the entities instance of the
 // request and NOT in getEntities(). If you create it in the entities instance returned by getEntities() it
 // will not be visible in the current request.
 long literalId = createDateTimeLiteral(pluginConnection.getEntities());

 // return a StatementIterator with a single statement to be iterated. The object of this statement will be the
 // current timestamp.
 return StatementIterator.create(subject, predicate, literalId, 0);
 }

 @Override
 public double estimate(long subject, long predicate, long object, long context,
 PluginConnection pluginConnection, RequestContext requestContext) {
 // We always return a single statement so we return a constant 1. This value will be used by the QueryOptimizer
 // when crating the execution plan.
 return 1;
 }

 private long createDateTimeLiteral(Entities entities) {
 // Create a literal for the current timestamp.
 Value literal = SimpleValueFactory.getInstance().createLiteral(new Date());

 // Add the literal in the entity pool with REQUEST scope. This will make the literal accessible only for the
 // current Request and will be disposed once the request is completed. Return it's ID.
 return entities.put(literal, Entities.Scope.REQUEST);
 }

}

The interpret() method only processes patterns with a predicate
matching the desired predicate identifier. Further on, it simply creates
a new date/time literal (in the request scope) and places its identifier
in the object position of the returned single result. The estimate()
method always returns 1, because this is the exact size of the result
set.

ExamplePlugin

ExamplePlugin has the following functionality:

	If a FROM <http://example.com/time> clause is detected in the query, the result is a single binding set
in which all projected variables are bound to a literal containing the system date/time of the machine
running GraphDB.

	If a triple with the subject http://example.com/time and one of the predicates
http://example.com/goInFuture or http://example.com/goInPast is inserted, its object is set
as a positive or negative offset for all future requests querying the system date/time via the plugin.

The plugin extends the PluginBase class that provides a default implementation of the Plugin interface:

public class ExamplePlugin extends PluginBase implements UpdateInterpreter, Preprocessor, Postprocessor {

 private static final String PREFIX = "http://example.com/";

 private static final String TIME_PREDICATE = PREFIX + "time";
 private static final String GO_FUTURE_PREDICATE = PREFIX + "goInFuture";
 private static final String GO_PAST_PREDICATE = PREFIX + "goInPast";

 private int timeOffsetHrs = 0;

 private IRI timeIri;

 // IDs of the entities in the entity pool
 private long timeID;
 private long goFutureID;
 private long goPastID;

 // Service interface methods
 @Override
 public String getName() {
 return "example";
 }

 // Plugin interface methods
 @Override
 public void initialize(InitReason reason, PluginConnection pluginConnection) {
 // Create IRIs to represent the entities
 timeIri = SimpleValueFactory.getInstance().createIRI(TIME_PREDICATE);
 IRI goFutureIRI = SimpleValueFactory.getInstance().createIRI(GO_FUTURE_PREDICATE);
 IRI goPastIRI = SimpleValueFactory.getInstance().createIRI(GO_PAST_PREDICATE);

 // Put the entities in the entity pool using the SYSTEM scope
 timeID = pluginConnection.getEntities().put(timeIri, Entities.Scope.SYSTEM);
 goFutureID = pluginConnection.getEntities().put(goFutureIRI, Entities.Scope.SYSTEM);
 goPastID = pluginConnection.getEntities().put(goPastIRI, Entities.Scope.SYSTEM);

 getLogger().info("Example plugin initialized!");
 }
}

In this implementation, the plugin name is defined and during initialization, three system-scope
predicates are registered.

To implement the first functional requirement the plugin must inspect the query and detect
the FROM clause in the pre-processing phase. Then, the plugin must hook into the post-processing phase
where, if the pre-processing phase detected the desired FROM clause, it deletes all query results
(in postprocess() and returns a single result (in flush()) containing the binding set specified
by the requirements. Since this happens as part of pre- and post-processing we can pass the literals
without going through the entity pool and using integer IDs.

To do this the plugin must implement Preprocessor and Postprocessor:

public class ExamplePlugin extends PluginBase implements Preprocessor, Postprocessor {
 // ... initialize() and getName()

 // Preprocessor interface methods
 @Override
 public RequestContext preprocess(Request request) {
 // We are interested only in QueryRequests
 if (request instanceof QueryRequest) {
 QueryRequest queryRequest = (QueryRequest) request;
 Dataset dataset = queryRequest.getDataset();

 // Check if the predicate is included in the default graph. This means that we have a "FROM <our_predicate>"
 // clause in the SPARQL query.
 if ((dataset != null && dataset.getDefaultGraphs().contains(timeIri))) {
 // Create a date/time literal
 Value literal = createDateTimeLiteral();

 // Prepare a binding set with all projected variables set to the date/time literal value
 MapBindingSet result = new MapBindingSet();
 for (String bindingName : queryRequest.getTupleExpr().getBindingNames()) {
 result.addBinding(bindingName, literal);
 }

 // Create a Context object which will be available during the other phases of the request processing
 // and set the created result as an attribute.
 RequestContextImpl context = new RequestContextImpl();
 context.setAttribute("bindings", result);

 return context;
 }
 }
 // If we are not interested in the request there is no need to create a Context.
 return null;
 }

 // Postprocessor interface methods
 @Override
 public boolean shouldPostprocess(RequestContext requestContext) {
 // Postprocess only if we have created RequestContext in the Preprocess phase. Here the requestContext object
 // is the same one that we created in the preprocess(...) method.
 return requestContext != null;
 }

 @Override
 public BindingSet postprocess(BindingSet bindingSet, RequestContext requestContext) {
 // Filter all results. Returning null will remove the binding set from the returned query result.
 // We will add the result we want in the flush() phase.
 return null;
 }

 @Override
 public Iterator<BindingSet> flush(RequestContext requestContext) {
 // Get the BindingSet we created in the Preprocess phase and return it.
 // This will be returned as the query result.
 BindingSet result = (BindingSet) ((RequestContextImpl) requestContext).getAttribute("bindings");
 return new SingletonIterator<>(result);
 }

 private Literal createDateTimeLiteral() {
 // Create a literal for the current timestamp.
 Calendar calendar = Calendar.getInstance();
 calendar.add(Calendar.HOUR, timeOffsetHrs);

 return SimpleValueFactory.getInstance().createLiteral(calendar.getTime());
 }
}

The plugin creates an instance of RequestContext using the default implementation RequestContextImpl.
It can hold attributes of any type referenced by a name. Then the plugin creates a BindingSet
with the date/time literal, bound to every variable name in the query projection, and sets it as an attribute
with the name “bindings”. The postprocess() method filters out all results if the requestContext
is non-null (i.e., if the FROM clause was detected by preprocess()). Finally, flush() returns
a singleton iterator, containing the desired binding set in the required case or does not return anything.

To implement the second functional requirement that allows setting an offset in the future or the past,
the plugin must react to specific update statements. This is achieved via implementing UpdateInterpreter:

public class ExamplePlugin extends PluginBase implements UpdateInterpreter, Preprocessor, Postprocessor {
 // ... initialize() and getName()

 // ... Pre- and Postprocessor methods

 // UpdateInterpreter interface methods
 @Override
 public long[] getPredicatesToListenFor() {
 // We can filter the tuples we are interested in by their predicate. We are interested only
 // in tuples with have the predicate we are listening for.
 return new long[] {goFutureID, goPastID};
 }

 @Override
 public boolean interpretUpdate(long subject, long predicate, long object, long context, boolean isAddition,
 boolean isExplicit, PluginConnection pluginConnection) {
 // Make sure that the subject is the time entity
 if (subject == timeID) {
 final String intString = pluginConnection.getEntities().get(object).stringValue();
 int step;
 try {
 step = Integer.parseInt(intString);
 } catch (NumberFormatException e) {
 // Invalid input, propagate the error to the caller
 throw new ClientErrorException("Invalid integer value: " + intString);
 }

 if (predicate == goFutureID) {
 timeOffsetHrs += step;
 } else if (predicate == goPastID) {
 timeOffsetHrs -= step;
 }

 // We handled the statement.
 // Return true so the statement will not be interpreted by other plugins or inserted in the DB
 return true;
 }

 // Tell the PluginManager that we can not interpret the tuple so further processing can continue.
 return false;
 }
}

UpdateInterpreter must specify the predicates the plugin is interested in via
getPredicatesToListenFor(). Then whenever a statement with one of those predicates is inserted or removed
the plugin framework calls interpretUpdate(). The plugin then checks if the subject value is
http://example.com/time and if so handles the update and returns true to the plugin framework
to signal that the plugin has processed the update and it needs not be inserted as regular data.

RDF Rank

What’s in this document?

	What is RDF Rank

	Parameters

	Full computation

	Incremental updates

	Exporting RDF Rank values

	Checking the RDF Rank status

	Rank filtering

What is RDF Rank

RDF Rank is an algorithm that identifies the more important or more
popular entities in the repository by examining their
interconnectedness. The popularity of entities can then be used to order
the query results in a similar way to the internet search engines, the way
Google orders search results using PageRank [https://en.wikipedia.org/wiki/PageRank].

The RDF Rank component computes a numerical weighting for all nodes in
the entire RDF graph stored in the repository, including URIs, blank
nodes, literals, and RDF-star (formerly RDF*) embedded triples. The weights are floating point numbers with values
between 0 and 1 that can be interpreted as a measure of a node’s
relevance/popularity.

[image: _images/RDF_rank.png]
Since the values range from 0 to 1, the weights can be used for sorting
a result set (the lexicographical order works fine even if the rank
literals are interpreted as plain strings).

Here is an example SPARQL query that uses the RDF rank for sorting results
by their popularity:

PREFIX rank: <http://www.ontotext.com/owlim/RDFRank#>
PREFIX opencyc-en: <http://sw.opencyc.org/2008/06/10/concept/en/>
SELECT * WHERE {
 ?Person a opencyc-en:Entertainer .
 ?Person rank:hasRDFRank ?rank .
}
ORDER BY DESC(?rank) LIMIT 100

As seen in the example query, RDF Rank weights are made available via a
special system predicate. GraphDB handles triple patterns with the
predicate http://www.ontotext.com/owlim/RDFRank#hasRDFRank in a
special way, where the object of the statement pattern is bound to a
literal containing the RDF Rank of the subject.

rank#hasRDFRank returns the rank with precision of 0.01. You can as well
retrieve the rank with precision of 0.001, 0.0001 and 0.00001 using respectively
rank#hasRDFRank3, rank#hasRDFRank4 and rank#hasRDFRank5.

In order to use this mechanism, the RDF ranks for the whole repository
must be computed in advance. This is done by committing a series of
SPARQL updates that use special vocabulary to parameterize the weighting
algorithm, followed by an update that triggers the computation itself.

Parameters

RDF Rank is fully controllable from Setup -> RDF Rank.

	Parameter

	Maximum iterations

	Predicate

	http://www.ontotext.com/owlim/RDFRank#maxIterations

	Description

	Sets the maximum number of iterations of the algorithm over all entities in the repository.

	Default

	20

	Example

	PREFIX rank: <http://www.ontotext.com/owlim/RDFRank#>
INSERT DATA { rank:maxIterations rank:setParam "16" . }

	Parameter

	Epsilon

	Predicate

	http://www.ontotext.com/owlim/RDFRank#epsilon

	Description

	Terminates the weighting algorithm early when the total change of all RDF Rank scores has fallen below this value.

	Default

	0.01

	Example

	PREFIX rank: <http://www.ontotext.com/owlim/RDFRank#>
INSERT DATA { rank:epsilon rank:setParam "0.05" . }

Full computation

To trigger the computation of the RDF Rank values for all resources, use
the following update:

PREFIX rank: <http://www.ontotext.com/owlim/RDFRank#>
INSERT DATA { _:b1 rank:compute _:b2. }

You can also compute the RDF Rank values in the background. This operation
is asynchronous which means that the plugin manager will not be blocked during
it and you can work with other plugins as the RDF Rank is being
computed.

PREFIX rank: <http://www.ontotext.com/owlim/RDFRank#>
INSERT DATA { _:b1 rank:computeAsync _:b2. }

Warning

Using a SPARQL query to perform an asynchronous computation while in cluster
will set your cluster out of sync. RDF Rank computations in a cluster should
be performed synchronously.

Or, in the Workbench, go to Setup -> RDF Rank and click the Compute Full button.

[image: _images/rankButtons.png]

Note

When using the Workbench button on a standalone repository (not in a cluster),
the RDF rank is computed asynchronously. When the button is used on a master
repository (in a cluster), the rank is computed synchronously.

Incremental updates

The full computation of RDF Rank values for all resources can be
relatively expensive. When new resources have been added to the
repository after a previous full computation of the RDF Rank values, you can
either have a full re-computation for all resources (see above) or compute only
the RDF Rank values for the new resources (an incremental
update).

The following control update:

PREFIX rank: <http://www.ontotext.com/owlim/RDFRank#>
INSERT DATA {_:b1 rank:computeIncremental "true"}

computes RDF Rank values for the resources that do not have an
associated value, i.e., the ones that have been added to the repository
since the last full RDF Rank computation.

Just like full computations, incremental updates can also be performed
asynchronously:

PREFIX rank: <http://www.ontotext.com/owlim/RDFRank#>
INSERT DATA {_:b1 rank:computeIncrementalAsync "true"}

Warning

Using a SPARQL query to perform an asynchronous computation while in cluster
will set your cluster out of sync. RDF Rank computations in a cluster should
be performed synchronously.

Note

The incremental computation uses a different algorithm, which is
lightweight (in order to be fast), but is not as accurate as the
proper ranking algorithm. As a result, ranks assigned by the proper
and the lightweight algorithms will be slightly different.

Exporting RDF Rank values

The computed weights can be exported to an external file using an update
of this form:

PREFIX rank: <http://www.ontotext.com/owlim/RDFRank#>
INSERT DATA { _:b1 rank:export "/home/user1/rdf_ranks.txt" . }

If the export fails, the update throws an exception and an error message
is recorded in the log file.

Checking the RDF Rank status

The RDF Rank plugin can be in one of the following statuses:

/**
 * The ranks computation has been canceled
 */
 CANCELED,

 /**
 * The ranks are computed and up-to-date
 */
 COMPUTED,

 /**
 * A computing task is currently in progress
 */
 COMPUTING,

 /**
 * There are no calculated ranks
 */
 EMPTY,

 /**
 * Exception has been thrown during computation
 */
 ERROR,

 /**
 * The ranks are outdated and need computing
 */
 OUTDATED,

 /**
 * The filtering is enabled and its configuration has been changed since the last full computation
 */
 CONFIG_CHANGED

You can get the current status of the plugin by running the following query:

PREFIX rank: <http://www.ontotext.com/owlim/RDFRank#>
SELECT ?o WHERE { ?s rank:status ?o }

Rank filtering

By default the RDF Rank is calculated over the whole repository. This is useful
when you want to find the most interconnected and important entities in general.

However, there are times when you are interested only in entities in certain
graphs or entities related to a particular predicate. This is why the RDF Rank
has a filtered mode - to filter the statements in the repository which are taken
under account when calculating the rank.

You can enable the filtered mode with the following query:

PREFIX rank: <http://www.ontotext.com/owlim/RDFRank#>
INSERT DATA { rank:filtering rank:setParam true }

The filtering of the statements can be performed based on predicate, graph or
type - explicit or implicit (inferred). You can make both inclusion and exclusion
rules.

In order to include only statements having a particular predicate or being in a
particular named graph, you should include the predicate / graph IRI in one of
the following lists: includedPredicates / includedGraphs. Empty lists are
treated as wildcards. Below you can find how to control the lists with SPARQL
queries:

Get the content of a list:

PREFIX rank: <http://www.ontotext.com/owlim/RDFRank#>
SELECT ?s WHERE { ?s rank:includedPredicates ?o }

Add an IRI to a list:

PREFIX rank: <http://www.ontotext.com/owlim/RDFRank#>
INSERT DATA { <http:predicate> rank:includedPredicates "add" }

Remove an IRI from a list:

PREFIX rank: <http://www.ontotext.com/owlim/RDFRank#>
INSERT DATA { <http:predicate> rank:includedPredicates "remove" }

The filtering can be done not only by including statements of interest but by
removing ones as well. In order to do so there are 2 additional lists:
excludedPredicates and excludedGraphs. These lists take precedence over their
inclusion alternatives so if for instance you have the same predicate in both
inclusion and exclusion lists it will be treated as excluded. These lists can
be controlled in exactly the same way as the inclusion ones.

There is a convenient way to include/exclude all explicit/implicit statements.
This is done with 2 parameters - includeExplicit and includeImplicit which are
set to true by default. When these parameters are set to true they are just
disregarded - do not take part in the filtering. However, if you set them to
false, they start acting as exclusion rules - this means they take precedence over the
inclusion lists.

You can get the status of these parameters using:

PREFIX rank: <http://www.ontotext.com/owlim/RDFRank#>
ASK { _:b1 rank:includeExplicit _:b2 . }

You can set value of the parameters with:

PREFIX rank: <http://www.ontotext.com/owlim/RDFRank#>
INSERT DATA { rank:includeExplicit rank:setParam true }

Semantic similarity searches

What’s in this document?

	Why do I need the similarity plugin?

	What the similarity plugin does?

	How the similarity plugin works?

	Search similar terms

	Search documents for which selected term is specific

	Search specific terms in selected document

	Search for closest documents

	Download data

	Text based similarity searches

	Create text similarity index

	Create index parameters

	Disabled parameters

	Stop words and Lucene Analyzer

	Search in the index

	Search parameters

	Delete or rebuild an index using a SPARQL query

	Search in the index during rebuild with no downtime

	Locality-sensitive hashing

	Search similar news within days

	Term to term search

	Boosting a term’s weight

	Predication-based Semantic Indexing

	Load example data

	Create predication-based index

	Search predication-based index

	Analogical searches

	Why is this important?

	Hybrid indexing

	Edit the FactForge data

	Create a Literal index

	Use the Literal index

	Indexing behavior

	Manual creation

	Training cycles

Why do I need the similarity plugin?

The similarity plugin allows exploring and searching semantic similarity in RDF resources.

As a user, you may want to solve cases where statistical semantics queries will be highly valuable, for example:

For this text (encoded as a literal in the database), return the closest texts based on a vector space model.

Another type of use case is the clustering of news (from a news feed) into groups by discussing events.

What the similarity plugin does?

Humans determine the similarity between texts based on the similarity of the composing words and their abstract meaning.
Documents containing by similar words are semantically related, and words frequently co-occurring are also considered close.
The plugin supports document and term searches. A document is a literal or an aggregation of multiple literals, and a term is a word
from a document.

There are four types of similarity searches:

	Term to term - returns the closest semantically related terms

	Term to document - returns the most representative documents for a specific searched term

	Document to term - returns the most representative terms for a specific document

	Document to document - returns the closest related texts

How the similarity plugin works?

The similarity plugin integrates the semantic vectors library and the underlying Random Indexing algorithm.
The algorithm uses a tokenizer to translate documents to sequences of words (terms) and to represent them into a vector space model
representing their abstract meaning. A distinctive feature of the algorithm is the dimensionality reduction approach based on Random
Projection, where the initial vector state is generated randomly. With the indexing of each document, the term vectors are adjusted
based on the contextual words. This approach makes the algorithm highly scalable for very large text corpora of documents, and
research papers have proven that its efficiency is comparable to more sound dimensionality reduction algorithms like singular
value decomposition.

Search similar terms

The example shows terms similar to “novichok” in the search index allNews. The term “novichok” is used in the search field. The selected option for both Search type and Result type is Term.
Sample results of terms similar to “novichok”, listed by their score, are given below.

[image: _images/Novichok1.png]

Search documents for which selected term is specific

The term “novichok” is used as an example again. The selected option for Search type is Term, and for Result type is Document. Sample results of the most representative documents for a specific searched term, listed by their score, are given below.

[image: _images/Novichok2.png]

Search specific terms in selected document

The result with the highest score from the previous search is used in the new search. The selected option for Search type is Document, and for Result type is Term. Sample results of the most representative terms, listed by their score, are given below.

[image: _images/Novichok3.png]

Search for closest documents

A search for the texts closest to the selected document is also possible. The same document is used in the search field. Sample results of the documents with the closest texts to the selected document - listed by their score - are given below. The titles of the documents prove that their content is similar, even though the sources are different.

[image: _images/Novichok4.png]

Download data

To obtain the sample results listed above, you need to download data and create an index.
Data from factforge.net is used in the following example. News from January to April 2018, together with their content, creationDate and mentionsEntity triples, are downloaded.

Go to the SPARQL editor at http://factforge.net/sparql and insert the following query:

PREFIX pubo: <http://ontology.ontotext.com/publishing#>
PREFIX pub: <http://ontology.ontotext.com/taxonomy/>
PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX ff-map: <http://factforge.net/ff2016-mapping/>

CONSTRUCT {
 ?document ff-map:mentionsEntity ?entity .
 ?document pubo:content ?content .
 ?document pubo:creationDate ?date .
} WHERE {
 ?document a pubo:Document .
 ?document ff-map:mentionsEntity ?entity .
 ?document pubo:content ?content .
 ?document pubo:creationDate ?date .
 FILTER (?p NOT IN (pubo:containsMention, pubo:hasFeature, pubo:hasImage))
 FILTER ((?date > "2018-01-01"^^xsd:dateTime) && (?date < "2018-04-30"^^xsd:dateTime))
}

[image: _images/FactForgeSPARQL.png]
Download the data using the Download As button - choose the Turtle option. It will take some time to export the data to the query-result.ttl file.

Go to your local GraphDB instance and create a new repository called “news”.

Move the downloaded file to the <HOME>/graphdb-import folder so that it is visible in Import->RDF->Server files (see here how to import server files).

Import the query-result.ttl file in your “news” repository.

Go to Setup, enable Autocomplete index, and create an index for allNews, using Build Now button.

The Autocomplete index is used for autocompletion of URLs in the SPARQL editor and the View resource page.

[image: _images/Autocomplete.png]

Text based similarity searches

Create text similarity index

Create index for allNews in the following way:

Go to Explore -> Similarity -> Create similarity index
and change the search query to:

PREFIX pubo: <http://ontology.ontotext.com/publishing#>
SELECT ?documentID ?documentText
{
 ?documentID pubo:content ?documentText .
 FILTER(isLiteral(?documentText))
}

	Please note that there are default parameters:
	-termweight idf

This will index the allNews content, where the ID of a document is the news piece’s IRI, and the text is the content.

Name the index ‘allNews’, save it and wait until it is ready.

Once the index has been created, you can see the following options on the right:

	With the {…} button, you can review or copy the SPARQL query for this index;

	The Edit icon allows you to modify the search query without having to build an index;

	You can also create a new index from an existing one;

	Rebuild the index;

	As well as delete it.

[image: _images/textSimilarityIndex_options.png]

Create index parameters

	-vectortype - real, complex, binary - Real, Comlplex and Binary Semantic Vectors

	-dimension - dimension of semantic vector space, default value 200. Recommended values are in the hundreds for real and complex, and in the thousands for binary, since binary dimensions are single bits. Smaller dimensions make both indexing and queries faster, but if the dimension is too low, then the orthogonality of the element vectors will be compromised leading to poorer results. An intuition for the optimal values is given by the Johnson–Lindenstrauss lemma.

	-seedlength - Number of nonzero entries in a sparse random vector, default value 10 except for when vectortype is binary, in which case default of dimension / 2 is enforced. For real and complex vectors default value is 10, but it is a good idea to use a higher value when the vector dimension is higher than 200. Simplest thing to do is to preserve this ratio, i.e., to divide the dimension by 20. It is worth mentioning that in the original implementation of random indexing, the ratio of non-zero elements was 1/3.

	-trainingcycles - Number of training cycles used for Reflective Random Indexing.

	-termweight - Term weighting used when constructing document vectors. Values can be none, idf, logentropy, sqrt. It is a good idea to use term weighting when building indexes so we add -termweight idf as a default when creating an index. It uses inverse document frequency when building the vectors. See LuceneUtils [https://github.com/semanticvectors/semanticvectors/blob/master/src/main/java/pitt/search/semanticvectors/LuceneUtils.java] for more details.

	-minfrequency - Minimum number of times that a term has to occur in order to be indexed. Default value is set to 0, but it would be a bad idea to use it, as that would add a lot of big numbers/weird terms/misspelled words to the list of word vectors. Best approach would be to set it as a fraction of the total word count in the corpus. For example 40 per million as a frequency threshold. Another approach is to start with an intuitive value, a single digit number like 3-4, and start fine tuning from there.

	-maxfrequency - Maximum number of times that a term can occur before getting removed from indexes. Default value is Integer.MAX_VALUE. Again, a better approach is to calculate it as a percentage of the total word count. Otherwise, you can use the default value and add most common English words to the stop list.

	-maxnonalphabetchars - Maximum number of non alphabet characters a term can contain in order to be indexed. Default value is Integer.MAX_VALUE. Recommended values depend on the dataset and the type of terms it contains, but setting it to 0 works pretty well for most basic cases, as it takes care of punctuation (if data has not been preprocessed), malformed terms, and weird codes and abbreviations.

	-filternumbers - true/false, index numbers or not.

	-mintermlength - Minimum number of characters in a term.

	-indexfileformat - Format used for serializing/deserializing vectors from disk, default lucene. Another option is text, may be used for debug to see the actual vectors. Too slow on real data.

Disabled parameters

	-luceneindexpath - Currently, you are not allowed to build your own lucene index and create vectors from it since index + vectors creation is all done in one step.

	-stoplistfile - replaced by the <http://www.ontotext.com/graphdb/similarity/stopList> predicate. Stop words are passed as a string literal as opposed to a file.

	-elementalmethod

	-docindexing

Stop words and Lucene Analyzer

In the Stop words field, add a custom list of stop words to be passed to the Semantic Vector plugin. If left empty, the default Lucene stop words list will be used.

In the Analyzer class field, set a Lucene analyzer to be used during Semantic Vector indexing and query time tokenization. The default is org.apache.lucene.analysis.en.EnglishAnalyzer, but it can be any from the supported list as well.

Additionally, the Lucene connector also supports custom Analyzer implementations. This way you can create your own analyzer and add it to classpath. The value of the Analyzer Class parameter must be a fully qualified name of a class that extends org.apache.lucene.analysis.Analyzer.

Search in the index

Go to the list of indexes and click on allNews. For search options, select Search type to be either Term or Document. Result type can be either Term or Document.

[image: _images/search-all-news.png]

Search parameters

	-searchtype - Different types of searches can be performed. Most involve processing combinations of vectors in different ways, in building a query expression, scoring candidates against these query expressions, or both. Default is sum that builds a query by adding together (weighted) vectors for each of the query terms, and search using cosine similarity. See more about SearchType here [https://www.programcreek.com/java-api-examples/?api=pitt.search.semanticvectors.Search.SearchType].

	-matchcase - If true, matching of query terms is case-sensitive; otherwise case-insensitive, default value is false.

	-numsearchresults - number of search results.

	-searchresultsminscore - Search results with similarity scores below this threshold will not be returned, default value is -1.

Additional info at: https://github.com/semanticvectors/semanticvectors/wiki/SearchOptions

Delete or rebuild an index using a SPARQL query

To delete an index, use the following SPARQL query:

PREFIX inst:<http://www.ontotext.com/graphdb/similarity/instance/>
PREFIX :<http://www.ontotext.com/graphdb/similarity/>

INSERT DATA {
 inst:my_index :deleteIndex "" .
}

To rebuild an index, simply create it again following the steps shown above.

Search in the index during rebuild with no downtime

GraphDB enables you to use the similarity index with no downtime while the database is being modified. While rebuilding the index, its last successfully built version is preserved until the new index is ready. This way, when you search in it during rebuild, the retrieved results will be from this last version. The following message will notify you of this:

[image: _images/similarity_index_rebuild.png]
The outdated image is then replaced.

Locality-sensitive hashing

Note

As locality-sensitive hashing does not guarantee the retrieval of the most similar results, this hashing is not the most suitable option if precision is essential. Hashing with the same configuration over the same data does not guarantee the same search results.

Locality-sensitive hashing is introduced in order to reduce the searching times. Without a hashing algorithm, a search consists of the following steps:

	A search vector is generated.

	All vectors in store are compared to this search vector, and the most similar ones are returned as matches.

While this approach is complete and accurate, it is also time-consuming. In order to speed up the process, hashing can be used to reduce the number of candidates for most similar vectors. This is where Locality-sensitive hashing can be very useful.

The Locality-sensitive hashing algorithm has two parameters that can be passed either during index creation, or as search option:

	-lsh_hashes_num - the number of n random vectors used for hashing. Default value: 0.

	-lsh_max_bits_diff - the m number of bits by which two hashes can differ and still be considered similar. Default value: 0.

The hashing workflow is as follows:

	A n number of random orthogonal vectors are generated.

	Each vector in store is compared to each of those vectors (checking whether their scalar product is positive or not).

	Given this data, a hash is generated for each of the vectors in store.

During a search, the workflow is:

	A search vector is generated.

	A hash is generated for this search vector by comparing it to the n number of random vectors used during the initial hashing.

	All similar hashes like the one of the searched vector are found. (a hash is considered similar when it has up to m bits difference from the original one).

	All vectors with such hash are collected and compared to the generated vector in order to get the closest ones, based on the assumption that the vectors with similar hashes will be close to each other.

Note

If both parameters have the same value, then all possible hashes are considered similar and therefore no filtering is done. For optimization purposes in this scenario, the entire hashing logic has been bypassed.

If one of the parameters is specified during the index creation, then its value will be used as the default one for searching.

Depending on its configuration, the hash can perform in different ways.

A higher number of -lsh_hashes_num leads to more hash buckets with fewer elements in them. Conversely, a lower number of hashes would mean fewer but bigger buckets. The n number of hashes leads to 2^n potential buckets.

A higher number of -lsh_max_bits_diff leads to more buckets being checked, and vice versa. More precisely, an m number of -lsh_max_bits_diff with an n number of hashes leads to m-combinations of n + (m - 1) -combination of n + ... + 0 -combinations of n checked buckets.

By modifying these parameters, you can control the number of checked vectors. A lower number of checked vectors leads to higher performance, but also increases the chance of missing a similar vector.

Different settings perform well for different vector store sizes. A reasonable initial configuration is (3, 1). If you want to slightly increase the precision, you could change it to (3, 2), however this will substantially increase the number of checked vectors and reduce performance.

To make finer calibration, you would need a higher number of hashes - for instance, (6, 2) is also a possible configuration.

If you are looking to increase the performance, you could change the configuration to (6, 1) or (8, 2), but this will reduce precision.

If increasing the precision at the cost of performance is an acceptable option for you, you could use the configuration of (6, 3).

Note

If -lsh_max_bits_diff is too close to -lsh_hashes_num, the performance can be poorer compared to the default one because of the computational overhead.

Search similar news within days

The search can be extended by using the advantages of SPARQL to find the same news by different sources. This can be done by filtering all the news from the results related to a given period.

Click on View SPARQL Query, copy the query, and open the SPARQL editor to paste it there. Now you can integrate statistic similarity with RDF to obtain the following query:

Search similar news (SPARQL) within days

PREFIX :<http://www.ontotext.com/graphdb/similarity/>
PREFIX inst:<http://www.ontotext.com/graphdb/similarity/instance/>
PREFIX pubo: <http://ontology.ontotext.com/publishing#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
SELECT ?entity ?score ?matchDate ?searchDate {
 BIND (<http://www.uawire.org/merkel-and-putin-discuss-syria-and-nord-stream-2> as ?searchDocumentID)
 ?search a inst:allNews ;
 :searchDocumentID ?searchDocumentID;
 :searchParameters "";
 :documentResult ?result .
 ?result :value ?entity ;
 :score ?score .
 ?entity pubo:creationDate ?matchDate .
 ?searchDocumentID pubo:creationDate ?searchDate .
 FILTER (?matchDate > ?searchDate - "P2D"^^xsd:duration && ?matchDate < ?searchDate + "P2D"^^xsd:duration)
}

Search for similar news, get their creationDate and filter only the news within the time period of 2 days.

[image: _images/filter2days.png]

Term to term search

The Term to term search gets the relevant terms by period.

Four separate indexes will be created as an example - for the news in January, February, March, and April.

Go to Create similarity index and create a new index with the following query:

PREFIX pubo: <http://ontology.ontotext.com/publishing#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX : <http://www.ontotext.com/graphdb/similarity/>
PREFIX inst: <http://www.ontotext.com/graphdb/similarity/instance/>

SELECT ?documentID ?documentText {
 ?documentID pubo:content ?documentText .
 ?documentID pubo:creationDate ?date .
 FILTER ((?date > "2018-01-01"^^xsd:dateTime) && (?date < "2018-01-30"^^xsd:dateTime))
 FILTER(isLiteral(?documentText))
}

Do the same for February, March, and April by changing the date range.
For each month, go to the corresponding index and select the option for both Search type and Result type to be Term. Type “korea” in the search field. See how the results change with the time.

[image: _images/get-relevant-terms-by-period.png]
[image: _images/get-relevant-terms-by-period2.png]
Notice how the score of “pyongyang” decreases with the end of the Olympics.

Boosting a term’s weight

It is possible to boost the weight of a given term in the text-based similarity index for term-based searches (Term to term or Term to document). Boosting a term’s weight can be done by using the caret symbol ^ followed by a boosting factor - a positive decimal number term^factor.

For example, UK Brexit^3 EU will perform a search in which the term “Brexit” will have 3 times more weight than “UK” and “EU”, and the results will be expected to be mainly related to “Brexit”.

The default boosting factor is 1. Setting a boosting factor of 0 will completely ignore the given term.
Escaping the caret symbol ^ is done with a double backslash \\^.

Note

The boosting will not work in document-based searches (Document to term or Document to document), meaning that the caret following by a number will not be treated as a weight boosting symbol.

Predication-based Semantic Indexing

Predication-based Semantic Indexing, or PSI, is an application of distributional semantic techniques for reasoning and inference.
PSI starts with a collection of known facts or observations, and combines them into a single semantic vector model, in which both concepts and relationships are represented. This way, the usual ways for constructing query vectors and searching for results in SemanticVectors can be used to suggest similar concepts based on the knowledge graph.

Load example data

The predication-based semantic search examples are based on Person data from the DBpedia dataset [https://wiki.dbpedia.org/develop/datasets/downloads-2016-10]. The sample dataset contains over 730,000 triples for more than 101,000 persons born between 1960 and 1970.

Import the provided persons-1960-1970.ttl.

Create an Autocomplete index by enabling it from the Setup -> Autocomplete page.

For ease of use, you may add the following namespaces for the example dataset (done from Setup -> Namespaces):

	dbo : http://dbpedia.org/ontology/

	dbr : http://dbpedia.org/resource/

	foaf : http://xmlns.com/foaf/0.1/

Create predication-based index

Create a new predication-based similarity index from Explore -> Similarity -> Create similarity index.
Select Create predication index.

[image: _images/similarity-PSI-create-index-e1.png]
Fill in the index name, and add the desired Semantic Vectors create index parameters. For example, it is a good idea to use term weighting when building indexes, so we will add -termweight idf. Also, for better results, set -dimension to higher than 200 which is the default.

Configure the Data query. This SPARQL SELECT query determines the data that will be indexed. The query must SELECT the following bindings:

	?subject

	?predicate

	?object

The Data query is executed during index creation to obtain the actual data for the index. When data in your repo changes, you need to also rebuild the index. It is a subquery of a more complicated query that you can see with the View Index Query button.

For the given example, leave the default Data query. This will create an index with all triples in the repo:

SELECT ?subject ?predicate ?object
 WHERE {
 ?subject ?predicate ?object .
 }

Set the Search query. This SELECT query determines the data that will be fetched on search. The Search query is executed during search. Add more bindings by modifying this query to see more data in the results table.

For the first example, set the Search query to:

PREFIX :<http://www.ontotext.com/graphdb/similarity/>
PREFIX inst:<http://www.ontotext.com/graphdb/similarity/instance/>
PREFIX psi:<http://www.ontotext.com/graphdb/similarity/psi/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?entity ?name ?description ?birthDate ?birthPlace ?gender ?score {
 ?search a ?index ;
 ?searchType ?query;
 psi:searchPredicate ?psiPredicate;
 :searchParameters ?parameters;
 ?resultType ?result .
 ?result :value ?entity ;
 :score ?score .
 ?entity foaf:name ?name .
 OPTIONAL { ?entity <http://purl.org/dc/terms/description> ?description . }
 OPTIONAL { ?entity dbo:birthPlace ?birthPlace . }
 OPTIONAL { ?entity dbo:birthDate ?birthDate . }
 OPTIONAL { ?entity foaf:gender ?gender . }
}

Click Create button to start index creation.

Once the index has been built, you have the same options as for the text similarity index: View SPARQL query, Edit query, Create index from existing one, Rebuild, and Delete index. Additionally, if you want to edit an index query, you can do it for both the Search and the Analogical queries:

[image: _images/predicationSimilarityIndex_query.png]

Search predication-based index

From the Existing indexes select the index you want to search in.

In our example, we will be looking for individuals similar to Hristo Stoichkov - the most famous Bulgarian football player.

[image: _images/similarity-PSI-search-index.png]
In the results, you can see Bulgarian football players born in the same town, other Bulgarian athletes born in the same place, as well as other people with the same birth date.

[image: _images/similarity-PSI-example1-result.png]

Analogical searches

Along with searching explicit relations and similarities, PSI can also be used for analogical search.

Suppose you have a dataset with currencies and countries, and want to know the following: “If I use dollars in the USA, what do I use in Mexico?” By using the predicate index, you do not need to know the predicate (“has currency”).

After importing the Nations.ttl sample dataset into a repository, build an Autocomplete index and a predication index following the steps in the documentation above.

Once your predication index is built, you can use the Analogical search option of your index. In logical terms, your query will translate to “If USA implies dollars, what does Mexico imply?”

[image: _images/analogical.png]
As you can see, the first result is peso, the Mexican currency. The rest of the results are not relevant in this situation since they are part of a very small dataset.

Why is this important?

PSI supplements traditional tools for artificial inference by giving “nearby” results. In cases where there is a single clear winner, this is essentially the behavior of giving “one right answer”. But in cases where there are several possible plausible answers, having robust approximate answers can be greatly beneficial.

Hybrid indexing

When building a Predication index, it creates a random vector for each entity in the database, and uses these random vectors to generate the similarity vectors to be used later on for similarity searches. This approach does not take into consideration the similarity between the literals themselves. Let’s examine the following example, using the FactForge data from the previous parts of the page:

<express:donald-tusk-eu-poland-leave-european-union-polexit> <pubo:formattedDate> 1/11/2018
<telegraph:donald-tusk-warnspoland-could-hold-brexit-style-eu-referendum> <pubo:formattedDate> 1/11/2018
<express:POLAND-s-bid-for-World-War-2-reparations-is-bolstered-by-a-poll-which-found-that-a-majorit> <pubo:formattedDate> 1/6/2018

Naturally we would expect the first news article to be more similar to the second one than to the third one, not only based on their topics - Poland’s relationship with the EU - but also because of their dates. However, the normal Predication index would not take into account the similarity of the dates, and all news would have fairly close scores. In order to handle this type of scenario, we can first create a Text similarity index. It will find that the dates of the three articles are similar, and will then use this information when building the Predication index.

In order to do so, you need to:

Edit the FactForge data

Dates, as presented in FactForge, are not literals that the similarity plugin can handle easily. This is why you need to format them to something easier to parse.

PREFIX pub: <http://ontology.ontotext.com/taxonomy/>
PREFIX pubo: <http://ontology.ontotext.com/publishing#>
insert {
 ?x pubo:formattedDate ?displayDate
}
WHERE {
 ?x pubo:creationDate ?date.
 BIND (CONCAT(STR(MONTH(?date)),
 "/",
 STR(DAY(?date)),
 "/",
 STR(YEAR(?date))) as ?displayDate)
}

Replacing dateTime with a simple string will enable you to create a Literal index.

At this stage, you should enable Autocomplete in case you have not enabled it yet, so as to make testing easier.

Go to Setup, enable Autocomplete index, and create an index for allNews using the Build Now button.

Create a Literal index

The Literal index is a subtype of the Text index. To build it, create a normal Text index by ticking the Literal index checkbox from the More options menu. This type of indexes can only be used as input indexes for predication indexes, and will be indicated in the Similarity page. They can not be used for similarity searching. The index will include all literals returned by the ?documentText variable from the Data query.

[image: _images/literalIndex.png]
Make sure to filter out the mentions, so the data in the Literal index only contains the news. When creating the index, use the following Data query:

SELECT ?documentID ?documentText {
 ?documentID ?p ?documentText .
 filter(isLiteral(?documentText))
 filter (?p != <http://factforge.net/ff2016-mapping/mentionsEntity>)
}

Use the Literal index

When creating the predication index from the “more options” menu, select Input Literal Index -> the index created in the previous step.

[image: _images/predicateIndex.png]
Since you do not want to look at mentions, and in this sense the default data format is useless, you need to filter them out from the data used in the predication index. Add the following Data query:

SELECT ?subject ?predicate ?object
WHERE {
 ?subject ?predicate ?object .
 filter (?predicate != <http://factforge.net/ff2016-mapping/mentionsEntity>)
 filter (?predicate != <http://ontology.ontotext.com/publishing#creationDate>)
}

For the purposes of the test, we want to also display the new formatted date when retrieving data. Go to the search query tab and add the following query:

PREFIX :<http://www.ontotext.com/graphdb/similarity/>
PREFIX inst:<http://www.ontotext.com/graphdb/similarity/instance/>
PREFIX psi:<http://www.ontotext.com/graphdb/similarity/psi/>
PREFIX pubo: <http://ontology.ontotext.com/publishing#>

SELECT ?entity ?score ?content ?date {
 ?search a ?index ;
 ?searchType ?query;
 psi:searchPredicate ?psiPredicate;
 :searchParameters ?parameters;
 ?resultType ?result .
 ?result :value ?entity ;
 :score ?score .
 ?entity pubo:content ?content .
 ?entity pubo:formattedDate ?date .
}

With those two queries in place, the data returned from the index should be more useful. Create your hybrid predication index and wait for the process to be completed. Then, open it and run a query for “donald tusk”, selecting the express article about “Polexit” from the Autocomplete suggest box. You will see that the first results are related to the Polexit and dated the same.

Indexing behavior

When building the Literal index, it is good idea to index all literals that will be indexed in the Predication index, or at least all literals of the same type. Continuing with the example above, let’s say that the Literal index you have created only returns these three news pieces. Add the following triple about a hypothetical Guardian article, and create a Predication index to index all news:

<guardian:poland-grain-exports> <pubo:formattedDate> 12/08/2017

Based on the triples, it would be expected that the first article will be equally similar to the third and the new one - their contents and dates have little in common. However, depending on the binding method used when creating the Predication index, you can get higher score for the third article compared to the new one only because the third article has been indexed by the Literal index. There are two ways to easily avoid this - either all literals, or at least all dates are indexed.

Manual creation

If you are not using the Similarity page, you could pass the following options when creating the indexes:
-literal_index true passed to a Text index creates a Literal index
-input_index <literaIndex> (replace <literalIndex> with the name of an existing Literal index) passed to a Predication index creates a hybrid index based on a Literal index

Training cycles

When building Text and Predication indexes, training cycles could be used to increase the accuracy of the index. The number of training cycles can be set by passing the option:

	-trainingcycles <numOfCycles> The default number of training cycles is 0.

Text and Predication indexes have quite different implementations of the training cycles.

Text indexes just repeat the same algorithm multiple times, which leads to algorithm convergence.

Predication indexes initially start the training with a random vector for each entity in the database. On each cycle, the initially random elemental vectors are replaced with the product of the previous cycle, and the algorithm is run again. In addition to the entity vectors, the predicate vectors get trained as well. This leads to higher computational time for a cycle compared to the initial run (with trainingcycles = 0).

Note

Each training cycle is time- and computationally consuming, and a higher number of cycles will greatly increase the building time.

JavaScript functions

What’s in this document?

	How to register JS function

	How to remove JS function

In addition to internal functions, such as NOW(), RAND(), UUID() and STRUUID(), GraphDB allows users to define and execute JavaScript code, further enhancing data manipulation with SPARQL. JavaScript functions are implemented within a special namespace called <http://www.ontotext.com/js#>.

How to register JS function

JS functions are initialized by an INSERT DATA request where the subject is a blank node [], <http://www.ontotext.com/js#register> is a reserved predicate and an object of type literal defines your JavaScript code. It is possible to add multiple function definitions at once.

The following example registers two JavaScript functions isPalindrome(str) and reverse(str):

prefix extfn:<http://www.ontotext.com/js#>

INSERT DATA {
 [] <http://www.ontotext.com/js#register> '''
 function isPalindrome(str) {
 if (!(str instanceof java.lang.String)) return false;
 rev = reverse(str);
 return str.equals(rev);
 }
 function reverse(str) {
 return str.split("").reverse().join("");
 }
 '''
}

Here is an example of how to retrieve a list of registered JS functions:

PREFIX jsfn:<http://www.ontotext.com/js#>
SELECT ?s ?o {
 ?s jsfn:enum ?o
}

[image: _images/js-functions-enum.png]
http://www.ontotext.com/js#enum is a reserved predicate IRI to list the available JS functions.

The following example registers a single function to return yesterday’s date:

PREFIX jsfn:<http://www.ontotext.com/js#>
INSERT DATA {
 [] jsfn:register '''
 function getDateYesterday() {
 var date = new Date();
 date.setDate(date.getDate() - 1);
 return date.toJSON().slice(0,10);
 }
'''
}

We can then use this function in a regular SPARQL query, e.g., to retrieve data created yesterday:

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX jsfn:<http://www.ontotext.com/js#>
PREFIX pubo: <http://ontology.ontotext.com/publishing#>
SELECT ?s ?date WHERE {
 ?s pubo:creationDate ?date
 FILTER (?date = strdt(jsfn:getDateYesterday(), xsd:date))
}

Note

The projected ?date is filtered by type and dynamically assigned value - xsd:date and the output of the JS function, respectively.

How to remove JS function

De-registering a JavaScript function is handled in the same fashion as registering one, with the only difference being the predicate used in the INSERT statement - http://www.ontotext.com/js#remove:

PREFIX jsfn:<http://www.ontotext.com/js#>
INSERT DATA {
 [] jsfn:remove "getDateYesterday"
}

Once removed, the function should be listed as UNDEFINED:

[image: _images/js-functions-remove.png]

Note

If multiple function definitions have been registered by a single INSERT, removing one of these functions will remove the rest of the functions added by that insert request.

Change tracking

GraphDB allows the tracking of changes that you have made in your data. Two tools offer this capability: the change tracking plugin, and the data history and versioning plugin.

The change tracking plugin is useful for tracking changes within the context of a transaction identified by a unique ID.
Different IDs allow tracking of multiple independent changes, e.g., user A tracks his updates and user B tracks her updates
without interfering with each other. The tracked data is stored only in memory and is not available after a restart.

As part of the GraphDB Plugin API, the change tracking plugin provides the ability to track the effects of SPARQL updates. These can be:

	Tracking what triples have been inserted or deleted;

	Distinguishing explicit from implicit triples;

	Running SPARQL using these triples.

Usage

The plugin introduces the following special graphs:

	http://www.ontotext.com/added/xxx – contains all added statements, including inferred ones

	http://www.ontotext.com/removed/xxx – contains all removed statements, including inferred ones

In both cases, xxx is a user-provided unique ID that must be assigned when activating the tracking function.
The usage pattern goes like this:

	Start a transaction.

	Activate tracking for this transaction:

INSERT DATA {
 [] <http://www.ontotext.com/track-changes> "xxx"
}

where xxx must be a unique ID assigned by the user.

	Add or remove some data.

	Commit the transaction.

	Retrieve all added triples and their graph:

SELECT * FROM <http://www.ontotext.com/added/xxx> {
 graph ?g {
 ?s ?p ?o
 }
}

where xxx is the ID assigned previously.

	Retrieve the number of removed triples:

SELECT (COUNT(*) as ?c) FROM <http://www.ontotext.com/removed/xxx> {
 ?s ?p ?o
}

where xxx is the ID assigned previously.

	CONSTRUCT query using data that has just been added (advanced example):

BASE <http://ontotext.com/resource/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX test: <http://ontotext.com/vocabulary/test/>

CONSTRUCT {
 ?person test:knows ?knows ;
 foaf:givenName ?givenName
} FROM <http://www.ontotext.com/added/xxx> WHERE {
 ?person foaf:givenName ?givenName ;
 foaf:knows ?knows
}

where xxx is the ID assigned previously.

	Forget the tracked data:

INSERT DATA {
 <http://www.ontotext.com/track-changes> <http://www.ontotext.com/delete-changes> "xxx"
}

where xxx is the ID assigned previously.

Note

Note that you must explicitly delete the tracked changes when you no longer need to query them.
Otherwise they will stay in memory until the same ID is used again, or until GraphDB is restarted.

Tip

A good way to ensure unique tracking IDs is to use UUIDs. A random UUID can be generated in Java by calling
UUID.randomUUID().toString().

Provenance

What’s in this document?

	Predicates

	Enabling the plugin

	Usage and examples

The provenance plugin enables the generation of inference closure from a specific named graph at query time. This is useful in situations when you want to trace what the implicit statements generated from a specific graph are and the axiomatic triples part of the configured ruleset, i.e., the ones inserted with a special predicate sys:schemaTransaction. For more information, check Reasoning.

By default, GraphDB’s forward-chaining inferencer materializes all implicit statements in the default graph. Therefore, it is impossible to trace which graphs these implicit statements are coming from. The provenance plugin provides the opposite approach. With the configured ruleset, the reasoner does forward-chaining over a specific named graph and generates all its implicit statements at query time.

Predicates

The plugin predicates gives you an easy access to the graph, which implicit statements you want to generate. The process is similar to the RDF reification. All plugin’s predicates start with <http://www.ontotext.com/provenance/>:

	Plugin predicates

	Semantics

	http://www.ontotext.com/provenance/derivedFrom

	Creates a request scope for the graph with the inference closure

	http://www.ontotext.com/provenance/subject

	Binds all subjects part of the inference closure

	http://www.ontotext.com/provenance/predicate

	Binds all predicates part of the inference closure

	http://www.ontotext.com/provenance/object

	Binds all objects part of the inference closure

Enabling the plugin

The plugin is disabled by default.

	Start the plugin by adding the parameter:

./graphdb -Dregister-plugins=com.ontotext.trree.plugin.provenance.ProvenancePlugin

	Check the startup log to validate that the plugin has started correctly.

[INFO] 2016-11-18 19:47:19,134 [http-nio-7200-exec-2 c.o.t.s.i.PluginManager] Initializing plugin 'provenance'

Usage and examples

	Copy the TRIG file in the Import -> RDF -> Text area of the Workbench:

@prefix food: <http://www.w3.org/TR/2003/PR-owl-guide-20031209/food#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix vin: <http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

food:Ontology {

 food:Fruit a owl:Class ;
 rdfs:label "fruit"@en ;
 rdfs:comment "In botany, a fruit is the seed-bearing structure in flowering plants formed from the ovary after flowering".

 food:Grape rdfs:label "grape"@en ;
 rdfs:comment "A grape is a fruiting berry of the deciduous woody vines of the botanical genus Vitis";
 rdfs:subClassOf food:Fruit.
}

vin:Ontology {

 vin:WineGrape rdfs:label "wine grape"@en ;
 rdfs:comment "Grape used for the wine production";
 rdfs:subClassOf food:Grape.

 vin:RedWineGrape rdfs:label "white wine"@en;
 rdfs:comment "Red grape used for wine production";
 rdfs:subClassOf vin:WineGrape.

 vin:CabernetSauvignon rdfs:label "Cabernet Sauvignon"@en ;
 rdfs:comment "Cabernet Sauvignon is one of the world's most widely recognized red wine grape varieties";
 rdfs:subClassOf vin:RedWineGrape.
}

	Example 1: Return all explicit and implicit statements

This example returns all explicit and implicit statements derived from the vin:Ontology graph. The ?ctx variable binds a new graph pr:derivedFrom the vin:Ontology graph, which includes all its implicit and explicit statements.

PREFIX pr: <http://www.ontotext.com/provenance/>
PREFIX vin: <http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#>

CONSTRUCT {
 ?subject ?predicate ?object
}
WHERE {
 vin:Ontology pr:derivedFrom ?ctx .
 ?ctx pr:subject ?subject .
 ?ctx pr:predicate ?predicate .
 ?ctx pr:object ?object .
}

The result set will not include statements in which vin:WineGrape is food:Grape or food:Fruit.

	Example 2: Return only implicit statements

The query below extends the previous example by excluding the explicit statements. It returns only the implicit statements materialized from vin:Ontology graph:

PREFIX pr: <http://www.ontotext.com/provenance/>
PREFIX vin: <http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#>

CONSTRUCT {
 ?subject ?predicate ?object
}
WHERE {
 vin:Ontology pr:derivedFrom ?ctx .
 ?ctx pr:subject ?subject .
 ?ctx pr:predicate ?predicate .
 ?ctx pr:object ?object .
 MINUS {
 GRAPH vin:Ontology {
 ?subject ?predicate ?object
 }
 }
}

	Example 3: Return all implicit statements from multiple graphs

The plugin accepts multiple graphs provided with a value keyword. The example returns all implicit statements derived from the vin:Ontology and food:Ontology graphs:

PREFIX pr: <http://www.ontotext.com/provenance/>
PREFIX vin: <http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#>
PREFIX food: <http://www.w3.org/TR/2003/PR-owl-guide-20031209/food#>

CONSTRUCT {
 ?subject ?predicate ?object
}
WHERE {
 VALUES ?graph {
 food:Ontology vin:Ontology
 }
 ?graph pr:derivedFrom ?ctx .
 ?ctx pr:subject ?subject .
 ?ctx pr:predicate ?predicate .
 ?ctx pr:object ?object .
 MINUS {
 GRAPH vin:Ontology {
 ?subject ?predicate ?object
 }
 }
}

Proof plugin

What’s in this document?

	What the plugin does

	Predicates and namespace

	Usage and examples

	Simple example with owl:inverseOf

	Example using bindings from other patterns

	More complex example using other data

What the plugin does

The GraphDB proof plugin enables you to find out how a particular statement has been derived by the inferencer, e.g., which rule fired and which premises have been matched to produce that statement.

The plugin is available as open source [https://github.com/Ontotext-AD/graphdb-proof-plugin].

Predicates and namespace

The plugin supports the following predicates:

	proof:explain - the subject will be bound to the state variable (a unique BNode in request scope). The object is a list with three arguments - the subject, predicate, and object of the statement to be explained.

When the subject is bound with the id of the state variable, the other predicates can be used to fetch a part of the current solution (rulename, subject, predicate, object, and context of the matching premise).

Upon re-evaluation, values from the next premise of the rule are used, or we proceed to the next solution to enumerate its premises for each of the rules that derive the statement.

For brevity of the results, a solution is checked for whether it contains a premise that is equal to the source statement we are exploring. If so, that solution is skipped. This removes matches for self-supporting statements (i.e., when the same statement is also a premise of a rule that derives it).

	proof:rule - if the subject is bound to the state variable, then the current solution is accessed through the context, and the object is bound to the rule name of the current solution as a Literal. If the source statement is explicit, the Literal “explicit” is bound to the object.

	proof:subject - the subject is the state variable and the object is bound to the subject of the premise.

	proof:predicate - the subject is the state variable and the object is bound to the predicate of the premise.

	proof:object - the subject is the state variable and the object is bound to the object of the premise.

	proof:context - the subject is the state variable and the object is bound to the context of the premise (or onto:explicit/onto:implicit).

The plugin namespace is http://www.ontotext.com/proof/, and its internal name is proof.

Usage and examples

When creating your repository, make sure to select the OWL-Horst ruleset, as the examples below cover inferences related to the owl:inverseOf and owl:intersectionOf predicates, for which OWL-Horst contains rules.

[image: _images/proof_plugin_owl-horst.png]

Simple example with owl:inverseOf

This example will investigate the relevant rule from a ruleset supporting the owl:inverseOf predicate, which looks like the one in the source .pie file:

Id: owl_invOf

 a b c
 b <owl:inverseOf> d

 c d a

Add to the repository the following data that declares that urn:childOf is inverse property of urn:hasChild, and places a statement relating urn:John urn:childOf urn:Mary in a context named <urn:family>:

INSERT DATA {
 <urn:childOf> owl:inverseOf <urn:hasChild> .
 graph <urn:family> {
 <urn:John> <urn:childOf> <urn:Mary>
 }
}

The following query explains which rule has been triggered to derive the (<urn:Mary> <urn:hasChild> <urn:John>) statement.
The arguments to the proof:explain predicate from the plugin are supplied by a VALUES expression for brevity:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX proof: <http://www.ontotext.com/proof/>
SELECT ?rule ?s ?p ?o ?context WHERE {
 VALUES (?subject ?predicate ?object) {(<urn:Mary> <urn:hasChild> <urn:John>)}
 ?ctx proof:explain (?subject ?predicate ?object) .
 ?ctx proof:rule ?rule .
 ?ctx proof:subject ?s .
 ?ctx proof:predicate ?p .
 ?ctx proof:object ?o .
 ?ctx proof:context ?context .
}

The result we get is:

[image: _images/proof_example1.png]
If we change the VALUES to:

VALUES (?subject ?predicate ?object) {
 (<urn:John> <urn:childOf> <urn:Mary>)
}

we are getting:

[image: _images/proof_example2.png]
If we change the VALUES further to:

VALUES (?subject ?predicate ?object) {
 (<urn:hasChild> owl:inverseOf <urn:childOf>)
}

the result we get is:

[image: _images/proof_example3.png]
As you can see, (owl:inverseOf, owl:inverseOf, owl:inverseOf) is implicit, and we can investigate further by altering the VALUES to:

VALUES (?subject ?predicate ?object) {
 (owl:inverseOf owl:inverseOf owl:inverseOf)
}

Where we will get:

[image: _images/proof_example4.png]
The .pie code for the related rule is as follows:

Id: owl_invOfBySymProp

 a <rdf:type> <owl:SymmetricProperty>

 a <owl:inverseOf> a

If we track down the last premise, we will see that another rule supports it. (Note that both rules and the premises are axioms. Currently, the plugin does not check whether something is an axiom.)

Id: owl_SymPropByInverse

 a <owl:inverseOf> a

 a <rdf:type> <owl:SymmetricProperty>

Example using bindings from other patterns

This more elaborate example demonstrates how to combine the bindings from regular SPARQL statement patterns and explore multiple statements.

We can define a helper JavaScript function that will return the local name of an IRI using the JavaScript functions plugin:

PREFIX jsfn:<http://www.ontotext.com/js#>
INSERT DATA {
 [] jsfn:register '''
 function lname(value) {
 if(value instanceof org.eclipse.rdf4j.model.IRI)
 return value.getLocalName();
 else
 return ""+value;
 }
'''
}

Next, the query will look for statements with ?subject bound to <urn:Mary>, and explain all of them. Note the use of the newly defined function lname() in the projection expression with concat():

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX onto: <http://www.ontotext.com/>
prefix proof: <http://www.ontotext.com/proof/>
PREFIX jsfn: <http://www.ontotext.com/js#>
SELECT (concat('(',jsfn:lname(?subject),',',jsfn:lname(?predicate),',',jsfn:lname(?object),')') as ?stmt)
 ?rule ?s ?p ?o ?context
WHERE {
 bind(<urn:Mary> as ?subject) .
 {?subject ?predicate ?object}

 ?ctx proof:explain (?subject ?predicate ?object) .
 ?ctx proof:rule ?rule .
 ?ctx proof:subject ?s .
 ?ctx proof:predicate ?p .
 ?ctx proof:object ?o .
 ?ctx proof:context ?context .
}

The results look as follows:

[image: _images/proof_example5.png]
The first result for (Mary, type, Resource) is derived from the rdf1_rdfs4a_4b_2 rule from the OWL-Horst ruleset which looks like:

Id: rdf1_rdfs4a_4b
 x a y

 x <rdf:type> <rdfs:Resource>
 a <rdf:type> <rdfs:Resource>
 y <rdf:type> <rdfs:Resource>

More complex example using other data

Let’s further explore the inference engine by adding the data below into the same repository:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
INSERT data {
 <urn:Red> a <urn:Colour> .
 <urn:White> a <urn:Colour> .
 <has:color> a rdf:Property .
 <urn:WhiteThing> a owl:Restriction;
 owl:onProperty <has:color>;
 owl:hasValue <urn:White> .
 <urn:RedThing> a owl:Restriction;
 owl:onProperty <has:color>;
 owl:hasValue <urn:Red> .
 <has:component> a rdf:Property .
 <urn:Wine> a owl:Restriction;
 owl:onProperty <has:component>;
 owl:someValuesFrom <urn:Grape> .
 <urn:RedWine> owl:intersectionOf (<urn:RedThing> <urn:Wine>) .
 <urn:WhiteWine> owl:intersectionOf (<urn:WhiteThing> <urn:Wine>) .
 <urn:Beer> a owl:Restriction;
 owl:onProperty <has:component>;
 owl:someValuesFrom <urn:Malt> .
 <urn:PilsenerMalt> a <urn:Malt> .
 <urn:PaleMalt> a <urn:Malt> .
 <urn:WheatMalt> a <urn:Malt> .

 <urn:MerloGrape> a <urn:Grape> .
 <urn:CaberneGrape> a <urn:Grape> .
 <urn:MavrudGrape> a <urn:Grape> .

 <urn:Merlo> <has:component> <urn:MerloGrape> ;
 <has:color> <urn:Red> .
}

It is a simple beverage ontology that uses owl:hasValue, owl:someValuesFrom, and owl:intersectionOf to classify instances based on the values of some of the ontology properties.

It contains:

	two colors: Red and White;

	classes of WhiteThings and RedThigs for the items related to has:color property to White and Red colors;

	classes Wine and Beer for the items related to has:component to instances of Grape and Malt classes;

	several instances of Grape (MerloGrape, CabernetGrape etc.) and Malt (PilsenerMalt, WheatMalt etc.);

	classes RedWine and WhiteWine are declared as intersections of Wine with RedThings or WhiteThings with WhiteWine, respectively;

	finally, we introduce an instance Merlo related to has:component with the value MerloGrape, and whose value for has:color is Red.

The expected inference is that Merlo is classified as RedWine because it is a member of both RedThings (since has:color is related to Red)
and Wine (since has:component points to an object that is a member of the class Grape).

If we evaluate:

DESCRIBE <urn:Merlo>

We will get a Turtle document as follows:

<urn:Merlo> a rdfs:Resource, <urn:RedThing>, <urn:RedWine>,<urn:Wine>;
 <has:color> <urn:Red>;
 <has:component> <urn:MerloGrape> .

As you can see, the inferencer correctly derived that Merlo is a member of RedWine.

Now, let’s see how it derived this.

First, we will add some helper JavaScript functions to combine the results in more compact form as literals formed by the local names of the IRI components in the statements. We already introduced the js:lname() function from the previous examples, so we can reuse it to create a stmt() that concatenates several more items into a convenient literal:

PREFIX jsfn:<http://www.ontotext.com/js#>
INSERT DATA {
 [] jsfn:register '''
 function stmt(s, p, o, c) {
 return '('+lname(s)+', '+lname(p)+', '+lname(o)+(c?', '+lname(c):'')+')';
 }
'''
}

We also need a way to refer to a BNode using its label because SPARQL always generates unique BNodes during query evaluation:

PREFIX jsfn:<http://www.ontotext.com/js#>
INSERT DATA {
 [] jsfn:register '''
 function _bnode(value) {
 return org.eclipse.rdf4j.model.impl.SimpleValueFactory.getInstance().createBNode(value);
 }
'''
}

Now, let’s see how the (urn:Merlo rdf:type urn:RedWine) has been derived (note the use of js:stmt() function in the projection of the query). The query will use a SUBSELECT to provide bindings for ?subject, ?predicate, and ?object variables as a convenient way to easily add more statements to be explained by the plugin further.

PREFIX jsfn:<http://www.ontotext.com/js#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
prefix proof: <http://www.ontotext.com/proof/>
SELECT(jsfn:stmt(?subject,?predicate,?object) as ?stmt) ?rule (jsfn:stmt(?s,?p,?o,?context) as ?premise)
WHERE {
 {
 SELECT ?subject ?predicate ?object {
 VALUES (?subject ?predicate ?object) {
 (<urn:Merlo> rdf:type <urn:RedWine>)
 }
 }
 }
 ?ctx proof:explain (?subject ?predicate ?object) .
 ?ctx proof:rule ?rule .
 ?ctx proof:subject ?s .
 ?ctx proof:predicate ?p .
 ?ctx proof:object ?o .
 ?ctx proof:context ?context .
}

The result looks like this:

[image: _images/proof_example6.png]
The first premise is explicit, and comes from the definition of RedWine class which is an owl:intersectionOf of an RDF list (_:node2) that hold the classes that form the intersection.
The second premise relates Merlo with a predicate called _allTypes to the node from the intersection node. The inference is derived after applying the following rule:

Id: owl_typeByIntersect_1

 a <onto:_allTypes> b
 c <owl:intersectionOf> b

 a <rdf:type> c

where a is bound to Merlo and c to RedWine.

Let’s add a (Merlo, _allTypes, _:node1) statement to the list of statements in the SUBSELECT that we used in the query. We will change the SUBSELECT to use a UNION, where for the second part, the ?object is bound to the right BNode that we created by using the helper js:_bnode() function and providing the id as a literal:

SELECT ?subject ?predicate ?object {
 {
 VALUES (?subject ?predicate ?object) {
 (<urn:Merlo> rdf:type <urn:RedWine>)
 }
 } UNION {
 bind (jsfn:_bnode('node1') as ?object)
 VALUES (?subject ?predicate) {
 (<urn:Merlo> <http://www.ontotext.com/_allTypes>)}
 }
}

The results of this evaluation are:

[image: _images/proof_example7.png]
We can see that (Merlo, _allTypes, _:node1) is derived by rule owl_typeByIntersect_3:

Id: owl_typeByIntersect_3

 a <rdf:first> b
 d <rdf:type> b
 a <rdf:rest> c
 d <onto:_allTypes> c

 d <onto:_allTypes> a

where we have two explicit and two inferred statements matching the premises (Merlo, _allTypes, _:node2) and (Merlo, type, RedThing).

When we add to the list (Merlo, type, RedThing) first, the SUBSELECT is changed to:

SELECT ?subject ?predicate ?object {
 {
 VALUES (?subject ?predicate ?object) {
 (<urn:Merlo> rdf:type <urn:RedWine>)
 (<urn:Merlo> rdf:type <urn:RedThing>)
 }
 } UNION {
 bind (jsfn:_bnode('node1') as ?object)
 VALUES (?subject ?predicate) {
 (<urn:Merlo> <http://www.ontotext.com/_allTypes>)}
 }
}

The result is:

[image: _images/proof_example8.png]
We see that (Merlo, type, RedThing) is derived by matching rule owl_typeByHasVal with all explicit premises:

Id: owl_typeByHasVal

 a <owl:onProperty> b
 a <owl:hasValue> c
 d b c

 d <rdf:type> a

where a is bound to RedThing and d to Merlo, etc.

Let’s add the other implicit statement that matched the owl_typeByInterset_3 rule (Merlo, _allTypes, _:node2). To do that, we will add another argument to the UNION in the SUBSELECT by introducing the _:node2 using the same js_bnode() function.

The SUBSELECT looks like this:

SELECT ?subject ?predicate ?object {
 {
 VALUES (?subject ?predicate ?object) {
 (<urn:Merlo> rdf:type <urn:RedWine>)
 (<urn:Merlo> rdf:type <urn:RedThing>)
 }
 } UNION {
 bind (jsfn:_bnode('node1') as ?object)
 VALUES (?subject ?predicate) {
 (<urn:Merlo> <http://www.ontotext.com/_allTypes>) }
 } UNION {
 bind (jsfn:_bnode('node2') as ?object)
 VALUES (?subject ?predicate) {
 (<urn:Merlo> <http://www.ontotext.com/_allTypes>) }
 }
}

Evaluating it returns the following:

[image: _images/proof_example9.png]
The statement (Merlo, _allTypes, _:node2) was derived by owl_typeByIntersect_2 and the only implicit statement matching as premise is (Merlo, type, Wine).

The owl_typeByIntersect_2 rule looks like this:

Id: owl_typeByIntersect_2

 a <rdf:first> b
 a <rdf:rest> <rdf:nil>
 c <rdf:type> b

 c <onto:_allTypes> a

where c is bound to Merlo and b to Wine.

Let’s add the (Merlo, type, Wine) to the SUBSELECT we used to explore as another UNION using VALUES, and evaluate the query again:

SELECT ?subject ?predicate ?object {
 {
 values (?subject ?predicate ?object) {
 (<urn:Merlo> rdf:type <urn:RedWine>)
 (<urn:Merlo> rdf:type <urn:RedThing>)
 }
 } UNION {
 bind (jsfn:_bnode('node1') as ?object)
 values (?subject ?predicate) {
 (<urn:Merlo> <http://www.ontotext.com/_allTypes>)}
 } UNION {
 bind (jsfn:_bnode('node2') as ?object)
 VALUES (?subject ?predicate) {
 (<urn:Merlo> <http://www.ontotext.com/_allTypes>)}
 } UNION {
 values (?subject ?predicate ?object) {
 (<urn:Merlo> rdf:type <urn:Wine>)
 }
 }
}

The results have now been expanded, as shown in lines 13-16:

[image: _images/proof_example10.png]
These come from rule owl_typeBySomeVal where all premises matching it were explicit. The rule looks like:

Id: owl_typeBySomeVal

 a <rdf:type> b
 c <owl:onProperty> d
 c <owl:someValuesFrom> b
 e d a

 e <rdf:type> c

where e is bound to Merlo, d to has:component, a to MerloGrape, b to Grape, etc.

In conclusion, while the chain is rather obscure, we were able to find out how the inferencer derived (<urn:Merlo> rdf:type <urn:RedWine>):

	(Merlo, type, Wine) was derived by rule owl_typeBySomeVal from all explicit statements.

	(Merlo, type, RedThing) was derived by rule owl_typeByHasVal from explicit statements.

	(Merlo, _allTypes, _:node2) was derived by rule owl_typeByIntersect_2 with combination of some explicit and the inferred (Merlo, type, Wine).

	(Merlo, _allTypes, _:node1) was derived by rule owl_typeByIntersect_3 with combination of explicit and inferred (Merlo, type, RedThing) and (Merlo, _allTypes, _:node2).

	And finally, (Merlo, type, RedWine) was derived by owl_typeByIntersect_1 from explicit (RedWine, intersectionOf, _:node1) and inferred (Merlo, _allTypes, _:node1).

Autocomplete index

What’s in this document?

	What the index does

	How the index works

	Local name tokenization

	Search strings

	Autocomplete in the SPARQL editor

	Autocomplete in the View resource box

	Workbench queries

What the index does

The Autocomplete index offers suggestions for the IRIs’ local names in the SPARQL editor, the View Resource page, and in the Search RDF resources box. It is an open-source GraphDB plugin [https://github.com/Ontotext-AD/graphdb-autocomplete-plugin] that builds an index over all IRIs in the repository plus some additional well-known IRIs from RDF4J vocabularies.

The index is disabled by default. In the Workbench, you can enable it from Setup -> Autocomplete index.

[image: _images/autocompleteEnable.png]
In case you are getting peculiar results and you think the index might be broken, use the Build Now button.

[image: _images/autocompleteBuildNow.png]
If you try to use autocompletion before it is enabled, a tooltip will warn you that the index is off and provide a link for building it.

[image: _images/autocomplete-enable-link.png]
You can also enable it with a SPARQL query from the Workbench SPARQL editor.

How the index works

All IRIs and their labels are split into words (tokens). During search, the whole words or their beginnings are matched.

For each IRI, the index includes the following:

	The text of the IRI local name is tokenized;

	If the IRI is part of a triple <IRI rdfs:label ?label>, the text of the label literal is tokenized and indexed;

	If the IRI is part of a triple <IRI ?p ?label>, and ?p is added to the index config as label predicate, then the text of the ?label is tokenized and indexed for this IRI. You can add a new label via the right-hand button in the Autocomplete index screen, which will open this dialog box:

[image: _images/autocomplete-add-label.png]

Local name tokenization

Local names are split by special characters (e.g., _, -), or in cases when they contain camelCase and/or numbers. For example:

	IRI

	Local name tokens

	http://dbpedia.org/resource/Bulgarian_Tournament_Cup

	Bulgarian Tournament Cup

	http://dbpedia.org/resource/Post-rock

	Post rock

	http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#ChardonnayGrape

	Chardonnay Grape

	http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#USRegion

	US Region

	http://purl.org/dc/terms/ISO639-3

	ISO 639 3

Search strings

You can search for one or more words. When searching for multiple words, they can be separated with space, or with - and _ symbols, in which case these will be required to be present in the matched text as well. You can also use camelCase notation to split the search string into multiple words.

Once the search string has been split into words, search is case-insensitive. When typing multiple words, each of them is treated as full match search and must be fully typed except for the last one, which is treated as startsWith. The order of the search string words is irrelevant, e.g., whiteWin would return the same results as wineWhit.

Some examples:

	Search string

	Found IRI

	“Tour”

	http://dbpedia.org/resource/Bulgarian_Tournament_Cup

	“white win” OR “whiteWin”

	
http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#WhiteWine

http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#WhiteTableWine

	“uk-wal”

	https://www.bbc.com/news/uk-wales-44849196

	“63”

	http://purl.org/dc/terms/ISO639-3

Autocomplete in the SPARQL editor

For the examples below, we will be using the W3C wine ontology [https://www.w3.org/TR/owl-guide/wine.rdf] dataset that you can import in your repository.

To start autocompletion in the SPARQL editor, use the shortcuts Alt+Enter / Ctrl+Space / Cmd+Space depending on your OS and the way you have set up your shortcuts.

You can use autocompletion to:

	Search for a single word in all IRIs:

[image: _images/autocomplete-single-word-in-all-IRIs.png]

	Search only for IRIs that start with a certain prefix:

[image: _images/autocomplete-IRI-starts-with-prefix.png]

	Search for more than one word:

[image: _images/autocomplete-multiple-words.png]

	Indexed text is split where digits or digit sequences are found, so you can also search by number:

[image: _images/autocomplete-search-by-number.png]

Autocomplete in the View resource box

To use the autocompletion feature to find a resource, go to the GraphDB home page, and start typing in the View resource field.

[image: _images/autocomplete-viewResource.png]
You can also autocomplete resources in the Search RDF resource box, which is visible in all GraphDB screens in the top right corner and works the same way as the View resource field in the home page. Clicking the icon will open a search field where you can explore the resources in the repository.

[image: _images/autocomplete-search-rdf-resource.png]

Workbench queries

You can also work with the autocomplete index via SPARQL queries in the Workbench SPARQL editor. Some important examples:

	Check if the index is enabled

ASK WHERE {
 _:s <http://www.ontotext.com/plugins/autocomplete#enabled> ?o .
}

	Enable the index

INSERT DATA {
 _:s <http://www.ontotext.com/plugins/autocomplete#enabled> true .
}

	Autocomplete IRIs (here with the wines example from earlier)

SELECT ?s WHERE {
 ?s <http://www.ontotext.com/plugins/autocomplete#query> "win"
}

GeoSPARQL support

What’s in this document?

	What is GeoSPARQL

	Usage

	Configuration parameters

	Plugin control predicates

	Enable plugin

	Disable plugin

	Check the current configuration

	Update the current configuration

	Speed up the building and rebuilding of the GeoSPARQL index

	Force reindex geometry data

	Ignore errors on indexing

	GeoSPARQL extensions

	GeoSPARQL examples

	Example 1

	Using a function

	Using a predicate

	Example 1 result

	Example 2

	Using a function

	Using a predicate

	Example 2 result

	Example 3

	Using a function

	Using a predicate

	Example 3 result

	Example 4

	Example 4 result

	Example 5

	Example 5 result

What is GeoSPARQL

GeoSPARQL is a standard for representing and querying geospatial linked data for the Semantic Web from the Open Geospatial Consortium (OGC) [http://www.opengeospatial.org/]. The standard provides:

	a small topological ontology in RDFS/OWL for representation using Geography Markup Language
(GML) [https://en.wikipedia.org/wiki/Geography_Markup_Language] and Well-Known Text
(WKT) [https://en.wikipedia.org/wiki/Well-known_text] literals;

	Simple Features, RCC8, and Egenhofer topological relationship vocabularies and ontologies for qualitative reasoning;

	A SPARQL query interface using a set of topological SPARQL extension functions for quantitative reasoning.

The GraphDB GeoSPARQL plugin allows the conversion of Well-Known Text from different coordinate reference systems (CRS) into the CRS84 format, which is the default CRS according to the Open Geospatial Consortium (OGC) [http://www.opengeospatial.org/]. You can input data of all known CRS types - it will be properly indexed by the plugin, and you will also be able to query it in both the default CRS84 format and in the format in which it was imported.

The following is a simplified diagram of the GeoSPARQL classes Feature and Geometry,
as well as some of their properties:

[image: _images/geosparql-ontology.png]

Usage

Configuration parameters

The following parameters can be used when configuring the plugin:

	Parameter

	enabled

	Predicate

	<http://www.ontotext.com/plugins/geosparql#enabled>

	Description

	Enables and disables plugin

	Default

	false

	Example

	PREFIX geoSparql: <http://www.ontotext.com/plugins/geosparql#>
INSERT DATA { _:s geoSparql:enabled "true" . }

	Parameter

	prefixTree

	Predicate

	<http://www.ontotext.com/plugins/geosparql#prefixTree>

	Description

	Implementation of the tree used while building the index; stores value before rebuilding.

	Default

	prefixTree.QUAD

	Example

	PREFIX geoSparql: <http://www.ontotext.com/plugins/geosparql#>
INSERT DATA { _:s geoSparql:prefixTree "geohash" . }

	Parameter

	precision

	Predicate

	<http://www.ontotext.com/plugins/geosparql#precision>

	Description

	Specifies the desired precision; stores value before rebuilding

	Default

	11
min value 1; max value depends on used prefixTree or (24 for geohash and 50 for QUAD)

	Example

	PREFIX geoSparql: <http://www.ontotext.com/plugins/geosparql#>
INSERT DATA { _:s geoSparql:precision "11" . }

	Parameter

	currentPrefixTree

	Predicate

	<http://www.ontotext.com/plugins/geosparql#currentPrefixTree>

	Description

	Value of last built index

	Default

	PrefixTree.QUAD

	Example

	PREFIX geoSparql: <http://www.ontotext.com/plugins/geosparql#>
INSERT DATA { _:s geoSparql:currentPrefixTree "geohash" . }

	Parameter

	currentPrecision

	Predicate

	<http://www.ontotext.com/plugins/geosparql#currentPrecision>

	Description

	Value of last built index

	Default

	11

	Example

	PREFIX geoSparql: <http://www.ontotext.com/plugins/geosparql#>
INSERT DATA { _:s geoSparql:currentPrecision "11" . }

	Parameter

	maxBufferedDocs

	Predicate

	<http://www.ontotext.com/plugins/geosparql#maxBufferedDocs>

	Description

	Speeds up building and rebuilding of index

	Default

	1,000 (max. allowed 5,000)

	Example

	PREFIX geoSparql: <http://www.ontotext.com/plugins/geosparql#>
INSERT DATA { _:s geoSparql:maxBufferedDocs "3000" . }

	Parameter

	ramBufferSizeMB

	Predicate

	<http://www.ontotext.com/plugins/geosparql#ramBufferSizeMB>

	Description

	Speeds up building and rebuilding of index

	Default

	32.0 (max. allowed 512.0)

	Example

	PREFIX geoSparql: <http://www.ontotext.com/plugins/geosparql#>
INSERT DATA { _:s geoSparql:ramBufferSizeMB "256.0" . }

	Parameter

	ignoreErrors

	Predicate

	<http://www.ontotext.com/plugins/geosparql#ignoreErrors>

	Description

	Ensures building of the index even in case of erroneous data

	Default

	false

	Example

	PREFIX geoSparql: <http://www.ontotext.com/plugins/geosparql#>
INSERT DATA { _:s geoSparql:ignoreErrors "true" . }

Plugin control predicates

The plugin allows you to configure it through SPARQL UPDATE queries with embedded control predicates.

Enable plugin

When the plugin is enabled, it indexes all existing GeoSPARQL data in the repository and automatically reindexes any updates.

PREFIX : <http://www.ontotext.com/plugins/geosparql#>

INSERT DATA {
 _:s :enabled "true" .
}

Note

All functions require as input WKT or GML literals while the predicates expect resources of type geo:Feature
or geo:Geometry. The GraphDB implementation has a non-standard extension that allows you to use literals with the predicates too.
See Example 2 (using predicates) for an example of that usage.

Warning

All GeoSPARQL functions starting with geof: like geof:sfOverlaps do not use any indexes and are always enabled!
That is why it is recommended to use the indexed operations like geo:sfOverlaps, whenever it is possible.

Disable plugin

When the plugin is disabled, it does not index any data or process updates. It does not handle any of the GeoSPARQL predicates either.

PREFIX : <http://www.ontotext.com/plugins/geosparql#>

INSERT DATA {
 _:s :enabled "false" .
}

Check the current configuration

All the plugin configuration parameters are stored in $GDB_HOME/data/repositories/<repoId>/storage/GeoSPARQL/config.properties.
To check the current runtime configuration:

SELECT * WHERE {
 <http://www.ontotext.com/plugins/geosparql> ?p ?o.
}

Update the current configuration

The plugin supports two indexing algorithms quad prefix tree and geohash prefix tree. Both algorithms support approximate matching
controlled with the precision parameter. The default 11 precision value of the quad prefix is about ±2.5km on the equator.
When increased to 20 the precision goes down to ±6m accuracy. Respectively, the geohash prefix tree with precision 11 results ±1m.

PREFIX : <http://www.ontotext.com/plugins/geosparql#>

INSERT DATA {
 _:s :prefixTree "quad"; #geohash
 :precision "25".
}

After changing the indexing algorithm, you need to trigger a reindex.

Speed up the building and rebuilding of the GeoSPARQL index

To speed up the building and rebuilding of your GeoSPARQL index, we recommend setting higher values for the ramBufferSizeMB and maxBufferedDocs parameters. This disables the Lucene IndexWriter autocommit, and starts flushing disk changes if one of these values is reached.

Default and maximum values are as follows:

	ramBufferSizeMB - default 32.0, maximum 512.0.

	maxBufferedDocs - default 1,000, maximum 5,000.

Depending on your dataset and machine parameters, you can experiment with the values to find the ones most suitable for your use case.

Note

However, do not set these values too high, otherwise you may hit an IndexWriter over-merging issue.

Force reindex geometry data

This configuration option is usually used after a configuration change or when index files are either corrupted or have been mistakenly deleted.

PREFIX : <http://www.ontotext.com/plugins/geosparql#>

INSERT DATA {
 _:s :forceReindex ""
}

Ignore errors on indexing

PREFIX : <http://www.ontotext.com/plugins/geosparql#>

INSERT DATA {
 _:s :ignoreErrors "true"
}

ignoreErrors predicate determines whether the GeoSPARQL index will continue building if an error has occurred. If the value is set to false, the whole index will fail if there is a problem with a document. If the value is set to true, the index will continue building and a warning will be logged in the log.
By default, the value of ignoreErrors is false.

GeoSPARQL extensions

On top of the standard GeoSPARQL functions, GraphDB offers a few useful extensions. Those are based on the USeekMSail. All extension functions have the ext prefix, where ext stands for <http://rdf.useekm.com/ext#>.

	Function

	Description

	double

ext:area(geometry)

	Calculates the area of the surface of the geometry.

	point

ext:closestPoint(geometry, geometry)

	For two given geometries, computes the point on the first geometry that is closest to the second geometry.

	bool

ext:containsProperly(geometry, geometry)

	Tests if the first geometry properly contains the second geometry. Geom1 contains properly geom2 if all
geom1 contains geom2 and the boundaries of the two geometries do not intersect.

	bool

ext:coveredBy(geometry, geometry)

	Tests if the first geometry is covered by the second geometry. Geom1 is covered by geom2 if every point of
geom1 is a point of geom2.

	bool

ext:covers(geometry, geometry)

	Tests if the first geometry covers the second geometry. Geom1 covers geom2 if every point of geom2 is a
point of geom1.

	double

ext:hausdorffDistance(geometry, geometry)

	Measures the degree of similarity between two geometries. The measure is normalized to lie in the range
[0, 1]. Higher measures indicate a greater degree of similarity.

	line

ext:shortestLine(geometry, geometry)

	Computes the shortest line between two geometries. Returns it as a LineString object.

	geometry

ext:simplify(geometry, double)

	Given a maximum deviation from the curve, computes a simplified version of the given geometry using the
Douglas-Peuker algorithm [https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm].

	geometry

ext:simplifyPreserveTopology(geometry, double)

	Given a maximum deviation from the curve, computes a simplified version of the given geometry using the
Douglas-Peuker algorithm [https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm].
Will avoid creating derived geometries (polygons in particular) that are invalid.

	bool

ext:isValid(geometry)

	Checks whether the input geometry is a valid geometry.

GeoSPARQL examples

This section contains examples of SELECT queries on geographic data.

Examples 1, 2 and 3 have a variant using a function (corresponding to the same example in the GeoSPARQL specification),
as well as a variant where the function is substituted with a predicate. Examples 4 and 5 use a predicate and correspond
to the same examples in the specification.

To run the examples you need to:

	Download and import the file geosparql-example.rdf.

	Enable the GeoSPARQL plugin.

The data defines the following spatial objects:

[image: _images/geosparql-example-objects.png]

Example 1

Find all features that feature my:A contains, where spatial calculations are based on my:hasExactGeometry.

Using a function

PREFIX my: <http://example.org/ApplicationSchema#>
PREFIX geo: <http://www.opengis.net/ont/geosparql#>
PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT ?f
WHERE {
 my:A my:hasExactGeometry ?aGeom .
 ?aGeom geo:asWKT ?aWKT .
 ?f my:hasExactGeometry ?fGeom .
 ?fGeom geo:asWKT ?fWKT .
 FILTER (geof:sfContains(?aWKT, ?fWKT) && !sameTerm(?aGeom, ?fGeom))
}

Using a predicate

PREFIX my: <http://example.org/ApplicationSchema#>
PREFIX geo: <http://www.opengis.net/ont/geosparql#>
PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT ?f
WHERE {
 my:A my:hasExactGeometry ?aGeom .
 ?f my:hasExactGeometry ?fGeom .
 ?aGeom geo:sfContains ?fGeom .
 FILTER (!sameTerm(?aGeom, ?fGeom))
}

Example 1 result

	?f

	my:B

	my:F

Example 2

Find all features that are within a transient bounding box geometry, where spatial calculations are based on my:hasPointGeometry.

Using a function

PREFIX my: <http://example.org/ApplicationSchema#>
PREFIX geo: <http://www.opengis.net/ont/geosparql#>
PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT ?f
WHERE {
 ?f my:hasPointGeometry ?fGeom .
 ?fGeom geo:asWKT ?fWKT .
 FILTER (geof:sfWithin(?fWKT, '''
 <http://www.opengis.net/def/crs/OGC/1.3/CRS84>
 Polygon ((-83.4 34.0, -83.1 34.0,
 -83.1 34.2, -83.4 34.2,
 -83.4 34.0))
 '''^^geo:wktLiteral))
}

Using a predicate

Note

Using geometry literals in the object position is a GraphDB extension and not part of the GeoSPARQL specification.

PREFIX my: <http://example.org/ApplicationSchema#>
PREFIX geo: <http://www.opengis.net/ont/geosparql#>
PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT ?f
WHERE {
 ?f my:hasPointGeometry ?fGeom .
 ?fGeom geo:sfWithin '''
 <http://www.opengis.net/def/crs/OGC/1.3/CRS84>
 Polygon ((-83.4 34.0, -83.1 34.0,
 -83.1 34.2, -83.4 34.2,
 -83.4 34.0))
 '''^^geo:wktLiteral
}

Example 2 result

	?f

	my:D

Example 3

Find all features that touch the union of feature my:A and feature my:D, where computations are based on my:hasExactGeometry.

Using a function

PREFIX my: <http://example.org/ApplicationSchema#>
PREFIX geo: <http://www.opengis.net/ont/geosparql#>
PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT ?f
WHERE {
 ?f my:hasExactGeometry ?fGeom .
 ?fGeom geo:asWKT ?fWKT .
 my:A my:hasExactGeometry ?aGeom .
 ?aGeom geo:asWKT ?aWKT .
 my:D my:hasExactGeometry ?dGeom .
 ?dGeom geo:asWKT ?dWKT .
 FILTER (geof:sfTouches(?fWKT, geof:union(?aWKT, ?dWKT)))
}

Using a predicate

PREFIX my: <http://example.org/ApplicationSchema#>
PREFIX geo: <http://www.opengis.net/ont/geosparql#>
PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT ?f
WHERE {
 ?f my:hasExactGeometry ?fGeom .
 ?fGeom geo:asWKT ?fWKT .
 my:A my:hasExactGeometry ?aGeom .
 ?aGeom geo:asWKT ?aWKT .
 my:D my:hasExactGeometry ?dGeom .
 ?dGeom geo:asWKT ?dWKT .
 BIND(geof:union(?aWKT, ?dWKT) AS ?union) .
 ?fGeom geo:sfTouches ?union
}

Example 3 result

	?f

	my:C

Example 4

Find the 3 closest features to feature my:C, where computations are based on my:hasExactGeometry.

PREFIX uom: <http://www.opengis.net/def/uom/OGC/1.0/>
PREFIX my: <http://example.org/ApplicationSchema#>
PREFIX geo: <http://www.opengis.net/ont/geosparql#>
PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT ?f
WHERE {
 my:C my:hasExactGeometry ?cGeom .
 ?cGeom geo:asWKT ?cWKT .
 ?f my:hasExactGeometry ?fGeom .
 ?fGeom geo:asWKT ?fWKT .
 FILTER (?fGeom != ?cGeom)
}
ORDER BY ASC(geof:distance(?cWKT, ?fWKT, uom:metre))
LIMIT 3

Example 4 result

	?f

	my:A

	my:E

	my:D

Note

The example in the GeoSPARQL specification has a different order in the result: my:A, my:D, my:E.
In fact, feature my:E is closer than feature my:D even if that does not seem obvious from the drawing of the objects.
my:E’s closest point is 0.1° to the West of my:C, while my:D’s closest point is 0.1° to the South.
At that latitude and longitude the difference in terms of distance is larger in latitude, hence my:E is closer.

Example 5

Find all features or geometries that overlap feature my:A.

PREFIX geo: <http://www.opengis.net/ont/geosparql#>
PREFIX my: <http://example.org/ApplicationSchema#>

SELECT ?f
WHERE {
 ?f geo:sfOverlaps my:AExactGeom
}

Example 5 result

	?f

	my:D

	my:DExactGeom

Note

The example in the GeoSPARQL specification has additional results my:E and my:EExactGeom.
In fact, my:E and my:EExactGeom do not overlap my:AExactGeom because they are of different dimensions
(my:AExactGeom is a Polygon and my:EExactGeom is a LineString) and the overlaps relation is defined only
for objects of the same dimension.

Tip

For more information on GeoSPARQL predicates and functions, see the current official spec [http://www.opengis.net/doc/IS/geosparql/1.0]: OGC 11-052r4, Version: 1.0, Approval Date: 2012-04-27, Publication Date: 2012-09-10.

Geospatial extensions

What’s in this document?

	What are geospatial extensions

	How to create a geospatial index

	Geospatial query syntax

	Extension query functions

	Implementation details

What are geospatial extensions

GraphDB provides support for 2-dimensional geospatial data that uses
the WGS84 Geo Positioning RDF vocabulary (World Geodetic System
1984) [http://www.w3.org/2003/01/geo/wgs84_pos]. Specialized indexes can
be used for this type of data, which allow efficient evaluation of query
forms and extension functions for finding locations:

	within a certain distance of a point, i.e., within a specified
circle on the surface of a sphere (Earth), using the nearby(…)
construction;

	within rectangles and polygons, where the vertices are defined by
spherical polar coordinates, using the within(…) construction.

[image: _images/geo-spatial-extensions.png]
The WGS84 ontology [http://www.w3.org/2003/01/geo/wgs84_pos] contains several classes
and predicates:

	Element

	Description

	SpatialThing

	A class for representing anything with a spatial extent, i.e., size, shape, or position.

	Point

	A class for representing a point (relative to Earth) defined by latitude, longitude (and altitude).
subClassOf http://www.w3.org/2003/01/geo/wgs84_pos#SpatialThing

	location

	The relation between a thing and where it is.
Range SpatialThing
subPropertyOf http://xmlns.com/foaf/0.1/based_near

	lat

	The WGS84 latitude of a SpatialThing (decimal degrees).
domain http://www.w3.org/2003/01/geo/wgs84_pos#SpatialThing

	long

	The WGS84 longitude of a SpatialThing (decimal degrees).
domain http://www.w3.org/2003/01/geo/wgs84_pos#SpatialThing

	lat_long

	A comma-separated representation of a latitude, longitude coordinate.

	alt

	The WGS84 altitude of a SpatialThing (decimal meters above the local reference ellipsoid).
domain http://www.w3.org/2003/01/geo/wgs84_pos#SpatialThing

How to create a geospatial index

Execute the following INSERT query:

PREFIX ontogeo: <http://www.ontotext.com/owlim/geo#>
INSERT DATA { _:b1 ontogeo:createIndex _:b2. }

If all geospatial data is indexed successfully, the above update query will succeed. If there is an error, you will get a notification about
a failed transaction and an error will be registered in the GraphDB log files.

Note

If there is no geospatial data in the repository, i.e., no
statements describing resources with latitude and longitude
properties, this update query will fail.

Geospatial query syntax

The Geospatial query syntax is the SPARQL RDF Collections
syntax [http://www.w3.org/TR/rdf-sparql-query/#collections]. It uses
round brackets as a shorthand for the statements, which connect a list of
values using rdf:first and rdf:rest predicates with terminating
rdf:nil. Statement patterns that use custom geospatial predicates,
supported by GraphDB are treated differently by the query engine.

The following special syntax is supported when evaluating SPARQL
queries. All descriptions use the namespace: omgeo: <http://www.ontotext.com/owlim/geo#>

	Construct

	Nearby (lat long distance)

	Syntax

	?point omgeo:nearby(?lat ?long ?distance)

	Description

	This statement pattern will evaluate to true, if the following constraints hold:

	?point geo:lat ?plat .

	?point geo:long ?plong .

	Shortest great circle distance from (?plat, ?plong) to (?lat, ?long) <= ?distance

Such a construction uses the geospatial indexes to find bindings for ?point, which lie within the defined circle.
Constants are allowed for any of ?lat ?long ?distance, where latitude and longitude are specified in decimal degrees and distance is specified in either kilometers (‘km’ suffix) or miles (‘mi’ suffix). If the units are not specified, then ‘km’ is assumed.

	Restrictions

	Latitude is limited to the range -90 (South) to 90 (North).
Longitude is limited to the range -180 (West) to +180 (East).

	Examples

	Find the names of airports within 50 miles of Seoul:

PREFIX geo-pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>
PREFIX geo-ont: <http://www.geonames.org/ontology#>
PREFIX omgeo: <http://www.ontotext.com/owlim/geo#>

SELECT distinct ?airport
WHERE {
 ?base geo-ont:name "Seoul" .
 ?base geo-pos:lat ?latBase .
 ?base geo-pos:long ?longBase .
 ?link omgeo:nearby(?latBase ?longBase "50mi") .
 ?link geo-ont:name ?airport .
 ?link geo-ont:featureCode geo-ont:S.AIRP .
}

	Construct

	Within (rectangle)

	Syntax

	?point omgeo:within(?lat1 ?long1 ?lat2 ?long2)

	Description

	This statement pattern is used to test/find points that lie within the rectangle specified by diagonally opposite corners ?lat1 ?long1 and ?lat2 ?long2. The corners of the rectangle must be either constants or bound values.

It will evaluate to true, if the following constraints hold:

	?point geo:lat ?plat .

	?point geo:long ?plong .

	?lat1 <= ?plat <= ?lat2

	?long1 <= ?plong <= ?long2

Note that the most westerly and southerly corners must be specified first and the most northerly and easterly ones - second. Constants are allowed for any of ?lat1 ?long1 ?lat2 ?long2, where latitude and longitude are specified in decimal degrees. If ?point is unbound, then bindings for all points within the rectangle will be produced.

Rectangles that span across the +/-180 degree meridian might produce incorrect results.

	Restrictions

	Latitude is limited to the range -90 (South) to +90 (North).
Longitude is limited to the range -180 (West) to +180 (East).
Rectangle vertices must be specified in the order lower-left followed by upper-right.

	Examples

	Find tunnels lying within a rectangle enclosing Tirol, Austria:

PREFIX geo-pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>
PREFIX geo-ont: <http://www.geonames.org/ontology#>
PREFIX omgeo: <http://www.ontotext.com/owlim/geo#>

SELECT ?feature ?lat ?long
WHERE {
 ?link omgeo:within(45.85 9.15 48.61 13.18) .
 ?link geo-ont:featureCode geo-ont:R.TNL .
 ?link geo-ont:name ?feature .
 ?link geo-pos:lat ?lat .
 ?link geo-pos:long ?long .
}

	Construct

	Within (polygon)

	Syntax

	?point omgeo:within(?lat1 ?long1 ... ?latN ?longN)

	Description

	This statement pattern is used to test/find points that lie within the polygon whose vertices are specified by three or more latitude/longitude pairs.

The values of the vertices must be either constants or bound values.

It will evaluate to true, if the following constraints hold:

	?point geo:lat ?plat .

	?point geo:long ?plong .

	the position ?plat ?plong is enclosed by the polygon

The polygon is closed automatically if the first and last vertices do not coincide.
The vertices must be constants or bound values. Coordinates are specified
in decimal degrees. If ?point is unbound, then bindings for all points
within the polygon will be produced.

	Restrictions

	Latitude is limited to the range -90 (South) to +90 (North).
Longitude is limited to the range -180 (West) to +180 (East).

	Examples

	Find caves in the sides of cliffs lying within a polygon approximating the shape of England:

PREFIX geo-pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>
PREFIX geo-ont: <http://www.geonames.org/ontology#>
PREFIX omgeo: <http://www.ontotext.com/owlim/geo#>
SELECT ?feature ?lat ?long
WHERE {
?link omgeo:within("51.45" "-2.59"
 "54.99" "-3.06"
 "55.81" "-2.03"
 "52.74" "1.68"
 "51.17" "1.41") .
 ?link geo-ont:featureCode geo-ont:S.CAVE .
 ?link geo-ont:name ?feature .
 ?link geo-pos:lat ?lat .
 ?link geo-pos:long ?long .
}

Extension query functions

At present, there is just one SPARQL extension function:

	Function

	Distance function

	Syntax

	double omgeo:distance(?lat1, ?long1, ?lat2, ?long2)

	Description

	This SPARQL extension function computes the distance between two points
in kilometers and can be used in FILTER and ORDER BY clauses.

	Restrictions

	Latitude is limited to the range -90 (South) to +90 (North).
Longitude is limited to the range -180 (West) to +180 (East).

	Examples

	Find caves in the sides of cliffs lying within a polygon approximating the shape of England:

PREFIX geo-pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>
PREFIX geo-ont: <http://www.geonames.org/ontology#>
PREFIX omgeo: <http://www.ontotext.com/owlim/geo#>

SELECT distinct ?airport_name
WHERE {
 ?a1 geo-ont:name "Bournemouth" .
 ?a1 geo-pos:lat ?lat1 .
 ?a1 geo-pos:long ?long1 .
 ?airport omgeo:nearby(?lat1 ?long1 "80mi") .
 ?airport geo-ont:name ?airport_name .
 ?airport geo-ont:featureCode geo-ont:S.AIRP .
 ?airport geo-pos:lat ?lat2 .
 ?airport geo-pos:long ?long2 .
 ?a2 geo-ont:name "Brize Norton" .
 ?a2 geo-pos:lat ?lat3 .
 ?a2 geo-pos:long ?long3 .
 FILTER(omgeo:distance(?lat2, ?long2, ?lat3, ?long3) < 80)
}
ORDER BY ASC(omgeo:distance(?lat2, ?long2, ?lat3, ?long3))

Implementation details

Knowing the implementation’s algorithms and assumptions allow you
to make the best use of the GraphDB geospatial extensions.

The following aspects are significant and can affect the expected behavior during query answering:

	Spherical Earth - the current implementation treats the Earth as a perfect sphere with a 6371.009km radius;

	Only 2-dimensional points are supported, i.e., there is no special handling of geo:alt (metres above the reference surface of the Earth);

	All latitude and longitude values must be specified using decimal degrees, where East and North are positive and -90 <= latitude <= +90 and -180 <= longitude <= +180;

	Distances must be in units of kilometers (suffix ‘km’) or statute miles (suffix ‘mi’). If the suffix is omitted, kilometers are assumed;

	omgeo:within(rectangle) construct uses a ‘rectangle’ whose edges are lines of latitude and longitude, so the north-south distance is constant, and the rectangle described forms a band around the Earth, which starts and stops at the given longitudes;

	omgeo:within(polygon) joins vertices with straight lines on a cylindrical projection of the Earth tangential to the equator. A straight line starting at the point under test and continuing East out of the polygon is examined to see how many polygon edges it intersects. If the number of intersections is even, then the point is outside the polygon. If the number of intersections is odd, the point is inside the polygon. With the current algorithm, the order of vertices is not relevant (clockwise or anticlockwise);

	omgeo:within() may not work correctly when the region (polygon or rectangle) spans the +/-180 meridian;

	omgeo:nearby() uses the great circle distance between points.

Lucene full-text search

What’s in this document?

	RDF search

	Usage

	Parameters

	Creating an index

	Incremental update

Hint

Apache Lucene [http://lucene.apache.org] is a high-performance,
full-featured text search engine written entirely in Java. GraphDB
supports FTS capabilities using Lucene with a variety of indexing
options and the ability to simultaneously use multiple, differently
configured indices in the same query.

Full-text search (FTS) concerns retrieving text documents out of a large
collection by keywords or, more generally, by tokens (represented as
sequences of characters). Formally, the query represents an unordered
set of tokens and the result is a set of documents, relevant to the
query. In a simple FTS implementation, relevance is Boolean: a document
is either relevant to the query, if it contains all the query tokens, or
not. More advanced FTS implementations deal with a degree of relevance
of the document to the query, usually judged on some sort of measure of
the frequency of appearance of each of the tokens in the document,
normalized, versus the frequency of their appearance in the entire
document collection. Such implementations return an ordered list of
documents, where the most relevant documents come first.

FTS and structured queries, like these in database management systems
(DBMS), are different information access methods based on a different
query syntax and semantics, where the results are also displayed in a
different form. FTS systems and databases usually require different
types of indices, too. The ability to combine these two types of
information access methods is very useful for a wide range of
applications. Many relational DBMS support some sort of FTS (which is
integrated in the SQL syntax) and maintain additional indices that
allow efficient evaluation of FTS constraints.

Typically, a relational DBMS allows you to define a query, which
requires specific tokens to appear in a specific column of a specific
table. In SPARQL, there is no standard way for the specification of FTS
constraints. In general, there is neither a well-defined nor
commonly accepted concept for FTS in RDF data. Nevertheless, some semantic
repository vendors offer some sort of FTS in their engines.

RDF search

The GraphDB FTS implementation, called ‘RDF Search’, is based on Lucene. It
enables GraphDB to perform complex queries against character data, which
significantly speeds up the query process. RDF Search allows for
efficient extraction of RDF resources from huge datasets, where ordering
of the results by relevance is crucial.

Its main features are:

	FTS query form - List of tokens (with Lucene query extensions);

	Result form - Ordered list of URIs;

	Textual Representation - Concatenation of text representations of
nodes from the so called ‘molecule’ (1-step neighbourhood in a graph) of
the URI;

	Relevance - Vector-space model, reflecting the degree of relevance of
the text and the RDF rank of the URI;

	Implementation - The Lucene engine is integrated and used for
indexing and search.

Usage

In order to use the FTS in GraphDB, first a Lucene index must be
computed. Before it is created, each index can be parametrized in a
number of ways, using SPARQL ‘control’ updates.

This provides the ability to:

	select what kinds of nodes are indexed (URIs/literals/blank-nodes);

	select what is included in the ‘molecule’ associated with each node;

	select literals with certain language tags;

	choose the size of the RDF ‘molecule’ to index;

	choose whether to boost the relevance of the nodes using RDF Rank values;

	select alternative analyzers;

	select alternative scorers.

In order to use the indexing behavior of Lucene, a text document must
be created for each node in the RDF graph to be indexed. This text
document is called an ‘RDF molecule’ and is made up of other nodes
reachable via the predicates that connect the nodes to each other. Once a
molecule has been created for each node, Lucene generates an index over
these molecules. During search (query answering), Lucene identifies the
matching molecules and GraphDB uses the associated nodes as variables
substitutions, when evaluating the enclosing SPARQL query.

The scope of an RDF molecule includes the starting node and its
neighbouring nodes, which are reachable via the specified number of
predicate arcs. For each Lucene index, it can be specified what type of nodes are indexed and what type of nodes
are included in the molecule. Furthermore, the size of the molecule can be controlled by specifying
the number of allowed traversals of predicate arcs starting from the
molecule centre (the node being indexed).

[image: _images/rdf-search.png]

Note

Blank nodes are never included in the molecule. If a
blank node is encountered, the search is extended via any predicate
to the next nearest entity and so on. Therefore, even when the
molecule size is 1, entities reachable via several intermediate
predicates can still be included in the molecule if all the
intermediate entities are blank nodes.

Parameters

Exclude

Predicate: http://www.ontotext.com/owlim/lucene#exclude

Default: <none>

Description: Provides a regular expression to identify nodes, which will be excluded from the molecule.

Note that for literals and URI local names the regular expression is case-sensitive.

The example given below will cause matching URIs (e.g., <http://example.com/uri#helloWorld>)
and literals (e.g., "hello world!") not to be included.

Example:

PREFIX luc: <http://www.ontotext.com/owlim/lucene#>
INSERT DATA {
luc:exclude luc:setParam "hello.*"
}

Exclude entities

Predicate: http://www.ontotext.com/owlim/lucene#excludeEntities

Default: <none>

Description: A comma/semi-colon/white-space separated list of entities that will NOT be included in an RDF molecule. The example below includes any URI in a molecule, except the two listed.

Example:

PREFIX luc: <http://www.ontotext.com/owlim/lucene#>
INSERT DATA {
 luc:excludeEntities luc:setParam
 "http://www.w3.org/2000/01/rdf-schema#Class http://www.example.com/dummy#E1"
}

Exclude Predicates

Predicate: http://www.ontotext.com/owlim/lucene#excludePredicates

Default: <none>

Description: A comma/semi-colon/white-space separated list of properties that will NOT be traversed
in order to build an RDF molecule. The example below prevents any entities being added to an RDF molecule,
if they can only be reached via the two given properties.

Example:

PREFIX luc: <http://www.ontotext.com/owlim/lucene#>
INSERT DATA {
 luc:excludePredicates luc:setParam
 "http://www.w3.org/2000/01/rdf-schema#subClassOf http://www.example.com/dummy#p1"
}

Include

Predicate: http://www.ontotext.com/owlim/lucene#include

Default: "literals"

Description: Indicates what kinds of nodes are to be included in the molecule. The value can be a list
of values from: URI, literal, centre (the plural forms are also allowed: URIs, literals, centres).
The value of centre causes the node for which the molecule is built to be added to the molecule
(provided it is not a blank node). This can be useful, for example, when indexing URI nodes with
molecules that contain only literals, but the local part of the URI should also be searchable.

Example:

PREFIX luc: <http://www.ontotext.com/owlim/lucene#>
INSERT DATA {
 luc:include luc:setParam "literal uri"
}

Include entities

Predicate: http://www.ontotext.com/owlim/lucene#includeEntities

Default: <none>

Description: A comma/semi-colon/white-space separated list of entities that can be included in an RDF molecule.
Any other entities are ignored. The example below builds molecules that only contain the two entities.

Example:

PREFIX luc: <http://www.ontotext.com/owlim/lucene#>
INSERT DATA {
 luc:includeEntities luc:setParam
 "http://www.w3.org/2000/01/rdf-schema#Class http://www.example.com/dummy#E1"
}

Include predicates

Predicate: http://www.ontotext.com/owlim/lucene#includePredicates

Default: <none>

Description: A comma/semi-colon/white-space separated list of properties that can be traversed in order to build an RDF molecule.
The example below allows any entities to be added to an RDF molecule,
but only if they can be reached via the two given properties.

Example:

PREFIX luc: <http://www.ontotext.com/owlim/lucene#>
INSERT DATA {
 luc:includePredicates luc:setParam
 "http://www.w3.org/2000/01/rdf-schema#subClassOf http://www.example.com/dummy#p1"
}

Index

Predicate: http://www.ontotext.com/owlim/lucene#index

Default: "literals"

Description: Indicates what kinds of nodes are to be indexed. The value can be a list of values from: URI, literal, bnode (the plural forms are also allowed: URIs, literals, bnodes).

Example:

PREFIX luc: <http://www.ontotext.com/owlim/lucene#>
INSERT DATA {
 luc:index luc:setParam "literals, bnodes"
}

Languages

Predicate: http://www.ontotext.com/owlim/lucene#languages

Default: "" (which is used to indicate that literals with any language tag are used, including those with no language tag)

Description: A comma-separated list of language tags. Only literals with the indicated language tags are included in the index.
To include literals that have no language tag, use the special value none.

Example:

PREFIX luc: <http://www.ontotext.com/owlim/lucene#>
INSERT DATA {
 luc:languages luc:setParam "en,fr,none"
}

Molecule size

Predicate: http://www.ontotext.com/owlim/lucene#moleculeSize

Default: 0

Description: Sets the size of the molecule associated with each entity. A value of zero indicates that only the entity
 itself should be indexed. A value of 1 indicates that the molecule will contain all entities reachable
 by a single ‘hop’ via any predicate (predicates not included in the molecule). Note that blank nodes
are never included in the molecule. If a blank node is encountered, the search is extended
 via any predicate to the next nearest entity and so on. Therefore, even when the molecule size is 1,
 entities reachable via several intermediate predicates can still be included in the molecule,
 if all the intermediate entities are blank nodes. Molecule sizes of 2 and more are allowed,
 but with large datasets it can take a very long time to create the index.

Example:

PREFIX luc: <http://www.ontotext.com/owlim/lucene#>
INSERT DATA {
 luc:moleculeSize luc:setParam "1"
}

useRDFRank

Predicate: http://www.ontotext.com/owlim/lucene#useRDFRank

Default: "no"

Description: Indicates whether the RDF weights (if they have been already computed) associated with each entity
should be used as boosting factors when computing the relevance of a given Lucene query.
Allowable values are no, yes and squared. The last value indicates that the square
of the RDF Rank value is to be used.

Example:

PREFIX luc: <http://www.ontotext.com/owlim/lucene#>
INSERT DATA {
 luc:useRDFRank luc:setParam "yes"
}

analyzer

Predicate: http://www.ontotext.com/owlim/lucene#analyzer

Default: <none>

Description: Sets an alternative analyzer for processing text to produce terms to index. By default,
this parameter has no value and the default analyzer used is: org.apache.lucene.analysis.standard.StandardAnalyzer
An alternative analyzer must be derived from: org.apache.lucene.analysis.Analyzer.
To use an alternative analyzer, use this parameter to identify the name of a Java factory class
that can instantiate it. The factory class must be available on the Java virtual machine’s
classpath and must implement this interface: com.ontotext.trree.plugin.lucene.AnalyzerFactory.

Example:

PREFIX luc: <http://www.ontotext.com/owlim/lucene#>
INSERT DATA {
 luc:analyzer luc:setParam "com.ex.MyAnalyserFactory"
}

Detailed example: In this example, we create two Java classes (Analyzer and Factory) and then create a Lucene index, using the custom analyzer. This custom analyzer filters the accents (diacritics), so a search for “Beyonce” finds labels “Beyoncé”.

public class CustomAnalyzerFactory implements com.ontotext.trree.plugin.lucene.AnalyzerFactory {
 @Override
 public Analyzer createAnalyzer() {
 CustomAnalyzer ret = new CustomAnalyzer(Version.LUCENE_36);
 return ret;
 }

 @Override
 public boolean isCaseSensitive() {
 return false;
 }
}

public class CustomAnalyzer extends StopwordAnalyzerBase {
 public CustomAnalyzer(Version matchVersion){
 super(matchVersion, StandardAnalyzer.STOP_WORDS_SET);
 }

 @Override
 protected TokenStreamComponents createComponents(String fieldName, Reader reader) {
 final Tokenizer source = new StandardTokenizer(matchVersion, reader);
 TokenStream tokenStream = source;
 tokenStream = new StandardFilter(matchVersion, tokenStream);
 tokenStream = new LowerCaseFilter(tokenStream);
 tokenStream = new StopFilter(matchVersion, tokenStream, getStopwordSet());
 tokenStream = new ASCIIFoldingFilter(tokenStream);
 return new TokenStreamComponents(source, tokenStream);
 }
}

Create the index:

	Put the two classes in a .jar file, e.g., “com.example”

	Put the .jar file in the plugins folder (specified by -Dregister-external-plugins=..., which by default is under <TOMCAT-WEBAPPS>/graphdb-server/WEB-INF/classes/plugins). There has to be some data in the repository.

	Create the index.

PREFIX luc: <http://www.ontotext.com/owlim/lucene#>
INSERT DATA {
 luc:analyzer luc:setParam "com.example.CustomAnalyzerFactory" .
 luc:index luc:setParam "uris".
 luc:moleculeSize luc:setParam "1".
 luc:myIndex luc:createIndex "true".
}

scorer

Predicate: http://www.ontotext.com/owlim/lucene#scorer

Default: <none>

Description: Sets an alternative scorer that provides boosting values, which adjust the relevance
(and hence the ordering) of results to a Lucene query. By default, this parameter has
no value and no additional scoring takes place, however, if the useRDFRank parameter
is set to true, then the RDF Rank scores are used. An alternative scorer must implement this interface: com.ontotext.trree.plugin.lucene.Scorer. In order to use an alternative scorer,
use this parameter to identify the name of a Java factory class that can instantiate it.
The factory class must be available on the Java virtual machine’s classpath and must
implement this interface: com.ontotext.trree.plugin.lucene.ScorerFactory.

Example:

PREFIX luc: <http://www.ontotext.com/owlim/lucene#>
INSERT DATA {
 luc:scorer luc:setParam "com.ex.MxScorerFactory"
}

Creating an index

Once you have set the parameters for an index, you create and name the index by committing a SPARQL update of this form, where the index name
appears as the subject in the triple pattern:

PREFIX luc: <http://www.ontotext.com/owlim/lucene#>
INSERT DATA { luc:myIndex luc:createIndex "true" . }

The index name must have the http://www.ontotext.com/owlim/lucene#
namespace and the local part can contain only alphanumeric characters
and underscores.

Creating an index can take some time, although usually no more than a
few minutes when the molecule size is 1 or less. During this process,
for each node in the repository, its surrounding molecule is computed.
Then, each such molecule is converted into a single string document (by
concatenating the textual representation of all the nodes in the
molecule) and this document is indexed by Lucene. If the RDF Rank
weights are used (or an alternative scorer is specified), then the
computed values are stored in the Lucene index as a boosting factor that
will later on influence the selection order.

To use a custom Lucene index in a SPARQL query, use the index’s name as
the predicate in a statement pattern, with the Lucene query as the
object using the full Lucene
query [http://lucene.apache.org/core/3_0_3/queryparsersyntax.html]
vocabulary.

The following query produces bindings for ?s from entities in the
repository, where the RDF molecule associated with this entity (for the
given index) contains terms that begin with “United”. Furthermore, the
bindings are ordered by relevance (with any boosting factor):

PREFIX luc: <http://www.ontotext.com/owlim/lucene#>
SELECT ?s
WHERE { ?s luc:myIndex "United*" . }

The Lucene score for a bound entity for a particular query can be
exposed using a special predicate:

http://www.ontotext.com/owlim/lucene#score

This can be useful when the Lucene query results are ordered in a manner
based on but different from the original Lucene score.

For example, the following query orders the results by a combination of
the Lucene score and some ontology defined importance value:

PREFIX luc: <http://www.ontotext.com/owlim/lucene#>
PREFIX ex: <http://www.example.com/myontology#>
SELECT * {
 ?node luc:myIndex "lucene query string" .
 ?node ex:importance ?importance .
 ?node luc:score ?score .
} ORDER BY (?score + ?importance)

The luc:score predicate works only on bound variables. There is no
problem disambiguating multiple indices because each variable is bound
from exactly one Lucene index and hence its score.

The combination of ranking RDF molecules together with FTS provides a
powerful mechanism for querying/analyzing datasets, even when the schema
is not known. This allows for keyword-based search over both literals
and URIs with the results ordered by importance/interconnectedness.

You can see an example of such ‘RDF Search’ in
FactForge [http://factforge.net].

Detailed example

The following example configuration shows how to index URIs using
literals attached to them by a single, named predicate - in this case
rdfs:label.

	Assume the following starting data:

PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>
PREFIX ex:<http://example.com#>
INSERT DATA {
 ex:astonMT rdfs:label "Aston McTalisker" .
 ex:astonMartin ex:link "Aston Martin" .
 <http://www1.aston.ac.uk/> rdfs:label "Aston University"@EN .
}

	Set up the configuration - index URIs by including, in their RDF
molecule, all literals that can be reached via a single statement using
the rdfs:label predicate:

PREFIX luc: <http://www.ontotext.com/owlim/lucene#>
INSERT DATA {
 luc:index luc:setParam "uris" .
 luc:include luc:setParam "literals" .
 luc:moleculeSize luc:setParam "1" .
 luc:includePredicates luc:setParam "http://www.w3.org/2000/01/rdf-schema#label" .
}

	Create a new index called luc:myTestIndex - note that the index
name must be in the <http://www.ontotext.com/owlim/lucene#> namespace:

PREFIX luc: <http://www.ontotext.com/owlim/lucene#>
INSERT DATA {
 luc:myTestIndex luc:createIndex "true" .
}

	Use the index in a query - find all URIs indexed using the
luc:myTestIndex index that match the Lucene query “ast*”:

PREFIX luc: <http://www.ontotext.com/owlim/lucene#>
SELECT * {
 ?id luc:myTestIndex "ast*"
}

The results of this query are:

	?id

	http://example.com#astonMT

	http://www1.aston.ac.uk/

showing that ex:astonMartin is not returned, because it does not
have an rdfs:label linking it to the appropriate text.

Incremental update

Each Lucene-based FTS index must be recreated from time to time as the
indexed data changes. Due to the complex nature of the structure of RDF
molecules, rebuilding an index is a relatively expensive operation.
Still, indices can be updated incrementally on a per resource basis as
directed by the user.

The following control update:

PREFIX luc: <http://www.ontotext.com/owlim/lucene#>
INSERT DATA { <index-name> luc:addToIndex <resource> . }

updates the FTS index for the given resource and the given index.

Note

Each index stores the values of the parameters used to define it,
e.g., the value of luc:includePredicates, therefore there is no
need to set them before requesting an incremental update.

The following control update:

PREFIX luc: <http://www.ontotext.com/owlim/lucene#>
INSERT DATA { <index-name> luc:updateIndex _:b1 . }

causes all resources not currently indexed by <index-name> to get
indexed. It is a shorthand way of batching together index updates for
several (new) resources.

Data history and versioning

What’s in this document?

	What the plugin does

	Index components

	Usage

	Enable/disable plugin

	Clear all data

	History filtering

	Query process and examples

What the plugin does

The Data history and versioning plugin enables you to access past states of your database through versioning of the RDF data model level. Collecting and querying the history of a database is beneficial for users and organizations that want to preserve all of their historical data, and are often faced with the common use case: I want to know when a value in the database has changed, and what the previous system state in time was.

The plugin remembers changes from multiple transactions and provides the means to track historical data.
Changes in the repository are tracked globally for all users and all updates can be queried and processed at once.
The tracked data is persisted to disk and is available after a restart.

It can be useful in several main types of cases, such as:

	Generating a “diff” between generations while data updates are loaded into the system on a regular basis, either through ETL or a change data stream;

	Answering the question of what has changed between moment A and moment B, for example: “After an application change was implemented over the weekend, I need to compare the deployment footprint or configuration of the before/after situation”;

	Maintaining history only for specific classes or properties, i.e., no need for keeping history for everything. This is a significant advantage when working with very large databases, the querying of which would require substantial amounts of time and system resources;

	Searching for the members of a specific team at point X.

Warning

Note that querying the history log may be slow for big history logs. This is why we recommend using filters to reduce the number of history entries if you have a big repository.

Index components

The plugin index is of the type DSPOCI, meaning that it consists of the following components:

	Date-time - a 64-bit long value that represents the exact time an operation occurred with millisecond precision. All operations in the same transaction have the same date-time value.

	Subject - the statement subject, 32 or 40 bit long.

	Predicate - the statement predicate, 32 or 40 bit long.

	Object - the statement object, 32 or 40 bit long.

	Context - the statement context, 32 or 40 bit long. Special values are used for explicit statements in the default graph and for implicit statements. By including the implicit statements, we get transparent support for transactions.

	Insert - a boolean value stored with as minimum bits as it makes sense. True represents an INSERT, and false represents a DELETE.

The index is ordered by each component going from left to right, where the date-time component is ordered in descending order (most recent updates come first), and all other components are ordered in ascending order. For example:

	Date-time

	Subject

	Predicate

	Object

	Context

	Insert

	1570623056397

	34

	1

	29

	-3

	TRUE

	1570623056397

	34

	1

	38

	-2

	TRUE

	1570623042812

	34

	1

	30

	-2

	FALSE

	1570623042812

	34

	2

	31

	-2

	FALSE

Tip

Due to the order of the index components, the most time-efficient way to query your data is first by date-time and then by subject. This is particularly valid when using predicate parameters as described in the examples below.

Usage

Enable/disable plugin

Enabling and disabling the plugin refers to collecting history only, and is disabled by default. Querying the collected history is possible at any moment.

To enable the plugin, execute the following query:

INSERT DATA {
 [] <http://www.ontotext.com/at/enabled> true
}

To disable it, execute:

INSERT DATA {
 [] <http://www.ontotext.com/at/enabled> false
}

To check the current enabled status, execute:

SELECT ?enabled {
 [] <http://www.ontotext.com/at/enabled> ?enabled
}

Clear all data

If you want to clear all data in your repository, you should first disable collecting history, as there is no way to have usable history after this operation has been executed. For example:

	You try to execute CLEAR ALL, but get an error: The reason is that clearing all statements in the repository is incompatible with collecting history. Disable collecting history if you really want to clear all data.

	You disable collecting history and retry CLEAR ALL: All data in the repository is deleted. All history data is deleted as well, since whatever is there is no longer usable.

History filtering

As keeping history for everything is most of the time unnecessary, as well as quite time- and resource-consuming, this plugin provides the capability for specifying only certain classes or properties. When configuring the index, you need to specify 4 mandatory positions: subject, predicate, object, and context. Each position can have one of the following values:

	* - everything is allowed

	IRI, BNode or Literal - the type of the entity on this position must be the specified one, case insensitive

	an IRI - only this IRI is allowed

	an IRI prefix (http://myIRI*) - all IRIs that start with the given prefix are allowed

Filter examples

	* * literal *: match statements that have any literal in the object position

	* http://example.com/name * *: match statements whose predicate is http://example.com/name

	http://example.com/person/* * * *: match statements whose subject is an IRI starting with http://example.com/person/

A statement is kept in the history if it matches at least one of the provided statement templates.

Manage filters

	Add filter

INSERT DATA {
 [] <http://www.ontotext.com/at/addFilters> "* * LITERAL *"
}

	Remove filter

INSERT DATA {
 [] <http://www.ontotext.com/at/removeFilters> "* * LITERAL *"
}

	List filters

SELECT ?filter WHERE {
 [] <http://www.ontotext.com/at/getFilters> ?filter
}

Query process and examples

	Enable the plugin:

INSERT DATA {
 [] <http://www.ontotext.com/at/enabled> true
}

	Insert the data you want to query:

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
 INSERT DATA {
 <urn:Human> rdfs:subClassOf <urn:Mammal> .
 <urn:Commander> rdfs:subClassOf <urn:StarfleetOfficer> .
 <urn:Captain> rdfs:subClassOf <urn:StarfleetOfficer> .
 <urn:Kirk> a <urn:Human> ;
 <urn:dateOfBirth> "2233-03-22"^^xsd:date ;
 <urn:name> "James T. Kirk" ;
 <urn:rank> <urn:Commander> .
 }

Change the name of a particular Starfleet officer, so that you can then see how this change is tracked:

delete data { <urn:Kirk> <urn:name> "James T. Kirk" };
insert data { <urn:Kirk> <urn:name> "James Tiberius Kirk" }

	Query the history of your data:

	Find out the specific point in time when data was changed by browsing the history with the following query:

PREFIX hist: <http://www.ontotext.com/at/>
SELECT * {
 ?log a hist:history ;
 hist:timestamp ?time ;
 hist:graph ?g ;
 hist:subject ?s ;
 hist:predicate ?p ;
 hist:object ?o ;
 hist:insert ?i
}

The retrieved results are in descending order, i.e., the most recent change comes first:

[image: _images/history_specific_point_time.png]

	You can also find out what changes were made for a subject and a predicate within a specific time period between moment A and moment B. This is done with the hist:parameters predicate used the following way: ?log hist:parameters (?fromDateTime ?toDateTime ?subject ?predicate ?object ?context).

While the predicate is not mandatory, passing parameters when querying history is much more efficient than fetching all history elements and then filtering them. Note that their order is important, and when present, the predicate will only return history entries that match the list. Only bound variables will be taken, and there may also be unbound parameters. Not all bindings are required, but since the object list is an ordered list, if you want to filter by subject for example, you must add at least ?fromDateTime ?toDateTime ?subject as bindings. ?fromDateTime ?toDateTime may be left unbound.

The following query returns all changes made within a given time period:

PREFIX hist: <http://www.ontotext.com/at/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
SELECT * {
 ?log a hist:history ;
 hist:parameters ("2020-01-17T14:38:50"^^xsd:dateTime "2020-01-17T15:00:00"^^xsd:dateTime);
 hist:timestamp ?time ;
 hist:graph ?g ;
 hist:subject ?s ;
 hist:predicate ?p ;
 hist:object ?o ;
 hist:insert ?i
}

[image: _images/history_all_changes_for_time_period.png]
You can also find out all changes for a particular subject and predicate. Note that the ?fromDateTime ?toDateTime parameters are left unbound.

PREFIX hist: <http://www.ontotext.com/at/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
SELECT ?time ?s ?p ?o ?i {
 ?log a hist:history ;
 hist:parameters (?fromDateTime ?toDateTime <urn:Kirk> <urn:name> ?object ?context);
 hist:timestamp ?time ;
 hist:graph ?g ;
 hist:subject ?s ;
 hist:predicate ?p ;
 hist:object ?o ;
 hist:insert ?i
}

[image: _images/history_all_changes_for_subject_predicate.png]

	You can query the data at a specific point in time by including FROM <http://www.ontotext.com/at/xxx>, where xxx is a date-time in the format: yyyy[[[[[MM]dd]HH]mm]ss]. For example:

Return data as it looked on 2020-01-17 14:38:55 server time
#
SELECT ?name ?rank ?dateOfBirth FROM <http://www.ontotext.com/at/20200117143855> {
 bind(<urn:Kirk> as ?officer)
 ?officer <urn:name> ?name ;
 <urn:rank> ?rank ;
 <urn:dateOfBirth> ?dateOfBirth .
}

[image: _images/history_entry_at_specific_time.png]
The same query will return a valid graph with only the date specified:

Return data as it looked on 2020-01-17 00:00:00 server time
(explicit year and month only)
#
SELECT ?name ?rank ?dateOfBirth FROM <http://www.ontotext.com/at/20200117> {
 bind(<urn:Kirk> as ?officer)
 ?officer <urn:name> ?name ;
 <urn:rank> ?rank ;
 <urn:dateOfBirth> ?dateOfBirth .
}

To retrieve all data for that particular Starfleet officer at a specific point in time, you can also use a DESCRIBE query:

DESCRIBE <urn:Kirk> from <http://www.ontotext.com/at/20200117143855>

The result from our example at that point in time would be:

[image: _images/history_describe.png]

Note

Statements that have history will use the history data according to the requested point in time. Statements that do not have history will be returned directly, assuming they were never modified and existed at the requested point as well.

GraphDB Connectors

	Lucene GraphDB connector

	MongoDB integration

Lucene GraphDB connector

What’s in this document?

	Overview and features

	Usage

	Setup and maintenance

	Creating a connector instance

	Using the Workbench

	Using the create command

	Dropping a connector instance

	Retrieving the create options for a connector instance

	Listing available connector instances

	In the Connectors management view

	With a SPARQL query

	Instance status check

	Working with data

	Adding, updating, and deleting data

	Simple queries

	Combining Lucene results with GraphDB data

	Entity match score

	Basic facet queries

	Sorting

	Limit and offset

	Snippet extraction

	Total hits

	List of creation parameters

	Special field definitions

	Copy fields

	Multiple property chains per field

	Indexing language tags

	Indexing the URI of an entity

	Datatype mapping

	Advanced filtering and fine tuning

	Basic entity filter example

	Advanced entity filter example

	Overview of connector predicates

	Caveats

	Order of control

	Upgrading from previous versions

	Migrating from GraphDB 6.2 to 6.6

	Migrating from a pre-6.2 version

	Changes in field configuration and synchronization

Overview and features

The GraphDB Connectors provide extremely fast normal and faceted
(aggregation) searches, typically implemented by an external component
or a service such as Lucene but have the additional benefit of staying
automatically up-to-date with the GraphDB repository data.

The Connectors provide synchronization at the entity level, where an
entity is defined as having a unique identifier (a URI) and a set of
properties and property values. In terms of RDF, this corresponds to a
set of triples that have the same subject. In addition to simple
properties (defined by a single triple), the Connectors support
property chains. A property chain is defined as a sequence of triples
where each triple’s object is the subject of the following triple.

The main features of the GraphDB Connectors are:

	maintaining an index that is always in sync with the data stored in
GraphDB;

	multiple independent instances per repository;

	the entities for synchronization are defined by:

	a list of fields (on the Lucene side) and property chains (on the
GraphDB side) whose values will be synchronized;

	a list of rdf:type’s of the entities for synchronization;

	a list of languages for synchronization (the default is all
languages);

	additional filtering by property and value.

	full-text search using native Lucene queries;

	snippet extraction: highlighting of search terms in the search
result;

	faceted search;

	sorting by any preconfigured field;

	paging of results using offset and limit;

	custom mapping of RDF types to Lucene types;

	specifying which Lucene analyzer to use (the default is Lucene’s
StandardAnalyzer);

	stripping HTML/XML tags in literals (the default is not to strip
markup);

	boosting an entity by the numeric value of one or more
predicates;

	custom scoring expressions at query time to evaluate score based on
Lucene score and entity boost.

Each feature is described in detail below.

Usage

All interactions with the Lucene GraphDB Connector shall be done through
SPARQL queries.

There are three types of SPARQL queries:

	INSERT for creating and deleting connector instances;

	SELECT for listing connector instances and querying their
configuration parameters;

	INSERT/SELECT for storing and querying data as part of the normal
GraphDB data workflow.

In general, this corresponds to INSERT adds or modifies data and
SELECT queries existing data.

Each connector implementation defines its own URI prefix to distinguish
it from other connectors. For the Lucene GraphDB Connector, this is
http://www.ontotext.com/connectors/lucene#. Each command or predicate
executed by the connector uses this prefix, e.g.,
http://www.ontotext.com/connectors/lucene#createConnector to create a
connector instance for Lucene.

Individual instances of a connector are distinguished by unique names
that are also URIs. They have their own prefix to avoid clashing with
any of the command predicates. For Lucene, the instance prefix is
http://www.ontotext.com/connectors/lucene/instance#.

	Sample data
	All examples use the following sample data, which describes five
fictitious wines: Yoyowine, Franvino, Noirette, Blanquito and Rozova as
well as the grape varieties required to make these wines. The minimum
required ruleset level in GraphDB is RDFS.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix : <http://www.ontotext.com/example/wine#> .

:RedWine rdfs:subClassOf :Wine .
:WhiteWine rdfs:subClassOf :Wine .
:RoseWine rdfs:subClassOf :Wine .

:Merlo
 rdf:type :Grape ;
 rdfs:label "Merlo" .

:CabernetSauvignon
 rdf:type :Grape ;
 rdfs:label "Cabernet Sauvignon" .

:CabernetFranc
 rdf:type :Grape ;
 rdfs:label "Cabernet Franc" .

:PinotNoir
 rdf:type :Grape ;
 rdfs:label "Pinot Noir" .

:Chardonnay
 rdf:type :Grape ;
 rdfs:label "Chardonnay" .

:Yoyowine
 rdf:type :RedWine ;
 :madeFromGrape :CabernetSauvignon ;
 :hasSugar "dry" ;
 :hasYear "2013"^^xsd:integer .

:Franvino
 rdf:type :RedWine ;
 :madeFromGrape :Merlo ;
 :madeFromGrape :CabernetFranc ;
 :hasSugar "dry" ;
 :hasYear "2012"^^xsd:integer .

:Noirette
 rdf:type :RedWine ;
 :madeFromGrape :PinotNoir ;
 :hasSugar "medium" ;
 :hasYear "2012"^^xsd:integer .

:Blanquito
 rdf:type :WhiteWine ;
 :madeFromGrape :Chardonnay ;
 :hasSugar "dry" ;
 :hasYear "2012"^^xsd:integer .

:Rozova
 rdf:type :RoseWine ;
 :madeFromGrape :PinotNoir ;
 :hasSugar "medium" ;
 :hasYear "2013"^^xsd:integer .

Setup and maintenance

	Third-party component versions
	This version of the Lucene GraphDB Connector uses Lucene version 8.6.3.

Creating a connector instance

Creating a connector instance is done by sending a SPARQL query with the
following configuration data:

	the name of the connector instance (e.g., my_index);

	classes to synchronize;

	properties to synchronize.

The configuration data has to be provided as a JSON string
representation and passed together with the create command.

If you create the connector via the Workbench, no matter
which way you use, you will be presented with a pop-up
screen showing you the connector creation progress.

Using the Workbench

	Go to Setup -> Connectors.

	Click the New Connector button in the tab of the respective Connector type you want to create.

	Fill in the configuration form.

	Execute the CREATE statement from the form by clicking OK. Alternatively, you can view its SPARQL query by clicking View SPARQL Query, and then copy it to execute it manually or integrate it in automation scripts.

[image: _images/create-connector-lucene.png]

Using the create command

The create command is triggered by a SPARQL INSERT with the
createConnector predicate, e.g., it creates a connector instance
called my_index, which synchronizes the wines from the sample data
above:

PREFIX : <http://www.ontotext.com/connectors/lucene#>
PREFIX inst: <http://www.ontotext.com/connectors/lucene/instance#>

INSERT DATA {
 inst:my_index :createConnector '''
{
 "types": [
 "http://www.ontotext.com/example/wine#Wine"
],
 "fields": [
 {
 "fieldName": "grape",
 "propertyChain": [
 "http://www.ontotext.com/example/wine#madeFromGrape",
 "http://www.w3.org/2000/01/rdf-schema#label"
]
 },
 {
 "fieldName": "sugar",
 "propertyChain": [
 "http://www.ontotext.com/example/wine#hasSugar"
],
 "analyzed": false,
 "multivalued": false
 },
 {
 "fieldName": "year",
 "propertyChain": [
 "http://www.ontotext.com/example/wine#hasYear"
],
 "analyzed": false
 }
]
}
''' .
}

The above command creates a new Lucene connector instance.

The "types" key defines the RDF type of the entities to synchronize and,
in the example, it is only entities of the type http://www.ontotext.com/example/wine#Wine
(and its subtypes). The "fields" key defines the mapping from RDF to
Lucene. The basic building block is the property chain, i.e., a sequence
of RDF properties where the object of each property is the subject of
the following property. In the example, three bits of information are
mapped - the grape the wines are made of, sugar content, and year. Each
chain is assigned a short and convenient field name: “grape”, “sugar”,
and “year”. The field names are later used in the queries.

Grape is an example of a property chain composed of more than one
property. First, we take the wine’s madeFromGrape property, the object
of which is an instance of the type Grape, and then we take the
rdfs:label of this instance. Sugar and year are both composed of a
single property that links the value directly to the wine.

The fields sugar and year contain discrete values, such as medium, dry, 2012, 2013, and thus it is best
to specify the option analyzed: false as well. See analyzed in Defining fields
for more information.

Dropping a connector instance

Dropping (deleting) a connector instance removes all references to its external
store from GraphDB, as well as all Lucene files associated with it.

The drop command is triggered by a SPARQL INSERT with the
dropConnector predicate where the name of the connector instance has
to be in the subject position, e.g., this removes the connector
my_index:

PREFIX : <http://www.ontotext.com/connectors/lucene#>
PREFIX inst: <http://www.ontotext.com/connectors/lucene/instance#>

INSERT DATA {
 inst:my_index :dropConnector "" .
}

You can also force drop a connector in case a normal delete does not work. The force delete will remove the connector even if part of the operation fails. Go to Setup -> Connectors where you will see the already existing connectors that you have created. Click the Delete icon, and check Force delete in the dialog box.

[image: _images/connectors_force_delete.png]

Retrieving the create options for a connector instance

You can view the options string that was used to create a particular connector instance with the following query:

PREFIX : <http://www.ontotext.com/connectors/lucene#>
PREFIX inst: <http://www.ontotext.com/connectors/lucene/instance#>

SELECT ?createString {
 inst:my_index :listOptionValues ?createString .
}

Listing available connector instances

In the Connectors management view

Existing Connector instances show under Existing connectors
(below the New Connector button). Click the name of an instance to view
its configuration and SPARQL query, or click the repair /
delete icons to perform these operations.

[image: _images/connectors.png]

With a SPARQL query

Listing connector instances returns all previously created instances. It
is a SELECT query with the listConnectors predicate:

PREFIX : <http://www.ontotext.com/connectors/lucene#>

SELECT ?cntUri ?cntStr {
 ?cntUri :listConnectors ?cntStr .
}

?cntUri is bound to the prefixed URI of the connector instance that
was used during creation, e.g., http://www.ontotext.com/connectors/lucene/instance#my_index>,
while ?cntStr is bound to a string, representing the part after the
prefix, e.g., "my_index".

Instance status check

The internal state of each connector instance can be queried using a
SELECT query and the connectorStatus predicate:

PREFIX : <http://www.ontotext.com/connectors/lucene#>

SELECT ?cntUri ?cntStatus {
 ?cntUri :connectorStatus ?cntStatus .
}

?cntUri is bound to the prefixed URI of the connector instance,
while ?cntStatus is bound to a string representation of the status
of the connector represented by this URI. The status is key-value based.

Working with data

Adding, updating, and deleting data

From the user point of view, all synchronization happens transparently
without using any additional predicates or naming a specific store
explicitly, i.e., you must simply execute standard SPARQL
INSERT/DELETE queries. This is achieved by intercepting all changes in
the plugin and determining which abstract documents need to be updated.

Simple queries

Once a connector instance has been created, it is possible to query data
from it through SPARQL. For each matching abstract document, the
connector instance returns the document subject. In its simplest form,
querying is achieved by using a SELECT and providing the Lucene
query as the object of the query predicate:

PREFIX : <http://www.ontotext.com/connectors/lucene#>
PREFIX inst: <http://www.ontotext.com/connectors/lucene/instance#>

SELECT ?entity {
 ?search a inst:my_index ;
 :query "grape:cabernet" ;
 :entities ?entity .
}

The result binds ?entity to the two wines made from grapes that have
“cabernet” in their name, namely :Yoyowine and :Franvino.

Note

You must use the field names you chose when you created
the connector instance. They can be identical to the property URIs
but you must escape any special characters according to what
Lucene expects.

	Get a query instance of the requested connector instance by using the
RDF notation "X a Y" (= X rdf:type Y), where X is a variable and Y is
a connector instance URI. X is bound to a query instance of the
connector instance.

	Assign a query to the query instance by using the system predicate
:query.

	Request the matching entities through the :entities predicate.

It is also possible to provide per query search options by using one or
more option predicates. The option predicates are described in detail
below.

Combining Lucene results with GraphDB data

The bound ?entity can be used in other SPARQL triples in order to build
complex queries that fetch additional data from GraphDB, for example, to
see the actual grapes in the matching wines as well as the year they
were made:

PREFIX : <http://www.ontotext.com/connectors/lucene#>
PREFIX inst: <http://www.ontotext.com/connectors/lucene/instance#>
PREFIX wine: <http://www.ontotext.com/example/wine#>

SELECT ?entity ?grape ?year {
 ?search a inst:my_index ;
 :query "grape:cabernet" ;
 :entities ?entity .
 ?entity wine:madeFromGrape ?grape .
 ?entity wine:hasYear ?year
}

The result looks like this:

	?entity

	?grape

	?year

	:Yoyowine

	:CabernetSauvignon

	2013

	:Franvino

	:Merlo

	2012

	:Franvino

	:CabernetFranc

	2012

Note

:Franvino is returned twice because it is made from two
different grapes, both of which are returned.

Entity match score

It is possible to access the match score returned by Lucene with the
score predicate. As each entity has its own score, the predicate
should come at the entity level. For example:

PREFIX : <http://www.ontotext.com/connectors/lucene#>
PREFIX inst: <http://www.ontotext.com/connectors/lucene/instance#>

SELECT ?entity ?score {
 ?search a inst:my_index ;
 :query "grape:cabernet" ;
 :entities ?entity .
 ?entity :score ?score
}

The result looks like this but the actual score might be different as it
depends on the specific Lucene version:

	?entity

	?score

	:Yoyowine

	0.9442660212516785

	:Franvino

	0.7554128170013428

Basic facet queries

Consider the sample wine data and the my_index connector instance
described previously. You can also query facets using the same instance:

PREFIX : <http://www.ontotext.com/connectors/lucene#>
PREFIX inst: <http://www.ontotext.com/connectors/lucene/instance#>

SELECT ?facetName ?facetValue ?facetCount WHERE {
 # note empty query is allowed and will just match all documents, hence no :query
 ?r a inst:my_index ;
 :facetFields "year,sugar" ;
 :facets _:f .
 _:f :facetName ?facetName .
 _:f :facetValue ?facetValue .
 _:f :facetCount ?facetCount .
}

It is important to specify the facet fields by using the facetFields
predicate. Its value is a simple comma-delimited list of field names. In
order to get the faceted results, use the facets predicate. As each
facet has three components (name, value and count), the facets predicate
binds a blank node, which in turn can be used to access the individual
values for each component through the predicates facetName,
facetValue, and facetCount.

The resulting bindings look like the following:

	facetName

	facetValue

	facetCount

	year

	2012

	3

	year

	2013

	2

	sugar

	dry

	3

	sugar

	medium

	2

You can easily see that there are three wines produced in 2012 and two
in 2013. You also see that three of the wines are dry, while two are
medium. However, it is not necessarily true that the three wines
produced in 2012 are the same as the three dry wines as each facet is
computed independently.

Sorting

It is possible to sort the entities returned by a connector query
according to one or more fields. Sorting is achieved by the orderBy
predicate the value of which is a comma-delimited list of fields. Each
field can be prefixed with a minus to indicate sorting in descending
order. For example:

PREFIX : <http://www.ontotext.com/connectors/lucene#>
PREFIX inst: <http://www.ontotext.com/connectors/lucene/instance#>

SELECT ?entity {
 ?search a inst:my_index ;
 :query "year:2013" ;
 :orderBy "-sugar" ;
 :entities ?entity .
}

The result contains wines produced in 2013 sorted according to their
sugar content in descending order:

	entity

	Rozova

	Yoyowine

By default, entities are sorted according to their matching score in
descending order.

Note

If you join the entity from the connector query to other
triples stored in GraphDB, GraphDB might scramble the order. To
remedy this, use ORDER BY from SPARQL.

Tip

Sorting by an analyzed textual field works but might produce
unexpected results. Analyzed textual fields are composed of tokens
and sorting uses the least (in the lexicographical sense) token. For
example, “North America” will be sorted before “Europe” because the
token “america” is lexicographically smaller than the token
“europe”. If you need to sort by a textual field and still do
full-text search on it, it is best to create a copy of the field
with the setting "analyzed": false. For more information, see
Copy fields.

Note

Unlike Lucene 4, which was used in GraphDB 6.x, Lucene 5 imposes
an additional requirement on fields used for sorting.
They must be defined with multivalued = false.

Limit and offset

Limit and offset are supported on the Lucene side of the query. This is
achieved through the predicates limit and offset. Consider this
example in which an offset of 1 and a limit of 1 are specified:

PREFIX : <http://www.ontotext.com/connectors/lucene#>
PREFIX inst: <http://www.ontotext.com/connectors/lucene/instance#>

SELECT ?entity {
 ?search a inst:my_index ;
 :query "sugar:dry" ;
 :offset "1" ;
 :limit "1" ;
 :entities ?entity .
}

The result contains a single wine, Franvino. If you execute the query
without the limit and offset, Franvino will be second in the list:

	entity

	Yoyowine

	Franvino

	Blanquito

Note

The specific order in which GraphDB returns the results
depends on how Lucene returns the matches, unless sorting is
specified.

Snippet extraction

Snippet extraction is used for extracting highlighted snippets of text that
match the query. The snippets are accessed through the dedicated
predicate snippets. It binds a blank node that in turn provides the
actual snippets via the predicates snippetField and snippetText.
The predicate snippets must be attached to the entity, as each entity
has a different set of snippets. For example, in a search for Cabernet:

PREFIX : <http://www.ontotext.com/connectors/lucene#>
PREFIX inst: <http://www.ontotext.com/connectors/lucene/instance#>

SELECT ?entity ?snippetField ?snippetText {
 ?search a inst:my_index ;
 :query "grape:cabernet" ;
 :entities ?entity .
 ?entity :snippets _:s .
 _:s :snippetField ?snippetField ;
 :snippetText ?snippetText .
}

the query returns the two wines made from Cabernet Sauvignon or Cabernet
Franc grapes as well as the respective matching fields and snippets:

	?entity

	?snippetField

	?snippetText

	:Yoyowine

	grape

	Cabernet Sauvignon

	:Franvino

	grape

	Cabernet Franc

Note

The actual snippets might be different as this depends on
the specific Lucene implementation.

It is possible to tweak how the snippets are collected/composed by using
the following option predicates:

	:snippetSize - sets the maximum size of the extracted text
fragment, 250 by default;

	:snippetSpanOpen - text to insert before the highlighted text,
by default;

	:snippetSpanClose - text to insert after the highlighted text,
 by default.

The option predicates are set on the query instance, much like the
:query predicate.

Total hits

You can get the total number of hits by using the totalHits
predicate, e.g., for the connector instance my_index and a query that
retrieves all wines made in 2012:

PREFIX : <http://www.ontotext.com/connectors/lucene#>
PREFIX inst: <http://www.ontotext.com/connectors/lucene/instance#>

SELECT ?totalHits {
 ?r a inst:my_index ;
 :query "year:2012" ;
 :totalHits ?totalHits .
}

As there are three wines made in 2012, the value 3 (of type xdd:long)
binds to ?totalHits.

List of creation parameters

The creation parameters define how a connector instance is created by
the :createConnector predicate. Some are required and some are optional.
All parameters are provided together in a JSON object, where the
parameter names are the object keys. Parameter values may be simple JSON
values such as a string or a boolean, or they can be lists or objects.

All of the creation parameters can also be set conveniently from the
Create Connector user interface in the GraphDB Workbench without any
knowledge of JSON.

	analyzer (string), optional, specifies Lucene analyzer
	The Lucene Connector supports custom Analyzer implementations. They may
be specified via the analyzer parameter whose value must be a fully
qualified name of a class that extends
org.apache.lucene.analysis.Analyzer. The class requires either a default
constructor or a constructor with exactly one parameter of type
org.apache.lucene.util.Version. For example, these two classes are valid
implementations:

package com.ontotext.example;

import org.apache.lucene.analysis.Analyzer;

public class FancyAnalyzer extends Analyzer {
 public FancyAnalyzer() {
 ...
 }
 ...
}

package com.ontotext.example;

import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.util.Version;

public class SmartAnalyzer extends Analyzer {
 public SmartAnalyzer(Version luceneVersion) {
 ...
 }
 ...
}

FancyAnalyzer and SmartAnalyzer can then be used by specifying their
fully qualified names, for example:

...
 "analyzer": "com.ontotext.example.SmartAnalyzer",
...

	types (list of URI), required, specifies the types of entities to sync
	The RDF types of entities to sync are specified as a list of URIs. At
least one type URI is required.

	languages (list of string), optional, valid languages for literals
	RDF data is often multilingual but you can map only some of the
languages represented in the literal values. This can be done by
specifying a list of language ranges to be matched to the language tags
of literals according to RFC 4647 [http://www.rfc-editor.org/rfc/rfc4647.txt], Section 3.3.1. Basic Filtering. In
addition, an empty range can be used to include literals that have no
language tag. The list of language ranges maps all existing literals
that have matching language tags.

	fields (list of field object), required, defines the mapping from RDF to Lucene
	The fields define exactly what parts of each entity will be synchronized
as well as the specific details on the connector side. The field is the
smallest synchronization unit and it maps a property chain from GraphDB
to a field in Lucene. The fields are specified as a list of field
objects. At least one field object is required. Each field object has
further keys that specify details.

	
	fieldName (string), required, the name of the field in Lucene
	The name of the field defines the mapping on the connector side. It is
specified by the key fieldName with a string value. The field name is
used at query time to refer to the field. There are few restrictions on
the allowed characters in a field name but to avoid unnecessary escaping
(which depends on how Lucene parses its queries), we recommend to keep
the field names simple.

	
	propertyChain (list of URI), required, defines the property chain to reach the value
	The property chain (propertyChain) defines the mapping on the GraphDB
side. A property chain is defined as a sequence of triples where the
entity URI is the subject of the first triple, its object is the subject
of the next triple and so on. In this model, a property chain with a
single element corresponds to a direct property defined by a single
triple. Property chains are specified as a list of URIs where at least
one URI must be provided.

See Copy fields for defining multiple
fields with the same property chain.

See Multiple property chains per field for defining
a field whose values are populated from more than one property chain.

See Indexing language tags for defining
a field whose values are populated with the language tags of literals.

See Indexing the URI of an entity for defining
a field whose values are populated with the URI of the indexed entity.

	
	defaultValue (string), optional, specifies a default value for the field
	The default value (defaultValue) provides means for specifying a default
value for the field when the property chain has no matching values in
GraphDB. The default value can be a plain literal, a literal with a
datatype (xsd: prefix supported), a literal with language, or a URI. It
has no default value.

	
	indexed (boolean), optional, default true
	If indexed, a field is available for Lucene queries. true by default.

This option corresponds to Lucene’s field option "indexed".

	
	stored (boolean), optional, default true
	Fields can be stored in Lucene and this is controlled by the Boolean
option "stored". Stored fields are required for retrieving snippets.
true by default.

This options corresponds to Lucene’s property "stored".

	
	analyzed (boolean), optional, default true
	When literal fields are indexed in Lucene, they will be analyzed
according to the analyzer settings. Should you require that a given
field is not analyzed, you may use "analyzed". This option has no effect
for URIs (they are never analyzed). true by default.

This option corresponds to Lucene’s property “tokenized”.

	
	multivalued (boolean), optional, default true
	RDF properties and synchronized fields may have more than one value. If
"multivalued" is set to true, all values will be synchronized to Lucene.
If set to false, only a single value will be synchronized. true by
default.

	
	facet (boolean), optional, default true
	Lucene needs to index data in a special way, if it will be used for
faceted search. This is controlled by the Boolean option “facet”. True
by default. Fields that are not synchronized for faceting are also not
available for faceted search.

	
	datatype (string), optional, the manual datatype override
	By default, the Lucene GraphDB Connector uses datatype of literal values
to determine how they must be mapped to Lucene types. For more
information on the supported datatypes, see
Datatype mapping.

The datatype mapping can be overridden through the parameter "datatype",
which can be specified per field. The value of "datatype" can be any of
the xsd: types supported by the automatic mapping.

Special field definitions

Copy fields

Often, it is convenient to synchronize one and the same data multiple
times with different settings to accommodate for different use cases,
e.g., faceting or sorting vs full-text search. The Lucene GraphDB
Connector has explicit support for fields that copy their value from
another field. This is achieved by specifying a single element in the
property chain of the form @otherFieldName, where otherFieldName is
another non-copy field. Take the following example:

...
 "fields": [
 {
 "fieldName": "grape",
 "propertyChain": [
 "http://www.ontotext.com/example/wine#madeFromGrape",
 "http://www.w3.org/2000/01/rdf-schema#label"
],
 "analyzed": true,
 },
 {
 "fieldName": "grapeFacet",
 "propertyChain": [
 "@grape"
],
 "analyzed": false,
 }
]
...

The snippet creates an analyzed field “grape” and a non-analyzed field
“grapeFacet”, both fields are populated with the same values and
“grapeFacet” is defined as a copy field that refers to the field
“facet”.

Note

The connector handles copy fields in a more optimal way
than specifying a field with exactly the same property chain as
another field.

Multiple property chains per field

Sometimes, you have to work with data models that define the same concept
(in terms of what you want to index in Lucene) with more than one
property chain, e.g., the concept of “name” could be defined as a single
canonical name, multiple historical names and some unofficial names.
If you want to index these together as a single field in Lucene
you can define this as a multiple property chains field.

Fields with multiple property chains are defined as a set of separate
virtual fields that will be merged into a single physical field
when indexed. Virtual fields are distinguished by the suffix $xyz,
where xyz is any alphanumeric sequence of convenience. For example,
we can define the fields name$1 and name$2 like this:

...
 "fields": [
 {
 "fieldName": "name$1",
 "propertyChain": [
 "http://www.ontotext.com/example#canonicalName"
],
 "fieldName": "name$2",
 "propertyChain": [
 "http://www.ontotext.com/example#historicalName"
]
 ...
 },
...

The values of the fields name$1 and name$2 will be merged
and synchronized to the field name in Lucene.

Note

You cannot mix suffixed and unsuffixed fields with the same name,
e.g., if you defined myField$new and myField$old you cannot have
a field called just myField.

Filters and fields with multiple property chains

Filters can be used with fields defined with multiple property chains.
Both the physical field values and the individual virtual field values are available:

	Physical fields are specified without the suffix, e.g., ?myField

	Virtual fields are specified with the suffix, e.g., ?myField$2 or ?myField$alt.

Note

Physical fields cannot be combined with parent() as their values
come from different property chains. If you really need to filter
the same parent level, you can rewrite parent(?myField) in (<urn:x>, <urn:y>)
as parent(?myField$1) in (<urn:x>, <urn:y>) || parent(?myField$2)
in (<urn:x>, <urn:y>) || parent(?myField$3) ... and surround it with
parentheses if it is a part of a bigger expression.

Indexing language tags

The language tag of an RDF literal can be indexed by specifying a property chain, where the last element is
the pseudo-URI lang(). The property preceding lang() must lead to a literal value. For example:

PREFIX : <http://www.ontotext.com/connectors/lucene#>
PREFIX inst: <http://www.ontotext.com/connectors/lucene/instance#>

INSERT DATA {
 inst:my_index :createConnector '''
 {
 "types": ["http://www.ontotext.com/example#gadget"],
 "fields": [
 {
 "fieldName": "name",
 "propertyChain": [
 "http://www.ontotext.com/example#name"
]
 },
 {
 "fieldName": "nameLanguage",
 "propertyChain": [
 "http://www.ontotext.com/example#name",
 "lang()"
]
 }
],
 }
 ''' .
}

The above connector will index the language tag of each literal value of the property http://www.ontotext.com/example#name
into the field nameLanguage.

Indexing the URI of an entity

Sometimes you may need the URI of each entity (e.g., http://www.ontotext.com/example/wine#Franvino from our
small example dataset) indexed as a regular field. This can be achieved by specifying a property chain with a single
property referring to the pseudo-URI $self. For example:

PREFIX : <http://www.ontotext.com/connectors/lucene#>
PREFIX inst: <http://www.ontotext.com/connectors/lucene/instance#>

INSERT DATA {
 inst:my_index :createConnector '''
{
 "types": [
 "http://www.ontotext.com/example/wine#Wine"
],
 "fields": [
 {
 "fieldName": "entityId",
 "propertyChain": [
 "$self"
],
 },
 {
 "fieldName": "grape",
 "propertyChain": [
 "http://www.ontotext.com/example/wine#madeFromGrape",
 "http://www.w3.org/2000/01/rdf-schema#label"
]
 },
]
}
''' .
}

The above connector will index the URI of each wine into the field entityId.

Datatype mapping

The Lucene GraphDB Connector maps different types of RDF values to
different types of Lucene values according to the basic type of the RDF
value (URI or literal) and the datatype of literals. The autodetection
uses the following mapping:

	RDF value

	RDF datatype

	Lucene type

	URI

	n/a

	StringField

	literal

	none

	TextField

	literal

	xsd:boolean

	StringField with values “true” and “false”

	literal

	xsd:double

	DoubleField

	literal

	xsd:float

	FloatField

	literal

	xsd:long

	LongField

	literal

	xsd:int

	IntField

	literal

	xsd:dateTime

	DateTools.timeToString(), second precision

	literal

	xsd:date

	DateTools.timeToString(), day precision

The datatype mapping can be affected by the synchronization options too,
e.g., a non-analyzed field that has xsd:long values is indexed with a
StringField.

Note

For any given field the automatic mapping uses the first
value it sees. This works fine for clean datasets but might lead to
problems, if your dataset has non-normalized data, e.g., the first
value has no datatype but other values have.

Advanced filtering and fine tuning

	entityFilter (string)
	The entityFilter parameter is used to fine-tune the set of entities
and/or individual values for the configured fields, based on the field
value. Entities and field values are synchronized to Lucene if, and only
if, they pass the filter. The entity filter is similar to a FILTER()
inside a SPARQL query but not exactly the same. Each configured field
can be referred to, in the entity filter, by prefixing it with a ?,
much like referring to a variable in SPARQL. Several operators are
supported:

	Operator

	Meaning

	?var in (value1, value2, ...)

	Tests if the field var’s value is one of the specified values.
Values are compared strictly unlike the similar SPARQL operator, i.e. for literals to match their datatype
must be exactly the same (similar to how SPARQL sameTerm works). Values that do not match, are treated
as if they were not present in the repository.

Example:

?status in ("active", "new")

	?var not in (value1, value2, ...)

	The negated version of the in-operator.

Example:

?status not in ("archived")

	bound(?var)

	Tests if the field var has a valid value. This can be used to make the field compulsory.

Example:

bound(?name)

	
?var = value (equal to)

?var != value (not equal to)

?var > value (greater than)

?var >= value (greater than or
equal to)

?var < value (less than)

?var <= value (less than or
equal to)

	
RDF value comparison operators that compare RDF values similarly to the equivalent SPARQL operators.
The field var’s value will be compared to the specified RDF value. When comparing RDF values that are
literals, their datatypes must be compatible, e.g., xsd:integer and xsd:long but not xsd:string
and xsd:date. Values that do not match are treated as if they were not present in the repository.

Examples:

Given that height’s value is "150"^^xsd:int and dateOfBirth’s value is "1989-12-31"^^xsd:date,
then:

?height = "150"^^xsd:int is TRUE

?height = "150"^^xsd:long is TRUE

?height = "150" is FALSE

?height != "151"^^xsd:int is TRUE

?height != "150" is TRUE

?height > "150"^^xsd:int is FALSE

?height >= "150"^^xsd:int is TRUE

?dateOfBirth < "1990-01-01"^^xsd:date is TRUE

	regex(?var, "pattern")

or

regex(?var, "pattern", "i")

	
Tests if the field var’s value matches the given regular expression pattern.

If the “i” flag option is present, this indicates that the match operates in case-insensitive mode.

Values that do not match are treated as if they were not present in the repository.

Example:

regex(?name, "^mrs?", "i")

	expr1 || expr2

or

expr1 or expr2

	Logical disjunction of expressions expr1 and expr2.

Examples:

bound(?name) || bound(?company)

bound(?name) or bound(?company)

	expr1 && expr2

or

expr1 and expr2

	Logical conjunction of expressions expr1 and expr2.

Examples:

bound(?status) && ?status in ("active", "new")

bound(?status) and ?status in ("active", "new")

	!expr

	Logical negation of expression expr.

Example:

!bound(?company)

	(expr)

	Grouping of expressions

Example:

(bound(?name) or bound(?company)) && bound(?address)

Note

	?var in (...) filters the values of ?var and leaves only
the matching values, i.e., it will modify the actual data that
will be synchronized to Lucene

	bound(?var) checks if there is any valid value left after
filtering operators such as ?var in (...) have been applied

In addition to the operators, there are some constructions that can be
used to write filters based not on the values but on values related to
them:

	Accessing the previous element in the chain
	The construction parent(?var) is used for going to a previous level
in a property chain. It can be applied recursively as many times as
needed, e.g., parent(parent(parent(?var))) goes back in the chain
three times. The effective value of parent(?var) can be used with
the in or not in operator like this: parent(?company) in
(<urn:a>, <urn:b>), or in the bound operator like this: parent(bound(?var)).

	Accessing an element beyond the chain
	The construction ?var -> uri (alternatively, ?var o uri or
just ?var uri) is used for accessing additional values that are
accessible through the property uri. In essence, this construction
corresponds to the triple pattern value uri ?effectiveValue, where
?value is a value bound by the field var. The effective value of ?var
-> uri can be used with the in or not in operator like this:
?company -> rdf:type in (<urn:c>, <urn:d>). It can be combined
with parent() like this: parent(?company) -> rdf:type in (<urn:c>,
<urn:d>). The same construction can be applied to the bound operator
like this: bound(?company -> <urn:hasBranch>), or even combined
with parent() like this: bound(parent(?company) -> <urn:hasGroup>).

The URI parameter can be a full URI within < > or the special string
rdf:type (alternatively, just type), which will be expanded to
http://www.w3.org/1999/02/22-rdf-syntax-ns#type.

	Filtering by RDF graph
	The construction graph(?var) is used for accessing the RDF graph of a
field’s value. The typical use case is to sync only explicit values:
graph(?a) not in (<http://www.ontotext.com/implicit>).
The construction can be combined with parent() like this:
graph(parent(?a)) in (<urn:a>).

	Filtering by language tags
	The construction lang(?var) is used for accessing the language tag of
field’s value (only RDF literals can have a language tag).
The typical use case is to sync only values written in a given language: lang(?a) in ("de", "it", "no").
The construction can be combined with parent() and an element beyond the chain like this:
lang(parent(?a) -> <http://www.w3.org/2000/01/rdf-schema#label>) in ("en", "bg").
Literal values without language tags can be filtered by using an empty tag: "".

	Entity filters and default values
	Entity filters can be combined with default values in order to get more
flexible behavior.

A typical use-case for an entity filter is having soft deletes, i.e.,
instead of deleting an entity, it is marked as deleted by the presence
of a specific value for a given property.

Basic entity filter example

Given the following RDF data:

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix : <http://www.ontotext.com/example#> .

the entity below will be synchronized because it has a matching value for city: ?city in ("London")
:alpha
 rdf:type :gadget ;
 :name "John Synced" ;
 :city "London" .

the entity below will not be synchronized because it lacks the property completely: bound(?city)
:beta
 rdf:type :gadget ;
 :name "Peter Syncfree" .

the entity below will not be synchronized because it has a different city value:
?city in ("London") will remove the value "Liverpool" so bound(?city) will be false
:gamma
 rdf:type :gadget ;
 :name "Mary Syncless" ;
 :city "Liverpool" .

If you create a connector instance such as:

PREFIX : <http://www.ontotext.com/connectors/lucene#>
PREFIX inst: <http://www.ontotext.com/connectors/lucene/instance#>

INSERT DATA {
 inst:my_index :createConnector '''
 {
 "types": ["http://www.ontotext.com/example#gadget"],
 "fields": [
 {
 "fieldName": "name",
 "propertyChain": ["http://www.ontotext.com/example#name"]
 },
 {
 "fieldName": "city",
 "propertyChain": ["http://www.ontotext.com/example#city"]
 }
],
 "entityFilter":"bound(?city) && ?city in (\\"London\\")"
 }
 ''' .
}

The entity :beta is not synchronized as it has no value for city.

To handle such cases, you can modify the connector configuration to
specify a default value for city:

...
 {
 "fieldName": "city",
 "propertyChain": ["http://www.ontotext.com/example#city"],
 "defaultValue": "London"
 }
...
}

The default value is used for the entity :beta as it has no value for city
in the repository. As the value is “London”, the entity is synchronized.

Advanced entity filter example

Sometimes, data represented in RDF is not well suited to map directly to
non-RDF. For example, if you have news articles and they can be tagged
with different concepts (locations, persons, events, etc.), one possible
way to model this is a single property :taggedWith. Consider the
following RDF data:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix : <http://www.ontotext.com/example2#> .

:Berlin
 rdf:type :Location ;
 rdfs:label "Berlin" .

:Mozart
 rdf:type :Person ;
 rdfs:label "Wolfgang Amadeus Mozart" .

:Einstein
 rdf:type :Person ;
 rdfs:label "Albert Einstein" .

:Cannes-FF
 rdf:type :Event ;
 rdfs:label "Cannes Film Festival" .

:Article1
 rdf:type :Article ;
 rdfs:comment "An article about a film about Einstein's life while he was a professor in Berlin." ;
 :taggedWith :Berlin ;
 :taggedWith :Einstein ;
 :taggedWith :Cannes-FF .

:Article2
 rdf:type :Article ;
 rdfs:comment "An article about Berlin." ;
 :taggedWith :Berlin .

:Article3
 rdf:type :Article ;
 rdfs:comment "An article about Mozart's life." ;
 :taggedWith :Mozart .

:Article4
 rdf:type :Article ;
 rdfs:comment "An article about classical music in Berlin." ;
 :taggedWith :Berlin ;
 :taggedWith :Mozart .

:Article5
 rdf:type :Article ;
 rdfs:comment "A boring article that has no tags." .

:Article6
 rdf:type :Article ;
 rdfs:comment "An article about the Cannes Film Festival in 2013." ;
 :taggedWith :Cannes-FF .

Now, if you map this data to Lucene so that the property :taggedWith
x is mapped to separate fields taggedWithPerson and
taggedWithLocation according to the type of x (we are not
interested in events), you can map taggedWith twice to different fields
and then use an entity filter to get the desired values:

PREFIX : <http://www.ontotext.com/connectors/lucene#>
PREFIX inst: <http://www.ontotext.com/connectors/lucene/instance#>

INSERT DATA {
 inst:my_index :createConnector '''
 {
 "types": ["http://www.ontotext.com/example2#Article"],
 "fields": [
 {
 "fieldName": "comment",
 "propertyChain": ["http://www.w3.org/2000/01/rdf-schema#comment"]
 },
 {
 "fieldName": "taggedWithPerson",
 "propertyChain": ["http://www.ontotext.com/example2#taggedWith"]
 },
 {
 "fieldName": "taggedWithLocation",
 "propertyChain": ["http://www.ontotext.com/example2#taggedWith"]
 }
],
 "entityFilter": "?taggedWithPerson type in (<http://www.ontotext.com/example2#Person>)
 && ?taggedWithLocation type in (<http://www.ontotext.com/example2#Location>)"
 }
 ''' .
}

Note

type is the short way to write <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>.

The six articles in the RDF data above will be mapped as such:

	Article URI

	Value in taggedWithPerson

	Value in taggedWithLocation

	Explanation

	:Article1

	:Einstein

	:Berlin

	:taggedWith has the values :Einstein, :Berlin and :Cannes-FF. The filter leaves only the correct values in the respective fields. The value :Cannes-FF is ignored as it does not match the filter.

	:Article2

	
	:Berlin

	:taggedWith has the value :Berlin. After the filter is applied, only taggedWithLocation is populated.

	:Article3

	:Mozart

	
	:taggedWith has the value :Mozart. After the filter is applied, only taggedWithPerson is populated

	:Article4

	:Mozart

	:Berlin

	:taggedWith has the values :Berlin and :Mozart. The filter leaves only the correct values in the respective fields.

	:Article5

	
	
	:taggedWith has no values. The filter is not relevant.

	:Article6

	
	
	:taggedWith has the value :Cannes-FF. The filter removes it as it does not match.

This can be checked by issuing a faceted search for taggedWithLocation
and taggedWithPerson:

PREFIX : <http://www.ontotext.com/connectors/lucene#>
PREFIX inst: <http://www.ontotext.com/connectors/lucene/instance#>

SELECT ?facetName ?facetValue ?facetCount {
 ?search a inst:my_index ;
 :facetFields "taggedWithLocation,taggedWithPerson" ;
 :facets _:f .
 _:f :facetName ?facetName ;
 :facetValue ?facetValue ;
 :facetCount ?facetCount .
}

If the filter was applied, you should get only :Berlin for
taggedWithLocation and only :Einstein and :Mozart for taggedWithPerson:

	?facetName

	?facetValue

	?facetCount

	taggedWithLocation

	http://www.ontotext.com/example2#Berlin

	3

	taggedWithPerson

	http://www.ontotext.com/example2#Mozart

	2

	taggedWithPerson

	http://www.ontotext.com/example2#Einstein

	1

Overview of connector predicates

The following diagram shows a summary of all predicates that can
administer (create, drop, check status) connector instances or issue
queries and retrieve results. It can be used as a quick reference of
what a particular predicate needs to be attached to. For example, to
retrieve entities, you need to use :entities on a search instance and to
retrieve snippets, you need to use :snippets on an entity. Variables
that are bound as a result of a query are shown in green, blank helper
nodes are shown in blue, literals in red, and URIs in orange. The
predicates are represented by labeled arrows.

[image: scale 0.85 left to right direction skinparam activity { BackgroundColor<<BNode>> #D1E0FF BackgroundColor<<Var>> #D1FFD1 BackgroundColor<<URI>> #FFCC80 BackgroundColor #FFE3E3 } partition "Instance level" { "instance URI" <<URI>> -->[:createConnector] "JSON params" "instance URI" -->[:dropConnector] "dummy value" "instance URI" -->[:repairConnector] "dummy value" "instance URI" -->[:connectorStatus] "?status" <<Var>> "_:search" <<BNode>> -->[rdf:type] "instance URI" } partition "Search level: query and options" { "_:search" -->[:query] "query value" "_:search" -->[:limit] "limit value" "_:search" -->[:offset] "offset value" "_:search" -->[:orderBy] "order by expression" "_:search" -->[:facetFields] "field name list" "_:search" -->[:snippetSize] "snippet size value" "_:search" -->[:snippetSpanOpen] "string" "_:search" -->[:snippetSpanClose] "string" } partition "Search level: results" "_:search" -->[:entities] "?entity" <<Var>> "_:search" -->[:totalHits] "?totalHits" <<Var>> "_:search" -->[:facets] "_:facet" <<BNode>> } partition "Entity level" { "?entity" -->[:score] "?score" <<Var>> "?entity" -->[:snippets] "_:snippet" <<BNode>> } partition "Snippet level" { "_:snippet" -->[:snippetField] "?snippetField" <<Var>> "_:snippet" -->[:snippetText] "?snippetText" <<Var>> } partition "Facet level" { "_:facet" -->[:facetName] "?facetName" <<Var>> "_:facet" -->[:facetValue] "?facetValue" <<Var>> "_:facet" -->[:facetCount] "?facetCount" <<Var>> }]

Caveats

Order of control

Even though SPARQL per se is not sensitive to the order of triple
patterns, the Lucene GraphDB Connector expects to receive certain
predicates before others so that queries can be executed properly. In
particular, predicates that specify the query or query options need to
come before any predicates that fetch results.

The diagram in
Overview of connector predicates
provides a quick overview of the predicates.

Upgrading from previous versions

Migrating from GraphDB 6.2 to 6.6

There are no new connector options in GraphDB 7.

The Lucene Connector in GraphDB 6.2 to 6.6 uses Lucene 4.x and the Lucene Connector in GraphDB 7
uses Lucene 5.x. GraphDB 7 can use connector instances created with GraphDB 6.2 to 6.6 with the
following exception:

	Fields used for sorting (orderBy predicate) need to be declared with multivalued = false now.
If you use orderBy you have to recreate your connector instances.

We recommend to drop any existing instances and recreate them to benefit from any performance
improvements in Lucene 5.x even if you do not have any orderBy’s in your queries.

Migrating from a pre-6.2 version

GraphDB prior to 6.2 shipped with version 3.x of the Lucene GraphDB
Connector that had different options and slightly different behavior
and internals. Unfortunately, it is not possible to migrate existing
connector instances automatically. To prevent any data loss, the Lucene
GraphDB Connector will not initialize, if it detects an existing
connector in the old format. The recommended way to migrate your
existing instances is:

	Backup the INSERT statement used to create the connector instance.

	Drop the connector.

	Deploy the new GraphDB version.

	Modify the INSERT statement according to the changes described below.

	Re-create the connector instance with the modified INSERT statement.

You might also need to change your queries to reflect any changes in
field names or extra fields.

Changes in field configuration and synchronization

Prior to 6.2, a single field in the config could produce up to three
individual fields on the Lucene side, based on the field options. For
example, for the field “firstName”:

	field

	note

	firstName

	produced, if the option “index” was true; used explicitly in queries

	_facet_firstName

	produced, if the option “facet” was true; used implicitly for facet search

	_sort_firstName

	produced, if the option “sort” was true; used implicitly for ordering connector results

The current version always produces a single Lucene field per field
definition in the configuration. This means that you have to create all
appropriate fields based on your needs. See more in
List of creation parameters.

Tip

To mimic the functionality of the old _sort_fieldName fields, you
can either create a non-analyzed
Copy fields (for textual fields) or
just use the normal field (for non-textual fields).

MongoDB integration

What’s in this document?

	Overview and features

	Usage

	Setup and maintenance

	Installing MongoDB

	Creating an index

	Upgrading an index

	Deleting an index

	Loading sample data

	Querying MongoDB

	Multiple index calls in the same query

	Using aggregation functions

	Custom fields

	Authentication

Overview and features

The MongoDB integration feature is a GraphDB plugin allowing users to query MongoDB databases using SPARQL and to execute heterogeneous joins.
This section describes how to configure GraphDB and MongoDB to work together.

MongoDB is a document-based database with the biggest developer/user community. It is part of the MEAN technology stack [https://www.ibm.com/cloud/learn/mean-stack-explained/] and guarantees scalability and performance well beyond the throughput supported in GraphDB. Often, we see use cases with extreme scalability requirements and simple data model (i.e., tree representation of a document and its metadata).

MongoDB is a NoSQL JSON document store and does not natively support joins, SPARQL, or RDF-enabled linked data.
The integration between GraphDB and MongoDB is done by a plugin that sends a request to MongoDB then transforms the result to RDF model.

Each feature is described in detail below.

Usage

The steps for using MongoDB with GraphDB are:

	Installing MongoDB;

	Preparing and loading JSON-LD [https://json-ld.org/] documents in MongoDB;

	Configuring GraphDB with MongoDB connection settings by creating an index.

In order to be converted to RDF models, the documents in MongoDB should be valid JSON-LDs.

The JSON-LD documents are in hierarchical view allowing more complex search querying of embedded/nested documents.

Each document can be in separate context. That way, the relation between statements in GraphDB and documents in MongoDB is preserved when extracting parts of the documents and importing them in GraphDB, in order to make inferred statements. The import of parts is an option for future development.

Below is shown a sample document in MongoDB from the LDBC SPB benchmark [http://ldbcouncil.org/benchmarks/spb]

{
 "_id": { "$oid": "5c0fb7f329298f15dc37bb81"},
 "@graph":
 [{
 "@id": "http://www.bbc.co.uk/things/1#id",
 "@type": "cwork:NewsItem",
 "bbc:primaryContentOf":
 [{
 "@id": "bbcd:3#id",
 "bbc:webDocumentType": {
 "@id": "bbc:HighWeb"
 }
 },
 {
 "@id": "bbcd:4#id",
 "bbc:webDocumentType": {
 "@id": "bbc:Mobile"
 }
 }],
 "cwork:about":
 [{
 "@id": "dbpedia:AccessAir"
 },
 {
 "@id": "dbpedia:Battle_of_Bristoe_Station"
 },
 {
 "@id": "dbpedia:Nicolas_Bricaire_de_la_Dixmerie"
 },
 {
 "@id": "dbpedia:Bernard_Roberts"
 },
 {
 "@id": "dbpedia:Bartolomé_de_Medina"
 },
 {
 "@id": "dbpedia:Don_Bonker"
 },
 {
 "@id": "dbpedia:Cornel_Nistorescu"
 },
 {
 "@id": "dbpedia:Clete_Roberts"
 },
 {
 "@id": "dbpedia:Mark_Palansky"
 },
 {
 "@id": "dbpedia:Paul_Green_(taekwondo)"
 },
 {
 "@id": "dbpedia:Mostafa_Abdel_Satar"
 },
 {
 "@id": "dbpedia:Tommy_O'Connell_(hurler)"
 },
 {
 "@id": "dbpedia:Ahmed_Ali_Salaad"
 }],
 "cwork:altText": "thumbnail atlText for CW http://www.bbc.co.uk/context/1#id",
 "cwork:audience": {
 "@id": "cwork:NationalAudience"
 },
 "cwork:category": {
 "@id": "http://www.bbc.co.uk/category/Company"
 },
 "cwork:dateCreated": {
 "@type": "xsd:dateTime",
 "@value": "2011-02-15T07:13:29.495+02:00"
 },
 "cwork:dateModified": {
 "@type": "xsd:dateTime",
 "@value": "2012-02-14T12:43:13.165+02:00"
 },
 "cwork:description": " constipate meant breaking felt glitzier democrat's huskily breeding solicit gargling.",
 "cwork:liveCoverage": {
 "@type": "xsd:boolean",
 "@value": "false"
 },
 "cwork:mentions": {
 "@id": "geonames:2862704/"
 },
 "cwork:primaryFormat":
 [{
 "@id": "cwork:TextualFormat"
 },
 {
 "@id": "cwork:InteractiveFormat"
 }],
 "cwork:shortTitle": " closest subsystem merit rebuking disengagement cerebrums caravans conduction disbelieved might.",
 "cwork:thumbnail": {
 "@id": "bbct:1361611547"
 },
 "cwork:title": "Beckhoff greatly agitators constructed racquets industry restrain spews pitifully undertone stultification."
 }],
 "@id": "bbcc:1#id",
 "@context": {
 "bbcevent": "http://www.bbc.co.uk/ontologies/event/",
 "geo-pos": "http://www.w3.org/2003/01/geo/wgs84_pos#",
 "bbc": "http://www.bbc.co.uk/ontologies/bbc/",
 "time": "http://www.w3.org/2006/time#",
 "event": "http://purl.org/NET/c4dm/event.owl#",
 "music-ont": "http://purl.org/ontology/mo/",
 "rdf": "http://www.w3.org/1999/02/22-rdf-syntax-ns#",
 "foaf": "http://xmlns.com/foaf/0.1/",
 "provenance": "http://www.bbc.co.uk/ontologies/provenance/",
 "owl": "http://www.w3.org/2002/07/owl#",
 "cms": "http://www.bbc.co.uk/ontologies/cms/",
 "news": "http://www.bbc.co.uk/ontologies/news/",
 "cnews": "http://www.bbc.co.uk/ontologies/news/cnews/",
 "cconcepts": "http://www.bbc.co.uk/ontologies/coreconcepts/",
 "dbp-prop": "http://dbpedia.org/property/",
 "geonames": "http://sws.geonames.org/",
 "rdfs": "http://www.w3.org/2000/01/rdf-schema#",
 "domain": "http://www.bbc.co.uk/ontologies/domain/",
 "dbpedia": "http://dbpedia.org/resource/",
 "geo-ont": "http://www.geonames.org/ontology#",
 "bbc-pont": "http://purl.org/ontology/po/",
 "tagging": "http://www.bbc.co.uk/ontologies/tagging/",
 "sport": "http://www.bbc.co.uk/ontologies/sport/",
 "skosCore": "http://www.w3.org/2004/02/skos/core#",
 "dbp-ont": "http://dbpedia.org/ontology/",
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "core": "http://www.bbc.co.uk/ontologies/coreconcepts/",
 "curric": "http://www.bbc.co.uk/ontologies/curriculum/",
 "skos": "http://www.w3.org/2004/02/skos/core#",
 "cwork": "http://www.bbc.co.uk/ontologies/creativework/",
 "fb": "http://rdf.freebase.com/ns/",
 "ot": "http://www.ontotext.com/",
 "ldbcspb": "http://www.ldbcouncil.org/spb#",
 "bbcd": "http://www.bbc.co.uk/document/",
 "bbcc": "http://www.bbc.co.uk/context/",
 "bbct": "http://www.bbc.co.uk/thumbnail/"
 }
}

	_id key is a MongoDB internal key.

	@graph node represents the RDF context in the JSON-LD doc.

	@type xsd:dateTime date has a @date key with an ISODate(...) value. This is not related to the JSON-LD standard and is ignored when the document is parsed to RDF model. The dates are extended for faster search/sorting. The ISODate in MongoDB is its internal way to store dates and is optimized for searching. This step will make querying/sorting by this date field easier but is optional.

Note

The keys in MongoDB cannot contain “.”, nor start with “$”. Although the JSON-LD standard allows it, MongoDB does not. Therefore, either use namespaces (see the sample above) or encoding the . and $, respectively. Only the JSON keys are subject to decoding.

Setup and maintenance

Installing MongoDB

Setting up and maintaining a MongoDB database is a separate task and must be accomplished outside of GraphDB.
See the MongoDB website [https://docs.mongodb.com/manual/installation/] for details.

Note

Throughout the rest of this document, we assume you have the MongoDB server installed and running on a computer you can access.

Note

The GraphDB integration plugin uses MongoDB Java driver version 3.8. More information about the compatibility between MongoDB Java driver and MongoDB version is available on the MongoDB website [https://docs.mongodb.com/ecosystem/drivers/driver-compatibility-reference/#java-driver-compatibility/].

Creating an index

To configure GraphDB with MongoDB connection settings we need to set:

	The server where MongoDB is running;

	The port on which MongoDB is listening;

	The name of the database you are using;

	The name of the MongoDB collection you are using;

	The credentials (optional unless you are using authentication) - the username and password that will let you connect to the database.

Below is a sample query of how to create a MongoDB index:

PREFIX : <http://www.ontotext.com/connectors/mongodb#>
PREFIX inst: <http://www.ontotext.com/connectors/mongodb/instance#>
INSERT DATA {
 inst:spb1000 :service "mongodb://localhost:27017" ;
 :database "ldbc" ;
 :collection "creativeWorks" .
}

Supported predicates:

	:service - MongoDB connection string;

	:database - MongoDB database;

	:collection - MongoDB collection;

	:user - (optional) MongoDB user for the connection;

	:password - (optional) the user’s password;

	:authDb - (optional) the database where the user is authenticated.

Upgrading an index

When upgrading to a newer GraphDB version, it might happen that it contains plugins that are not present in the older version. In this case, the PluginManager disables the newly detected plugin, so you need to enable it by executing the following SPARQL query:

insert data { [] <http://www.ontotext.com/owlim/system#startplugin> "mongodb" }

Then create the plugin in question by executing the SPARQL query provided above, and also make sure to not delete the database in the plugin you are using.

Deleting an index

Deletion of an index is done using the following query:

PREFIX : <http://www.ontotext.com/connectors/mongodb#>
PREFIX inst: <http://www.ontotext.com/connectors/mongodb/instance#>
INSERT DATA {
 inst:spb1000 :drop _:b .
}

Loading sample data

Import provided cwork1000.json file with 1000 of CreativeWork documents in MongoDB database “ldbc” and “creativeWorks” collection.

mongoimport --db ldbc --collection creativeWorks --file cwork1000.json

Querying MongoDB

Below is a sample query which returns the dateModified for docs with the specific audience:

PREFIX cwork: <http://www.bbc.co.uk/ontologies/creativework/>
PREFIX inst: <http://www.ontotext.com/connectors/mongodb/instance#>
PREFIX : <http://www.ontotext.com/connectors/mongodb#>

SELECT ?creativeWork ?modified WHERE {
 ?search a inst:spb1000 ;
 :find '{"@graph.cwork:audience.@id" : "cwork:NationalAudience"}' ;
 :entity ?entity .
 GRAPH inst:spb1000 {
 ?creativeWork cwork:dateModified ?modified .
 }
}

[image: _images/mongodb-query-ex1-result.png]
In a query, use the exact values as in the docs. For example, if the full URIs are used instead of “cwork:NationalAudience” or “@graph.cwork:audience.@id” there wouldn’t be any matching results.

The :find argument is a valid BSON document.

Note

The results are returned in a named graph to indicate when the plugin should bind the variables. This is an API plugin limitation. The variables to be bound by the plugin are in a named graph. This allows GraphDB to determine whether to bind the specific variable using MongoDB or not.

Supported predicates:

	:find - accepts single BSON and sets a query string. The value is used to call db.collection.find().

	:project - accepts single BSON. The value is used to select the projection for the results returned by :find. Find more info at MongoDB: Project Fields to Return from Query [https://docs.mongodb.com/manual/tutorial/project-fields-from-query-results/].

	:aggregate - accepts an array of BSONs. Calls db.collection.aggregate(). This is the most flexible way to make a MongoDB query as the find() method is just a single phase of the aggregation pipeline. The :aggregate predicate takes precedence over :find and :project. This means that if both :aggregate and :find are used, :find will be ignored.

	:graph - accepts an IRI. Specifies the IRI of the named graph in which the bound variables should be. Its default value is the name of the index itself.

	:entity - (required) returns the IRI of the MongoDB document. If the JSON-LD has context, the value of @graph.@id is used. In case of multiple values, the first one is chosen and a warning is logged. If the JSON-LD has no context, the value of @id node is used. Even if the value from this predicate is not used, it is required to have it in the query in order to inform the plugin that the graph part of the current iteration is completed.

	:hint - specifies the index to be used when executing the query (calls cursor.hint()).

	:collation - (optional) accepts BSON. Specifies language-specific rules for string comparison, such as rules for lettercase and accent marks. It is applied to a :find or an :aggregate query.

Multiple index calls in the same query

Multiple MongoDB calls are supported in the same query.
There are two approaches:

	Each index call to be in a separate subselect (Example 1);

	Each index call to use different named graph. If querying different indexes, this comes out-of-the-box. If not, use the :graph predicate. (Example 2).

Example 1:

PREFIX cwork: <http://www.bbc.co.uk/ontologies/creativework/>
PREFIX inst: <http://www.ontotext.com/connectors/mongodb/instance#>
PREFIX : <http://www.ontotext.com/connectors/mongodb#>
SELECT ?creativeWork ?modified WHERE {
 {
 SELECT ?creativeWork ?modified {
 ?search a inst:spb1000 ;
 :find '{"@graph.@id" : "http://www.bbc.co.uk/things/1#id"}' ;
 :entity ?creativeWork .
 GRAPH inst:spb1000 {
 ?creativeWork cwork:dateModified ?modified ;
 }
 }
 }
 UNION
 {
 SELECT ?creativeWork ?modified WHERE {
 ?search a inst:spb1000 ;
 :find '{"@graph.@id" : "http://www.bbc.co.uk/things/2#id"}' ;
 :entity ?entity .
 GRAPH inst:spb1000 {
 ?creativeWork cwork:dateModified ?modified ;
 }
 }
 }
}

Example 2:

PREFIX cwork: <http://www.bbc.co.uk/ontologies/creativework/>
PREFIX inst: <http://www.ontotext.com/connectors/mongodb/instance#>
PREFIX : <http://www.ontotext.com/connectors/mongodb#>
SELECT ?creativeWork ?modified WHERE {
 {
 ?search a inst:spb1000 ;
 :graph :search1 ;
 :find '{"@graph.@id" : "http://www.bbc.co.uk/things/1#id"}' ;
 :entity ?creativeWork .
 GRAPH :search1 {
 ?creativeWork cwork:dateModified ?modified ;
 }
 }
 UNION
 {
 ?search a inst:spb1000 ;
 :graph :search2 ;
 :find '{"@graph.@id" : "http://www.bbc.co.uk/things/2#id"}' ;
 :entity ?entity .
 GRAPH :search2 {
 ?creativeWork cwork:dateModified ?modified ;
 }
 }
}

Both examples return the same result.

[image: _images/mongodb-multiple-queries-ex1.png]

Using aggregation functions

MongoDB has a number of aggregation functions such as: min, max, size, etc. These functions are called using the :aggregate predicate. The data of the retrieved results has to be converted to RDF model.
The example below shows how to retrieve the RDF context of a MongoDB document.

PREFIX cwork: <http://www.bbc.co.uk/ontologies/creativework/>
PREFIX inst: <http://www.ontotext.com/connectors/mongodb/instance#>
PREFIX : <http://www.ontotext.com/connectors/mongodb#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?s ?o {
 ?search a inst:spb1000 ;
 :aggregate '''[{"$match": {"@graph.@id": "http://www.bbc.co.uk/things/1#id"}},
 {'$addFields': {'@graph.cwork:graph.@id' : '$@id'}}]''' ;
 :entity ?entity .
 GRAPH inst:spb1000 {
 ?s cwork:graph ?o .
 }
}

The $addFields phrase adds a new nested document in the JSON-LD stored in MongoDB. The newly added document is then parsed to the following RDF statement:

<http://www.bbc.co.uk/things/1#id> cwork:graph <http://www.bbc.co.uk/context/1#id>

We retrieve the context of the document using the cwork:graph predicate.

This approach is really flexible but is prone to error.

Let’s examine the following query:

PREFIX cwork: <http://www.bbc.co.uk/ontologies/creativework/>
PREFIX inst: <http://www.ontotext.com/connectors/mongodb/instance#>
PREFIX : <http://www.ontotext.com/connectors/mongodb#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?g1 ?g2 {
 ?search a inst:spb1000 ;
 :aggregate '''[{"$match": {"@graph.@id": "http://www.bbc.co.uk/things/1#id"}},
 {'$addFields': {'@graph.inst:graph.@id' : '$@id'}}]''' ;
 :entity ?entity .
 GRAPH inst:spb1000 {
 OPTIONAL {
 ?s inst:graph ?g1 .
 }
 ?s <inst:graph> ?g2 .
 }
}

It looks really similar to the first one except that instead of @graph.cwork:graph.@id we are writing the value to @graph.inst:graph.@id and as a result ?g1 will not get bound.
This happens because in the JSON-LD stored in MongoDB we are aware of the cwork context but not of the inst context. So ?g2 will get bound instead.

Custom fields

Example:

PREFIX cwork: <http://www.bbc.co.uk/ontologies/creativework/>
PREFIX inst: <http://www.ontotext.com/connectors/mongodb/instance#>
PREFIX : <http://www.ontotext.com/connectors/mongodb#>

SELECT ?size ?halfSize {
 ?search a inst:spb1000 ;
 :aggregate '''[{"$match": {"@graph.@type": "cwork:NewsItem"}},
 {"$count": "size"},
 {"$project": {"custom.size": "$size", "custom.halfSize": {"$divide": ["$size", 2]}}}]''' ;
 :entity ?entity .
 GRAPH inst:spb1000 {
 ?s inst:size ?size ;
 inst:halfSize ?halfSize .
 }
}

[image: _images/mongodb-custom-field-example.png]
The values are projected as child elements of a custom node. After JSON-LD is taken from MongoDB, a pre-processing follows in order to retrieve all child elements of custom and create statements with predicates in the <http://www.ontotext.com/connectors/mongodb/instance#> namespace.

Note

The returned values are always string literals.

Authentication

All types of authentication can be achieved by setting the credentials in the connection string. However, as it is not a good practice to store the passwords in plain text, the :user, :password and :authDb predicates are introduced. If one of those predicates is used, it is mandatory to set the other two as well.
These predicates set credentials for SCRAM [https://docs.mongodb.com/manual/core/security-scram/] and LDAP [https://docs.mongodb.com/manual/core/security-ldap-external/] authentication and the password is stored encrypted with a symmetrical algorithm on the disk.
For x.509 [https://docs.mongodb.com/manual/core/security-x.509/] and Kerberos [https://docs.mongodb.com/manual/core/kerberos/] authentication the connection string should be used as no passwords are being stored.

Internal SPARQL Federation

What’s in this document?

	Usage

	Parameters

In addition to the standard SPARQL 1.1 Federation to other SPARQL endpoints, GraphDB supports internal federation
to other repositories in the same GraphDB instance. The internal SPARQL federation is used in almost the same way as the standard SPARQL federation over HTTP, and has several advantages:

	Speed
	The HTTP transport layer is bypassed and iterators are accessed directly.
The speed is comparable to accessing data in the same repository.

	Security
	When security is ON, you can access every repository that is readable by the currently authenticated user.
Standard SPARQL 1.1 federation does not support authentication.

	Flexibility
	Inline parameters provide control over inference and statement expansion over owl:sameAs.

Usage

Instead of providing a URL to a remote repository, you need to provide a special URL of the form repository:NNN,
where NNN is the ID of the repository you want to access. For example, to access the repository authors via
internal federation, use a query like this:

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX books: <http://example.com/books/>

SELECT ?authorName WHERE {
 ?book rdfs:label "The Hitchhiker's Guide to the Galaxy" ;
 books:author ?author .

 SERVICE <repository:authors> {
 ?author rdfs:label ?authorName
 }
}

Parameters

There are two parameters that control how the federated part of the query is executed:

	infer (boolean)
	Controls if inferred statements are included. True by default.

When this value is set to false, it is equivalent to adding FROM <http://www.ontotext.com/explicit>
to the federated query.

	sameAs (boolean)
	Controls if statements are expanded over owl:sameAs. True by default.

When this value is set to false, it is equivalent to adding FROM <http://www.ontotext.com/disable-sameAs>
to the federated query.

To set a parameter, put a comma after the special URL referring to the internal repository, then the parameter name,
an equals sign, and finally the value of the parameter. If you need to set more than one parameter, put another comma, parameter name, equals sign, and value.

Some examples:

	repository:NNN,infer=false
	Turns off inference and inferred statements are not included in the results.

	repository:NNN,sameAs=false
	Turns off the expansion of statements over owl:sameAs and they are not included in the results.

	repository:NNN,infer=false,sameAs=false
	Turns off the inferred statements and they are not included in the results.

Turns off the expansion of statements over owl:sameAs and they are not included in the results.

Note

This needs to be a valid URL and thus there cannot be spaces/blanks.

The example SPARQL query from above will look like this if you want to skip the inferred statements and disable
the expansion over owl:sameAs:

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX books: <http://example.com/books/>

SELECT ?authorName WHERE {
 ?book rdfs:label "The Hitchhiker's Guide to the Galaxy" ;
 books:author ?author .

 SERVICE <repository:authors,infer=false,sameAs=false> {
 ?author rdfs:label ?authorName
 }
}

GraphDB Dev Guide

	Storage

	Notifications

	Query behavior

	Retain BIND position special graph

	Graph Replacement Optimization

Storage

What’s in this document?

	What is GraphDB’s persistence strategy

	GraphDB’s indexing options

	Transaction control

	Predicate lists

	Context index

	Literal index

	Handling of explicit and implicit statements

What is GraphDB’s persistence strategy

GraphDB stores all of its data (statements, indexes, entity pool, etc.) in files in the configured
storage directory, usually called storage. The content and names of
these files is not defined and is subject to change between versions.

There are several types of indices available, all of which apply to all
triples, whether explicit or implicit. These indices are maintained
automatically.

In general, the index structures used in GraphDB are chosen and
optimized to allow for efficient:

	handling of billions of statements under reasonable RAM constraints;

	query optimization;

	transaction management.

GraphDB maintains two main indices on statements for use in inference
and query evaluation: the predicate-object-subject (POS) index and the
predicate-subject-object (PSO) index. There are many other additional
data structures that are used to enable the efficient manipulation of
RDF data, but these are not listed, since these internal mechanisms
cannot be configured.

GraphDB’s indexing options

There are indexing options that offer considerable advantages for
specific datasets, retrieval patterns and query loads. Most of them are
disabled by default, so you need to enable them as necessary.

Note

Unless stated otherwise, GraphDB allows you to switch indices on and
off against an already populated repository. The repository has to
be shut down before the change of the configuration is specified.
The next time the repository is started, GraphDB will create or
remove the corresponding index. If the repository is already loaded
with a large volume of data, switching on a new index can lead to
considerable delays during initialization – this is the time
required for building the new index.

Transaction control

Transaction support is exposed via RDF4J’s RepositoryConnection
interface. The three methods of this interface that give you control
when updates are committed to the repository are as follows:

	Method

	Effect

	void begin()

	Begins a transaction. Subsequent changes effected through update operations will only become permanent after commit() is called.

	void commit()

	Commits all updates that have been performed through this connection since the last call to begin().

	void rollback()

	Rolls back all updates that have been performed through this connection since the last call to begin().

GraphDB supports the so called ‘read committed’ transaction isolation
level, which is well-known to relational database management systems -
i.e., pending updates are not visible to other connected users, until
the complete update transaction has been committed. It guarantees that
changes will not impact query evaluation before the entire transaction
they are part of is successfully committed. It does not guarantee that
execution of a single transaction is performed against a single state of
the data in the repository. Regarding concurrency:

	Update transactions are processed internally in sequence, i.e.,
GraphDB processes the commits one after another;

	Update transactions do not block read requests in any way, i.e.,
hundreds of SPARQL queries can be evaluated in parallel (the
processing is properly multi-threaded) while update transactions are
being handled on separate threads.

	Multiple update/modification/write transactions cannot be initiated and
stay open simultaneously, i.e., when a transaction is initiated and started to modifiy the underlying indices, no other transaction must be allowed to change anything until the first one is either commited or rollbacked;

Note

GraphDB performs materialization, ensuring that all statements that
can be inferred from the current state of the repository are indexed
and persisted (except for those compressed due to the
Optimization of owl:sameAs). When the
commit method is completed, all reasoning activities related to the
changes in the data introduced by the corresponding transaction will
have already been performed.

Note

In GraphDB SE the result of leading update operations in a transaction is visible to trailing ones.
Due to a limitation of the cluster protocol, this feature is not supported in GraphDB cluster i.e., an uncommitted transaction will not affect the ‘view’ of the repository through any connection, including the connection used to do the modification.

Predicate lists

Certain datasets and certain kinds of query activities, for example,
queries that use wildcard patterns for predicates, benefit from another
type of index called a ‘predicate list’, i.e.:

	subject-predicate (SP)

	object-predicate (OP)

This index maps from entities (subject or object) to their predicates.
It is not switched on by default (see
the enablePredicateList configuration parameter), because it is not always
necessary. Indeed, for most datasets and query loads, the performance of
GraphDB without such an index is good enough even with
wildcard-predicate queries, and the overhead of maintaining this index
is not justified. You should consider using this index for datasets that
contain a very large number (greater than around 1000) of different
predicates.

Context index

The Context index can be used to speed up query evaluation when searching statements via their context identifier. To switch ON or OFF the CPSO index use the enable-context-index configuration parameter. The default value is false.

Literal index

GraphDB automatically builds a literal index allowing faster look-ups of
numeric and date/time object values. The index is used during query
evaluation only if a query or a subquery (e.g., union) has a filter that
is comprised of a conjunction of literal constraints using comparisons
and equality (not negation or inequality), e.g., FILTER(?x = 100 && ?y <=
5 && ?start > "2001-01-01"^^xsd:date).

Other patterns will not use the index, i.e., filters will not be re-written into usable patterns.

For example, the following FILTER patterns will all make use of the
literal index:

FILTER(?x = 7)
FILTER(3 < ?x)
FILTER(?x >= 3 && ?y <= 5)
FILTER(?x > "2001-01-01"^^xsd:date)

whereas these FILTER patterns will not:

FILTER(?x > (1 + 2))
FILTER(?x < 3 || ?x > 5)
FILTER((?x + 1) < 7)
FILTER(! (?x < 3))

The decision of the query optimizer whether to make use of this index is
statistics-based. If the estimated number of matches for a filter
constraint is large relative to the rest of the query, e.g., a constraint
with large or one-sided range, then the index might not be used at all.

To disable this index during query evaluation, use the enable-literal-index configuration
parameter. The default value is true.

Note

Because of the way the literals are stored, the index with dates far
in the future and far in the past (approximately 200,000,000 years)
as well as numbers beyond the range of 64-bit floating-point
representation (i.e., above approximately 1e309 and below -1e309) will not work properly.

Handling of explicit and implicit statements

As already described, GraphDB applies the
inference rules at load time in order to compute the full closure.
Therefore, a repository will contain some statements that are explicitly
asserted and other statements that exist through implication. In most
cases, clients will not be concerned with the difference, however there
are some scenarios when it is useful to work with only explicit or only
implicit statements. These two groups of statements can be isolated
during programmatic statement retrieval using the RDF4J API and during
(SPARQL) query evaluation.

Retrieving statements with the RDF4J API

The usual technique for retrieving statements is to use the
RepositoryConnection method:

RepositoryResult<Statement> getStatements(
 Resource subj,
 URI pred,
 Value obj,
 boolean includeInferred,
 Resource... contexts)

The method retrieves statements by ‘triple pattern’, where any or all of
the subject, predicate and object parameters can be null to indicate
wildcards.

To retrieve explicit and implicit statements, the includeInferred
parameter must be set to true. To retrieve only explicit statements,
the includeInferred parameter must be set to false.

However, the RDF4J API does not provide the means to enable only the
retrieval of implicit statements. In order to allow clients to do this,
GraphDB allows the use of the special ‘implicit’ pseudo-graph with this
API, which can be passed as the context parameter.

The following example shows how to retrieve only implicit statements:

RepositoryResult<Statement> statements =
 repositoryConnection.getStatements(
 null, null, null, true,
 SimpleValueFactory.getInstance().createIRI("http://www.ontotext.com/implicit"));

while (statements.hasNext()) {
 Statement statement = statements.next();
 // Process statement
}
statements.close();

The above example uses wildcards for subject, predicate and object and
will therefore return all implicit statements in the repository.

SPARQL query evaluation

GraphDB also provides mechanisms to differentiate between explicit and
implicit statements during query evaluation. This is achieved by
associating statements with two pseudo-graphs (explicit and implicit)
and using special system URIs to identify these graphs.

Tip

To learn more, see Query behavior.

Notifications

What’s in this document?

	What are GraphDB local notifications

	How to register for local notifications

	What are GraphDB remote notifications

	How to use remote notifications

What are GraphDB local notifications

Notifications are a publish/subscribe mechanism for registering and
receiving events from a GraphDB repository, whenever triples matching a
certain graph pattern are inserted or removed.

The RDF4J API provides such a mechanism, where a
RepositoryConnectionListener can be notified of changes to a
NotifiyingRepositoryConnection. However, the GraphDB notifications
API works at a lower level and uses the internal raw entity IDs for
subject, predicate and object instead of Java objects. The benefit of this
is that a much higher performance is possible. The downside is that the
client must do a separate lookup to get the actual entity values and
because of this, the notification mechanism works only when the client
is running inside the same JVM as the repository instance.

How to register for local notifications

To receive notifications, register by providing a SPARQL query.

Note

The SPARQL query is interpreted as a plain graph pattern by ignoring
all more complicated SPARQL constructs such as FILTER, OPTIONAL,
DISTINCT, LIMIT, ORDER BY, etc. Therefore, the SPARQL query is
interpreted as a complex graph pattern involving triple patterns
combined by means of joins and unions at any level. The order of the
triple patterns is not significant.

Here is an example of how to register for notifications based on a given
SPARQL query:

AbstractRepository rep =
 ((OwlimSchemaRepository)owlimSail).getRepository();
EntityPool ent = ((OwlimSchemaRepository)owlimSail).getEntities();
String query = "SELECT * WHERE { ?s rdf:type ?o }";
SPARQLQueryListener listener =
 new SPARQLQueryListener(query, rep, ent) {
 public void notifyMatch(int subj, int pred, int obj, int context) {
 System.out.println("Notification on subject: " + subj);
 }
 }
rep.addListener(listener); // start receiving notifications
...
rep.removeListener(listener); // stop receiving notifications

In the example code, the caller will be asynchronously notified about
incoming statements matching the pattern ?s rdf:type ?o.

Note

In general, notifications are sent for all incoming triples, which
contribute to a solution of the query. The integer parameters in the
notifyMatch method can be mapped to values using the
EntityPool object. Furthermore, any statements inferred from
newly inserted statements are also subject to handling by the
notification mechanism, i.e., clients are notified also of new implicit statements when the requested triple pattern matches.

Note

The subscriber should not rely on any particular order or
distinctness of the statement notifications. Duplicate statements
might be delivered in response to a graph pattern subscription in an
order not even bound to the chronological order of the statements
insertion in the underlying triplestore.

Tip

The purpose of the notification services is to enable the efficient
and timely discovery of newly added RDF data. Therefore, it should
be treated as a mechanism for giving the client a hint that certain
new data is available and not as an asynchronous SPARQL evaluation
engine.

What are GraphDB remote notifications

GraphDB’s remote notification mechanism provides filtered statement
add/remove and transaction begin/end notifications for a local or a
remote GraphDB repository. Subscribers for this mechanism use patterns
of subject, predicate and object (with wildcards) to filter the
statement notifications. JMX is used internally as a transport
mechanism.

How to use remote notifications

To register / deregister for notifications, use the
NotifyingOwlimConnection class, which is located in the
graphdb-notifications-<version>.jar in the lib folder of the
distribution .zip file. This class wraps a RepositoryConnection
object connected to a GraphDB repository and provides an API to
add/remove notification listeners of the type
RepositoryNotificationsListener.

Here is a simple example of how to use the API when the GraphDB repository
is initialized in the same JVM that runs the example (local repository):

RepositoryConnection conn = null;
// initialize repository connection to GraphDB ...

RepositoryNotificationsListener listener = new RepositoryNotificationsListener() {
 @Override
 public void addStatement(Resource subject, URI predicate,
 Value object, Resource context, boolean isExplicit, long tid) {
 System.out.println("Added: " + subject + " " + predicate + " " + object);
 }
 @Override
 public void removeStatement(Resource subject, URI predicate,
 Value object, Resource context, boolean isExplicit, long tid) {
 System.out.println("Removed: " + subject + " " + predicate + " " + object);
 }
 @Override
 public void transactionStarted(long tid) {
 System.out.println("Started transaction " + tid);
 }
 @Override
 public void transactionComplete(long tid) {
 System.out.println("Finished transaction " + tid);
 }
};

NotifyingOwlimConnection nConn = new NotifyingOwlimConnection(conn);
IRI ex = SimpleValueFactory.getInstance().createIRI("http://example.com/");

// subscribe for statements with 'ex' as subject
nConn.subscribe(listener, ex, null, null);

// note that this could be any other connection to the same repository
conn.add(ex, ex, ex);
conn.commit();
// statement added should have been printed out

// stop listening for this pattern
nConn.unsubscribe(listener);

Note

The transactionStarted() and transactionComplete() events are not
bound to any statement. They are dispatched to all subscribers, no
matter what they are subscribed for. This means that pairs of
start/complete events can be detected by the client without
receiving any statement notifications in between.

To use a remote repository (e.g., HTTPRepository), the notifying
repository connection should be initialized differently:

NotifyingOwlimConnection nConn =
 new NotifyingOwlimConnection(conn, host, port);

where host (String) and port (int) are the host name of the
remote machine, in which the repository resides and the port number of
the JMX service in the repository JVM. The other part of the above
example is also valid for a remote repository.

How to configure remote notifications

For remote notifications, where the subscriber and the repository are
running in different JVM instances (possibly on different hosts), a JMX
remote service should be configured in the repository JVM.

This is done by adding the following parameters to the JVM command line:

-Dcom.sun.management.jmxremote.port=1717
-Dcom.sun.management.jmxremote.authenticate=false
-Dcom.sun.management.jmxremote.ssl=false

If the repository is running inside a servlet container, these
parameters must be passed to the JVM that runs the container and
GraphDB. For Tomcat, this can be done using the JAVA_OPTS or
CATALINA_OPTS environment variable.

The port number used should be exactly the port number that is passed to
the NotifyingOwlimConnection constructor (as in the example above). You
have to make sure that the specified port (e.g., 1717) is accessible
remotely, i.e., no firewalls or NAT redirection prevent access to it.

Query behavior

What’s in this document?

	What are named graphs

	The default SPARQL dataset

	How to manage explicit and implicit statements

	How to query explicit and implicit statements

	How to specify the dataset programmatically

	How to access internal identifiers for entities

	Examples

	How to use RDF4J ‘direct hierarchy’ vocabulary

	Other special GraphDB query behavior

What are named graphs

Hint

GraphDB supports the following SPARQL specifications:

	SPARQL 1.1 Protocol for
RDF [http://www.w3.org/TR/sparql11-protocol/]

	SPARQL 1.1 Query [http://www.w3.org/TR/sparql11-query/]

	SPARQL 1.1 Update [http://www.w3.org/TR/sparql11-update/]

	SPARQL 1.1
Federation [http://www.w3.org/TR/sparql11-federated-query/]

	SPARQL 1.1 Graph Store HTTP
Protocol [http://www.w3.org/TR/sparql11-http-rdf-update/]

An RDF database can store collections of RDF statements (triples) in
separate graphs identified (named) by a URI. A group of statements with
a unique name is called a ‘named graph’. An RDF database has one more
graph, which does not have a name, and it is called the ‘default graph’.

The SPARQL query syntax provides a means to execute queries across
default and named graphs using FROM and FROM NAMED clauses. These
clauses are used to build an RDF dataset, which identifies what
statements the SPARQL query processor will use to answer a query. The
dataset contains a default graph and named graphs and is constructed as
follows:

	FROM <uri> - brings statements from the database graph, identified
by URI, to the dataset’s default graph, i.e., the statements ‘lose’
their graph name.

	FROM NAMED <uri> - brings the statements from the database graph,
identified by URI, to the dataset, i.e., the statements keep their
graph name.

If either FROM or FROM NAMED are used, the database’s default graph is
no longer used as input for processing this query. In effect, the
combination of FROM and FROM NAMED clauses exactly defines the dataset.
This is somewhat bothersome, as it precludes the possibility, for
instance, of executing a query over just one named graph and the default
graph. However, there is a programmatic way to get around this
limitation as described below.

The default SPARQL dataset

Note

The SPARQL specification does not define what happens when no FROM
or FROM NAMED clauses are present in a query, i.e., it does not
define how a SPARQL processor should behave when no dataset is
defined. In this situation, implementations are free to construct
the default dataset as necessary.

GraphDB constructs the default dataset as follows:

	The dataset’s default graph contains the merge of the database’s
default graph AND all the database named graphs;

	The dataset contains all named graphs from the database.

This means that if a statement ex:x ex:y ex:z exists in the database in
the graph ex:g, then the following query patterns will behave as
follows:

	Query

	Bindings

	SELECT * { ?s ?p ?o }

	?s=ex:x ?p=ex:y ?o=ex:z

	SELECT * { GRAPH ?g { ?s ?p ?o } }

	?s=ex:x ?p=ex:y ?o=ex:z ?g=ex:g

In other words, the triple ex:x ex:y ex:z will appear to be in both the
default graph and the named graph ex:g.

There are two reasons for this behavior:

	It provides an easy way to execute a triple pattern query over all
stored RDF statements.

	It allows all named graph names to be discovered, i.e., with this
query: SELECT ?g { GRAPH ?g { ?s ?p ?o } }.

How to manage explicit and implicit statements

GraphDB maintains two flags for each statement:

	Explicit: the statement is inserted in the database by the user,
using SPARQL UPDATE, the RDF4J API or the imports configuration parameter configuration
parameter. The same explicit statement can exist in the database’s
default graph and in each named graph.

	Implicit: the statement is created as a result of inference, by
either Axioms or Rules. Inferred
statements are ALWAYS created in the database’s default graph.

These two flags are not mutually exclusive. The following sequences of
operations are possible:

	For the operations, use the names ‘insert/delete’ for explicit,
and ‘infer/retract’ for implicit (retract means that all premises of
the statement are deleted or retracted).

	To show the results after each operation, use tuples <statement graph flags> :

	<s G EI> means statement s in graph G having both
flags Explicit and Implicit;

	<s _ EI> means statement s in the default graph having
both flags Explicit and Implicit;

	<_ G _> means the statement is deleted from graph G.

First, let’s consider operations on statement s in the default
graph only:

	insert <s _ E>, infer <s _ EI>, delete <s _ I>, retract
<_ _ _>;

	insert <s _ E>, infer <s _ EI>, retract <s _ E>, delete
<_ _ _>;

	infer <s _ I>, insert <s _ EI>, delete <s _ I>, retract
<_ _ _>;

	infer <s _ I>, insert <s _ EI>, retract <s _ E>, delete
<_ _ _>;

	insert <s _ E>, insert <s _ E>, delete <_ _ _>;

	infer <s _ I>, infer <s _ I>, retract <_ _ _> (if the two
inferences are from the same premises).

This does not show all possible sequences, but it shows the principles:

	No duplicate statement can exist in the default graph;

	Delete/retract clears the appropriate flag;

	The statement is deleted only after both flags are cleared;

	Deleting an inferred statement has no effect (except to clear the
I flag, if any);

	Retracting an inserted statement has no effect (except to clear the
E flag, if any);

	Inserting the same statement twice has no effect: insert is
idempotent;

	Inferring the same statement twice has no effect: infer is
idempotent, and
I is a flag, not a counter, but the Retraction algorithm ensures I
is cleared only after all premises of s are retracted.

Now, let’s consider operations on statement
s in the named graph G, and inferred statement s in the default
graph:

	insert <s G E>, infer <s _ I> <s G E>, delete <s _ I>,
retract <_ _ _>;

	insert <s G E>, infer <s _ I> <s G E>, retract <s G E>,
delete <_ _ _>;

	infer <s _ I>, insert <s G E> <s _ I>, delete <s _ I>,
retract <_ _ _>;

	infer <s _ I>, insert <s G E> <s _ I>, retract <s G E>,
delete <_ _ _>;

	insert <s G E>, insert <s G E>, delete <_ _ _>;

	infer <s _ I>, infer <s _ I>, retract <_ _ _> (if the two
inferences are from the same premises).

The additional principles here are:

	The same statement can exist in several graphs - as explicit in graph
G and implicit in the default graph;

	Delete/retract works on the appropriate graph.

Note

In order to avoid a proliferation of duplicate statements, it is
recommended not to insert inferable statements in named graphs.

How to query explicit and implicit statements

The database’s default graph can contain a mixture of explicit and
implicit statements. The RDF4J API provides a flag called
‘includeInferred’, which is passed to several API methods and when set
to false causes only explicit statements to be iterated or
returned. When this flag is set to true, both explicit and implicit
statements are iterated or returned.

GraphDB provides extensions for more control over the
processing of explicit and implicit statements. These extensions allow
the selection of explicit, implicit or both for query answering and also
provide a mechanism for identifying which statements are explicit and
which are implicit. This is achieved by using some ‘pseudo-graph’ names
in FROM and FROM NAMED clauses, which cause certain flags to be set.

The details are as follows:

	FROM <http://www.ontotext.com/explicit>
	The dataset’s default graph includes only explicit statements from the database’s default graph.

	FROM <http://www.ontotext.com/implicit>
	The dataset’s default graph includes only inferred statements from the database’s default graph.

	FROM NAMED <http://www.ontotext.com/explicit>
	The dataset contains a named graph http://www.ontotext.com/explicit that includes only explicit
statements from the database’s default graph, i.e., quad patterns such as GRAPH ?g {?s ?p ?o}
rebind explicit statements from the database’s default graph to a graph named http://www.ontotext.com/explicit.

	FROM NAMED <http://www.ontotext.com/implicit>
	The dataset contains a named graph http://www.ontotext.com/implicit that includes only implicit
statements from the database’s default graph.

Note

These clauses do not affect the construction of the default dataset
in the sense that using any combination of the above will still
result in a dataset containing all named graphs from the database.
All it changes is which statements appear in the dataset’s default
graph and whether any extra named graphs (explicit or implicit)
appear.

How to specify the dataset programmatically

The RDF4J API provides an interface Dataset and an implementation
class DatasetImpl for defining the dataset for a query by providing
the URIs of named graphs and adding them to the default graphs and named
graphs members. This permits null to be used to identify the default
database graph (or null context to use RDF4J terminology).

DatasetImpl dataset = new DatasetImpl();
dataset.addDefaultGraph(null);
dataset.addNamedGraph(valueFactory.createURI("http://example.com/g1"));

This dataset can then be passed to queries or updates, e.g.:

TupleQuery query = connection.prepareTupleQuery(QueryLanguage.SPARQL, queryString);
query.setDataset(dataset);

How to access internal identifiers for entities

Internally, GraphDB uses integer identifiers (IDs) to index all entities
(URIs, blank nodes, literals, and RDF-star [formerly RDF*] embedded triples). Statement indices are made up of these
IDs and a large data structure is used to map from ID to entity value
and back. There are occasions (e.g., when interfacing to an application
infrastructure) when having access to these internal IDs can improve the
efficiency of data structures external to GraphDB by allowing them to be
indexed by an integer value rather than a full URI.

Here, we introduce a special GraphDB predicate and function that
provide access to the internal IDs. The datatype of the internal IDs is
<http://www.w3.org/2001/XMLSchema#long>.

	Predicate

	<http://www.ontotext.com/owlim/entity#id>

	Description

	A map between an entity and an internal ID

	Example

	Select all entities and their IDs:

PREFIX ent: <http://www.ontotext.com/owlim/entity#>
SELECT * WHERE {
?s ent:id ?id
} ORDER BY ?id

	Function

	<http://www.ontotext.com/owlim/entity#id>

	Description

	Return an entity’s internal ID

	Example

	Select all statements and order them by the internal ID of the object values:

PREFIX ent: <http://www.ontotext.com/owlim/entity#>
SELECT * WHERE {
?s ?p ?o .
} order by ent:id(?o)

Examples

	Enumerate all entities and bind the nodes to ?s and their IDs to ?id,
order by ?id:

select * where {
 ?s <http://www.ontotext.com/owlim/entity#id> ?id
} order by ?id

	Enumerate all non-literals and bind the nodes to ?s and their IDs to
?id, order by ?id:

SELECT * WHERE {
 ?s <http://www.ontotext.com/owlim/entity#id> ?id .
 FILTER (!isLiteral(?s)) .
} ORDER BY ?id

	Find the internal IDs of subjects of statements with specific
predicate and object values:

SELECT * WHERE {
 ?s <http://test.org#Pred1> "A literal".
 ?s <http://www.ontotext.com/owlim/entity#id> ?id .
} ORDER BY ?id

	Find all statements where the object has the given internal ID by
using an explicit, untyped value as the ID (the "115" is used as
object in the second statement pattern):

SELECT * WHERE {
 ?s ?p ?o.
 ?o <http://www.ontotext.com/owlim/entity#id> "115" .
}

	As above, but using an xsd:long datatype for the constant within a
FILTER condition:

SELECT * WHERE {
 ?s ?p ?o.
 ?o <http://www.ontotext.com/owlim/entity#id> ?id .
 FILTER (?id="115"^^<http://www.w3.org/2001/XMLSchema#long>) .
} ORDER BY ?o

	Find the internal IDs of subject and object entities for all
statements:

SELECT * WHERE {
 ?s ?p ?o.
 ?s <http://www.ontotext.com/owlim/entity#id> ?ids.
 ?o <http://www.ontotext.com/owlim/entity#id> ?ido.
}

	Retrieve all statements where the ID of the subject is equal to
"115"^^xsd:long, by providing an internal ID value within a filter
expression:

SELECT * WHERE {
 ?s ?p ?o.
 FILTER ((<http://www.ontotext.com/owlim/entity#id>(?s))
 = "115"^^<http://www.w3.org/2001/XMLSchema#long>).
}

	Retrieve all statements where the string-ized ID of the subject is
equal to "115", by providing an internal ID value within a filter
expression:

SELECT * WHERE {
 ?s ?p ?o.
 FILTER (str(<http://www.ontotext.com/owlim/entity#id>(?s)) = "115").
}

How to use RDF4J ‘direct hierarchy’ vocabulary

GraphDB supports the RDF4J specific vocabulary for determining ‘direct’
subclass, subproperty and type relationships. The special vocabulary
used and their definitions are shown below. The
three predicates are all defined using the namespace definition:

PREFIX sesame: <http://www.openrdf.org/schema/sesame#>

	Predicate

	Definition

	A sesame:directSubClassOf B

	Class A is a direct subclass of B if:

	A is a subclass of B and;

	A and B are not equal and;

	there is no class C (not equal to A or B) such that A is a subclass of C and C of B.

	P sesame:directSubPropertyOf Q

	Property P is a direct subproperty of Q if:

	P is a subproperty of Q and;

	P and Q are not equal and;

	there is no property R (not equal to P or Q) such that P is a subproperty of R and R of Q.

	I sesame:directType T

	Resource I is a direct type of T if:

	I is of type T and

	There is no class U (not equal to T) such that:

	U is a subclass of T and;

	I is of type U.

Other special GraphDB query behavior

There are several more special graph URIs in GraphDB, which are used for
controlling query evaluation.

	FROM / FROM NAMED <http://www.ontotext.com/disable-sameAs>
	Switch off the enumeration of equivalence classes produced by the Optimization of owl:sameAs.
By default, all owl:sameAs URIs are returned by triple pattern matching. This clause reduces
the number of results to include a single representative from each owl:sameAs class.
For more details, see Not enumerating sameAs.

	FROM / FROM NAMED <http://www.ontotext.com/count>
	Used for triggering the evaluation of the query, so that it gives a single result in which
all variable bindings in the projection are replaced with a plain literal, holding the value
of the total number of solutions of the query. In the case of a CONSTRUCT query in which
the projection contains three variables (?subject, ?predicate, ?object), the subject
and the predicate are bound to <http://www.ontotext.com/> and the object holds
the literal value. This is because there cannot exist a statement with a literal in
the place of the subject or predicate. This clause is deprecated in favor of using
the COUNT aggregate of SPARQL 1.1.

	FROM / FROM NAMED <http://www.ontotext.com/skip-redundant-implicit>
	Used for triggering the exclusion of implicit statements when there is an explicit
one within a specific context (even default). Initially implemented to allow for filtering
of redundant rows where the context part is not taken into account and which leads to
‘duplicate’ results.

	FROM <http://www.ontotext.com/distinct>
	Using this special graph name in DESCRIBE and CONSTRUCT queries will cause only distinct
triples to be returned. This is useful when several resources are being described, where the same
triple can be returned more than once, i.e., when describing its subject and its object.
This clause is deprecated in favor of using the DISTINCT clause of SPARQL 1.1.

Retain BIND position special graph

The default behavior of the GraphDB query optimizer is to try and
reposition BIND clauses so that all the variables within its EXPR part
(on the left side of ‘AS’) are bound to have valid bindings for all of
the variables referred within it.

If you look at the following data:

INSERT DATA {
 <urn:q> <urn:pp1> 1 .
 <urn:q> <urn:pp2> 2 .
 <urn:q> <urn:pp3> 3 .
}

and try to evaluate a SPARQL query such as the one below (without any
rearrangement of the statement patterns):

SELECT ?r {
 ?q <urn:pp1> ?x .
 ?q <urn:pp2> ?y .
 BIND (?x + ?y + ?z AS ?r) .
 ?q <urn:pp3> ?z .
}

the ‘correct’ result would be:

1 result: r=UNDEF

because the expression that sums several variables will not produce any
valid bindings for ?r.

But if you rearrange the statement patterns in the same query so that you
have bindings for all of the variables used within the sum expression of
the BIND clause:

SELECT ?r {
 ?q <urn:pp1> ?x .
 ?q <urn:pp2> ?y .
 ?q <urn:pp3> ?z .
 BIND (?x + ?y + ?z AS ?r) .
}

the query would return a single result and now the value bound to ?r
will be 6:

1 result: r=6

By default, the GraphDB query optimizer tries to move the BIND after
the last statement pattern, so that all the variables referred
internally have a binding. However, that behavior can be modified by
using a special ‘system’ graph within the dataset section of the query
(e.g., as FROM clause) that has the following URI:

<http://www.ontotext.com/retain-bind-position>.

In this case, the optimizer retains the relative position of the
BIND operator within the group in which it appears, so that if you
evaluate the following query against the GraphDB repository:

SELECT ?r
FROM <http://www.ontotext.com/retain-bind-position> {
 ?q <urn:pp1> ?x .
 ?q <urn:pp2> ?y .
 BIND (?x + ?y + ?z AS ?r) .
 ?q <urn:pp3> ?z .
}

you will get the following result:

1 result: r=UNDEF

Still, the default evaluation without the special ‘system’ graph
provides a more useful result:

1 result: r="6"

Graph Replacement Optimization

Clearing and old graph and then importing the new information can often be inefficient. Since the two operations are handled separately, it is impossible to determine if a statement will also be present in the new graph and therefore, keep it there. The same applies for preserving connectors or inferring statements. Therefore, GraphDB offers an optimized graph replacement algorithm, making graph updates faster in those situations where the new graph will partially overlap with data in the old one.

The graph replacement optimization is in effect when the replacement is done in a single transaction and when the transaction is bigger than a certain threshold. By default this threshold is set to 1000, but it can be controlled by using the graphdb.engine.min-replace-graph-tx-size configuration parameter.

The algorithm has the following steps:

	Check transaction contents. If the transaction includes a graph replacement and is of sufficient size, proceed.

	Check if any of the graphs to be replaced are valid and if any of them have data. If so, store their identifiers in a list.

	While processing transaction statements for insertion, if their context (graph) matches an identifier from the list, store them inside a tracker.

	While clearing the graph to be replaced, if it is not mentioned in the tracker, directly delete all its contents.

	If a graph is mentioned in the tracker, iterate over its triples.

	Triples in the replacement graph that are also in the tracker are preserved. Otherwise, they are deleted.

Deletions may trigger re-inference and are a more costly process than the check described in the algorithm. Therefore, in some test cases due to the optimization users can observe a speedup of up to 200%.

Here is an example of an update that will use the replacement optimization algorithm:

curl -X PUT -H "Content-Type: application/x-trig" --data-binary '@test_modified.trig'\
 'http://localhost:7200/repositories/test/rdf-graphs/service?graph=http://example.org/optimizations/replacement'

By contrast, the following approach will not use the optimization since it performs the replacement in two separate steps:

curl -X POST -H 'Content-Type: application/sparql-update'\
 --data-binary 'CLEAR GRAPH <http://example.org/optimizations/replacement>'\
 'http://localhost:7200/repositories/test/statements'

curl -X POST -H "Content-Type: application/x-trig" --data-binary '@test_modified.trig'\
 'http://localhost:7200/repositories/test/statements'

Note

The replacement optimization described here applies to all forms of transactions. i.e., it will be triggered by standard PUT requests, such as the ones in the example, but also by SPARQL INSERT queries containing the http://www.ontotext.com/replaceGraph predicate, such as <http://any/subject> <http://wwww.ontotext.com/replaceGraph> <http://example.org/graph>

Experimental Features

	SPARQL-MM support

	Nested repositories

	LVM-based backup and replication

SPARQL-MM support

What’s in this document?

	Usage examples

	Temporal relations

	Temporal aggregation

	Temporal accessors

	Spatial relations

	Spatial aggregation

	General relation

	General aggregation

	General accessor

SPARQL-MM is a multimedia extension for SPARQL 1.1. The implementation is based on code developed by Thomas Kurz, and is implemented as a GraphDB plugin.

Usage examples

Temporal relations

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX mm: <http://linkedmultimedia.org/sparql-mm/ns/2.0.0/function#>

SELECT ?t1 ?t2 WHERE {
 ?f1 rdfs:label ?t1.
 ?f2 rdfs:label ?t2.
 FILTER mm:precedes(?f1,?f2)
} ORDER BY ?t1 ?t2

Temporal aggregation

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX mm: <http://linkedmultimedia.org/sparql-mm/ns/2.0.0/function#>

SELECT ?f1 ?f2 (mm:temporalIntermediate(?f1,?f2) AS ?box) WHERE {
 ?f1 rdfs:label "a".
 ?f2 rdfs:label "b".
}

Temporal accessors

PREFIX ma: <http://www.w3.org/ns/ma-ont#>
PREFIX mm: <http://linkedmultimedia.org/sparql-mm/ns/2.0.0/function#>

SELECT ?f1 WHERE {
 ?f1 a ma:MediaFragment.
} ORDER BY mm:duration(?f1)

Spatial relations

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX mm: <http://linkedmultimedia.org/sparql-mm/ns/2.0.0/function#>

SELECT ?t1 ?t2 WHERE {
 ?f1 rdfs:label ?t1.
 ?f2 rdfs:label ?t2.
 FILTER mm:rightBeside(?f1,?f2)
} ORDER BY ?t1 ?t2

Spatial aggregation

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX mm: <http://linkedmultimedia.org/sparql-mm/ns/2.0.0/function#>

SELECT ?f1 ?f2 (mm:spatialIntersection(?f1,?f2) AS ?box) WHERE {
 ?f1 rdfs:label "a".
 ?f2 rdfs:label "b".
}

General relation

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX mm: <http://linkedmultimedia.org/sparql-mm/ns/2.0.0/function#>

SELECT ?t1 ?t2 WHERE {
 ?f1 rdfs:label ?t1.
 ?f2 rdfs:label ?t2.
 FILTER mm:equals(?f1,?f2)
} ORDER BY ?t1 ?t2

General aggregation

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX mm: <http://linkedmultimedia.org/sparql-mm/ns/2.0.0/function#>

SELECT ?f1 ?f2 (mm:boundingBox(?f1,?f2) AS ?box) WHERE {
 ?f1 rdfs:label "a".
 ?f2 rdfs:label "b".
}

General accessor

PREFIX ma: <http://www.w3.org/ns/ma-ont#>
PREFIX mm: <http://linkedmultimedia.org/sparql-mm/ns/2.0.0/function#>

SELECT ?pixelURI WHERE {
 ?f1 ma:hasFragment ?f1.
 BIND (mm:toPixel(?f1) AS ?pixelURI)
} ORDER BY ?t1 ?t2

Tip

For more information, see:

	The SPARQL-MM Specification [http://mayor2.dia.fi.upm.es/oeg-upm/files/eswc2014/Posters%20and%20Demonstrations/eswc2014pd_submission_65.pdf]

	List of SPARQL-MM functions [https://github.com/tkurz/sparql-mm/blob/master/sparql-mm/ns/2.0.0/function/index.md]

Nested repositories

What’s in this document?

	What are nested repositories

	Inference, indexing and queries

	Configuration

	Initialization and shut down

What are nested repositories

Nested repositories is a technique for sharing RDF data between multiple GraphDB repositories. It is most useful when several logically independent repositories need to make use of a large (reference) dataset, e.g., a combination of one or more LOD datasets (GeoNames, DBpedia, MusicBrainz, etc.), but where each repository adds its own specific data. This mechanism allows the data in the common repository to be logically included, or ‘nested’, within other repositories that extend it. A repository that is nested in another repository (possibly into more than one other repository) is called a ‘parent repository’ while a repository that nests a parent repository is called a ‘child repository’. The RDF data in the common repository is combined with the data in each child repository for inference purposes. Changes in the common repository are reflected across all child repositories and inferences are maintained to be logically consistent.

Results for queries against a child repository are computed from the contents of the child repository, as well as the nested repository. The following diagram illustrates the nested repositories concept:

[image: _images/nested_repositories_diagram1.jpg]

Note

When two child repositories extend the same nested repository, they remain logically separate. Only changes made to the common nested repository will affect any child repositories.

Inference, indexing and queries

A child repository ignores all values for its ruleset configuration parameter and automatically uses the same ruleset as its parent repository. Child repositories compute inferences based on the union of the explicit data stored in the child and parent repositories. Changes to either parent or child cause the set of inferred statements in the child to be updated.

Note

The child repository must be initialized (running) when updates to the parent repository take place, otherwise the child can become logically inconsistent.

When a parent repository is updated, before its transaction is committed, it updates every connected child repository by a set of statement INSERT/DELETE operations. When a child repository is updated, any new resources are recorded in the parent dictionary so that the same resource is indexed in the sibling child repositories using the
same internal identifier.

Note

A current limitation on the implementation is that no updates using the owl:sameAs predicate are permitted.

Queries executed on a child repository should perform almost as well as queries executed against a repository containing all the data (from both parent and child repositories).

Configuration

Both parent and child repositories must be deployed using Tomcat and they must deployed to the same instance on the same machine (same JVM).

Repositories that are configured to use the nesting mechanism must be created using specific RDF4J SAIL types:

	owlim:ParentSail - for parent (shared) repositories;

	owlim:ChildSail - for child repositories that extend parent repositories.

(Where the owlim namespace above maps to http://www.ontotext.com/trree/owlim#.)

Additional configuration parameters:

	owlim:id is used in the parent configuration to provide a nesting name;

	owlim:parent-id is used in the child configurations to identify the parent repository.

Once created, a child repository must not be reconfigured to use a different parent repository as this leads to inconsistent data.

Note

When setting up several GraphDB instances to run in the same Java Virtual Machine, i.e., the JVM used to host Tomcat, make sure that the configured memory settings take into account the other repositories. For example, if setting up 3 GraphDB instances, configure them as though each of them had only one third of the total Java heap space available.

Initialization and shut down

To initialize nested repositories correctly, start the parent repository followed by each of its children.

As long as no further updates occur, the shutdown sequence is not strictly defined. However, we recommend that you shut down the children first followed by the parent.

LVM-based backup and replication

In essence, the Linux Logical Volume Management (LVM)-based Backup and Replication uses shell scripts to find out the logical volume and volume group where the repository storage folder resides and then creates a filesystem snapshot. Once the snapshot is created, the repository is available for reads and writes while the maintenance operation is still in-progress. When it finishes, the snapshot is removed and the changes are merged back to the filesystem.

What’s in this document?

	Prerequisites

	How it works

	Some further notes

Prerequisites

	Linux OS;

	The system property (JVM’s -D) named lvm-scripts should point to the folder with the above scripts;

	The folder you are about to backup or use for replication contains a file named owlim.properties;

	That folder DOES NOT HAVE a file named lock.

All of the above mean that the repository storage is ‘ready’ for maintenance.

How it works

By default, the LVM-based Backup and Replication feature is disabled.

To enable it:

	Get the scripts located in the lvmscripts folder of the distribution.

	Place them on each of the workers in a chosen folder.

	Set the system property (JVM’s -D) named lvm-scripts, e.g., -Dlvm-scripts=<folder-with-the-scripts>, to point to the folder with the scripts.

Note

GraphDB checks if the folder contains scripts named: create-snapshot.sh, release-snapshot.sh, and locatelvm.sh. This is done the first time you try to get the repository storage folder contents. For example, when you need to do backup or to perform full-replication.

GraphDB executes the script locatelvm.sh with a single parameter, which is the pathname of the storage folder from where you want to transfer the data (either to perform backup or to replicate it to another node). While invoking it, GraphDB captures the script standard and error output streams in order to get the logical volume, volume group, and the storage location, relative to the volume’s mount point.

GraphDB also checks the exit code of the script (MUST be 0) and fetches the locations by processing the script output, e.g., it must contain the logical volume (after, lv=), the volume group (vg=), and the relative path (local=) from the mount point of the folder supplied as a script argument.

If the storage folder is not located on a LVM2 managed volume, the script will fail with a different exit code (it relies on the exit code of the lvs command) and the whole operation will revert back to the ‘classical’ way of doing it (same as in the previous versions).

If it succeeds to find the volume group and the logical volume, the create-snapshot.sh script is executed, which then creates a snapshot named after the value of $BACKUP variable (see the config.sh script, which also defines where the snapshot will be mounted). When the script is executed, the logical volume and volume groups are passed as environment variables, named LV and VG preset by GraphDB.

If it passes without any errors (script exit code = 0), the node is immediately initialized in order to be available for further operations (reads and writes).

The actual maintenance operation will now use the data from the ‘backup’ volume instead from where it is mounted.

When the data transfer completes (either with an error, canceled or successfully), GraphDB invokes the .release-snapshot.sh script, which unmounts the backup volume and removes it. This way, the data changes are merged back with the original volume.

Some further notes

The scripts rely on a root access to do ‘mount’, and also to create and remove snapshot volumes. The SUDO_ASKPASS variable is set to point to the askpass.sh script from the same folder. All commands that need privilege are executed using sudo -A, which invokes the command pointed by the SUDO_ASKPASS variable. The latter simply spits out the required password to its standard output. You have to alter the askpass.sh accordingly.

During the LVM-based maintenance session, GraphDB will create two additional files (zero size) in the scripts folder, named
snapshot-lock, indicating that a session is started, and snapshot-created, indicating a successful completion of the
create-snapshot.sh script. They are used to avoid other threads or processes interfering with the maintenance operation that has been initiated and is still in progress.

Security

Database security refers to the collective measures used to protect and secure a database from illegitimate use and malicious threats and attacks. It covers and enforces security in several aspects:

	Access Control

	Encryption

	Security Auditing

For access control, GraphDB implements Spring Security. When an HTTP request is received, Spring Security intercepts it, verifies the permissions, and either grants or denies access to the requested database resource or API.

GraphDB supports three types of user databases used for authentication and authorization: Local, LDAP, and OAuth. Each of them contains and manages the user information. GraphDB supports four authentication methods: Basic, GDB, OpenID and Kerberos. Each authentication method is responsible for a specific type of credentials or tokens.

GraphDB supports encryption in transit with SSL/TLS certificates for encrypting the network traffic between the clients and GraphDB, and between the different GraphDB nodes (when in a cluster).

GraphDB’s detailed security audit trail provides actions accountability, and is hierarchically structured in audit roles. The level of detail of the audit depends on the role that is configured.

Access Control

What’s in this document?

	Authorization and user database

	User roles and permissions

	Built-in users and roles

	Local user database

	Default admin user

	LDAP user database

	Mapping user type roles

	OAuth user database

	Authentication methods

	Basic authentication

	GDB authentication

	OpenID authentication

	Configuring the OpenID provider

	Kerberos authentication

	Configuring Kerberos in GraphDB

	Using SPNEGO tokens with GraphDB

	Example configurations

	Basic/GDB + LDAP

	OpenID + Local users

	OpenID + LDAP

	OpenID + OAuth

	Kerberos + Local users

	Kerberos + LDAP

Authorization and user database

Authorization is the process of mapping a known user to a set of specific permissions. GraphDB implements Spring Security,
where permissions are defined based on a combination of a URL pattern and an HTTP method. When an HTTP request
is received, Spring Security intercepts it, verifies the permissions, and either grants or denies access.

User roles and permissions

GraphDB’s access control is implemented using a hierarchical Role Based Access Control (RBAC) model.
This corresponds to the hierarchical level of the NIST/ANSI/INCITS RBAC standard and is also known
as RBAC1 in older publications.

The model defines three entities:

	Users
	Users are members of roles and acquire the permissions associated with the roles.

	Roles
	Roles group a set of permissions and are organized in hierarchies,
i.e., a role includes its directly associated permissions as well as the permissions it inherits from any parent roles.

	Permissions
	Permissions grant access rights to execute a specific operation.

RBAC in GraphDB does not define sessions, as the security implementation is stateless. An authorized user always
receives the full set of roles associated with it. Within a single API request call there is always an associated
user and hence roles and permissions.

The core roles defined in GraphDB security model follow a hierarchy:

	Role name

	Inherits roles

	Associated permissions (without the inherited ones)

	ROLE_ADMIN

	
ROLE_REPO_MANAGER

ROLE_CLUSTER

	Can perform all operations, i.e.,
the security never rejects an operation

	ROLE_REPO_MANAGER

	ROLE_MONITORING

	Can create, edit, and delete repositories with
read and write permissions to all repositories

	ROLE_MONITORING

	ROLE_USER

	Allows monitoring operations
(queries, updates, abort query/update, resource monitoring)

	ROLE_USER

	
	Can save SPARQL queries, graph visualizations, or user-specific
settings

	ROLE_CLUSTER

	
	Can perform internal cluster operations

The following repository access roles are available as well:

	Role name

	Associated permissions

	READ_REPO_*

	Read permissions to all repository IDs

	WRITE_REPO_*

	Write permissions to all repository IDs

	READ_REPO_xxx

	Read permissions to a given repository, where xxx is the repository ID

	WRITE_REPO_xxx

	Write permissions to a given repository, where xxx is the repository ID

Note

When providing the WRITE_REPO_xxx role for a given repository, the READ_REPO_xxx role must be provided for it as well.

The GraphDB user management interface uses a simplified high level model, where each created user falls into one of
three categories: a regular user, a repository manager, or an administrator. The three categories correspond
directly to one of the core roles. In addition to that, regular users may be granted individual read/write rights
to one or more repositories:

	Inherent role and permissions

	Regular user

	Repository manager

	Administrator

	Core role

	ROLE_USER

	ROLE_REPO_MANAGER

	ROLE_ADMIN

	Read access to a specific repository

	optional

	no

	no

	Read/write access to a specific repository

	optional

	no

	no

	Read/write access to all repositories

	no

	yes

	yes

	Create, edit, and delete repositories

	no

	yes

	yes

	Access monitoring

	no

	yes

	yes

	Manage Connectors

	no

	yes

	yes

	Manage Users and Access

	no

	no

	yes

	Manage the cluster

	no

	no

	yes

	Attach remote locations

	no

	no

	yes

	View system information

	no

	no

	yes

Built-in users and roles

GraphDB has two special internal users that are required for the functioning of the database. These users cannot
be seen or modified via user management.

	Username

	Associated roles

	Description

	<cluster user>

	
ROLE_CLUSTER

READ_REPO_*

WRITE_REPO_*

	Used for cluster-internal communication between
cluster nodes.

	<free access user>

	None by default but administrators
may grant access to one or more
repositories.

	The user associated with anonymous access if
anonymous access is enabled.

GraphDB supports three types of user databases used for authentication and authorization, explained in detail below:
Local, LDAP, and OAuth. Each of them contains the information about who
the user is, where they come from, and what type of rights and roles they have. The database may also store and
validate the user’s credentials, if that is required.

Only one database is active at a time. When one is selected, all available users are provided from that database.

The default database is Local.

Local user database

As mentioned above, this is the default security access provider. The local database stores usernames, encrypted passwords, assigned roles and user settings. Passwords are encrypted using the bcrypt [https://en.wikipedia.org/wiki/Bcrypt] algorithm.

The local database is located in the settings.js file under the GraphDB work/workbench directory. By default, this is ${graphdb.home}/work/workbench. If you are worried about the security of this file, we recommend encrypting it (see Encryption at rest).

The local user database does not need to be configured but can be explicitly specified with the following property:

graphdb.auth.database = local

Default admin user

A fresh installation of GraphDB comes with a single default user whose username is admin and default password is root. This user cannot be deleted or demoted to any of the non-administrator levels. It is recommended to change the default password at earliest convenience in order to avoid undesired access by a third party.

If you wish to disable the default admin user, you can unset its password from the Users and Access screen of the GraphDB Workbench.

LDAP user database

Tip

See also the configuration examples for Basic/GDB + LDAP, OpenID + LDAP, and Kerberos + LDAP.

Lightweight Directory Access Protocol (LDAP) is a lightweight client-server protocol for accessing directory services implementing X.500 standards. All its records are organized around the LDAP Data Interchange Format (LDIF), which is represented in a standard plain text file format.

When LDAP is enabled and configured, it replaces the local database and GraphDB security will use the LDAP server to provide authentication and authorization. An internal user settings database is still used for storing user settings. This means that you can use the Workbench or the GraphDB API to change them. All other administration operations need to be performed on the LDAP server side.

Note

As of GraphDB version 9.5 and newer, local users will no longer be accessible when using LDAP.

LDAP needs to be configured in the graphdb.properties file.

Enable LDAP with the following property:

graphdb.auth.database = ldap

When LDAP is turned on, the following security settings can be used to configure it:

	Property

	Example value

	
graphdb.auth.ldap.url

(required)

LDAP endpoint

	
ldap://<my-openldap-server>:389/<partition>

	
graphdb.auth.ldap.user.search.base

Query to identify the directory where
all authenticated users are located.

	
<empty>

	
graphdb.auth.ldap.user.search.filter

(required)

Matches the attribute to a GraphDB username

	
(cn={0})

	
graphdb.auth.ldap.role.search.base

Query to identify the directory where
roles/groups for authenticated users
are located

	
<empty>

	
graphdb.auth.ldap.role.search.filter

(required)

Authorize a user by matching the
manner in which they are listed
within the group.

	
(uniqueMember={0})

	
graphdb.auth.ldap.role.search.attribute

The attribute to identify the common name

	
cn (default)

	
graphdb.auth.ldap.role.map.administrator

(required)

Map a single LDAP group to GDB administrator role

	
my-group-name

	
graphdb.auth.ldap.role.map.repositoryManager

Map a single LDAP group to GDB repository
manager role

	
my-group-name

	
graphdb.auth.ldap.role.map.repository.read.<my-repo>

Map a single LDAP group to GDB
repository-specific read permissions

	
my-group-name

	
graphdb.auth.ldap.role.map.repository.write.<my-repo>

Map a single LDAP group to GDB
repository-specific write permissions

	
my-group-name

	
graphdb.auth.ldap.repository.read.base

Query to identify the directory where
repository read groups for
authenticated users are located

	

	
graphdb.auth.ldap.repository.read.filter

Authorize a user by matching the manner in
which they are listed within the group

	
(uniqueMember={0})

	
graphdb.auth.ldap.repository.read.attribute

Specify the mapping of a GraphDB repository
id to an LDAP attribute

	
cn (default)

	
graphdb.auth.ldap.repository.write.base

Query to identify the directory where
repository write groups for authenticated
users are located.

	

	
graphdb.auth.ldap.repository.write.filter

Authorize a user by matching the manner in
which they are listed within the group

	
(uniqueMember={0})

	
graphdb.auth.ldap.repository.write.attribute

Specify the mapping of a GraphDB repository
id to an LDAP attribute

	
cn (default)

	
graphdb.auth.ldap.bind.userDn

Specify a userDN (distinguished name) allowing anonymous
binds and anonymous access to an LDAP server

	
dn (default)

	
graphdb.auth.ldap.bind.userDn.password

UserDN password

	

Mapping user type roles

GraphDB has three standard user roles: Administrator, Repository manager, and User. Every user authenticated over LDAP will be assigned one of these roles.

Mapping the Administrator role

Set the following property to the LDAP group that must receive this role:

graphdb.auth.ldap.role.map.administrator = gdbadmin

Mapping the Repository manager role

Set the following property to the LDAP group that must receive this role:

graphdb.auth.ldap.role.map.repositoryManager = gdbrepomanager

Mapping the User role

Unless a user has been assigned the Administrator or Repository manager role, they will receive the User role automatically.

OAuth user database

Tip

See also the configuration example for OpenID + OAuth.

OAuth is an open-standard authorization protocol for providing secure delegated access as a way for users to grant websites/applications access to their information on other websites/applications without sharing their initial login credential. OAuth is centralized, which means only the authorization server owns user credentials.

Note

OAuth requires OpenID for authentication, and the authorization comes from an OAuth claim. Direct password authentication with GraphDB (e.g., basic or using the Workbench login form) is not possible.

When OAuth is enabled and configured, it replaces the local database and GraphDB security will use only the OAuth claims to provide authorization. An internal user settings database is still used for storing user settings. This means that you can use the Workbench or the GraphDB API to change them. All other administration operations need to be performed in the OpenID/OAuth provider.

Enable OAuth authorization with the following property:

graphdb.auth.database = oauth

When OAuth authorization is enabled, the following property settings can be used to configure it:

	Property

	Example value

	
graphdb.auth.oauth.roles_claim

(required)

OAuth roles claim. The field from the JWT token that
will provide the GraphDB roles. No default value.

	
roles

	
graphdb.auth.oauth.roles_prefix

(required)

OAuth roles prefix to strip. The roles claim may provide
the GraphDB roles with some prefix, e.g. GDB_ROLE_USER.
The prefix will be stripped when the roles are mapped.
The default value is the empty string. No default value.

	
GDB_

	
graphdb.auth.oauth.default_roles

(required)

OAuth default roles to assign. It may be convenient to
always assign certain roles without listing them in the
roles claim. The value is a comma-delimited list of
GraphDB roles. The default value is the empty list.
No default value.

	
ROLE_USER

Authentication methods

Whenever a client connects to GraphDB, a security context is created. Each security context is always associated with
a single user authenticated user or a default anonymous user when no credentials have been provided.

Authentication is the process of mapping this security context to a specific user. Once the security context is mapped
to a user, a set of permissions can be associated with it, using authorization.

When GraphDB security is ON, the following authentication methods are available:

	Basic authentication: the username and password are sent in a header as plain text (usually used when using the RDF4J client, or via Java when run with cURL). Enabled by default (can be optionally disabled).

	GDB: token-based authentication used by the Workbench for username/password login. This login method is also available through the REST API. Enabled by default (can be optionally disabled).

	OpenID: single sign-on method that allows accessing GraphDB without the need for creating a new password. Its biggest advantage is the delegation of the security outside the database. Disabled by default (must be configured to be enabled).

	Kerberos: highly secure single sign-on protocol that uses tickets for authentication. Disabled by default (must be configured to be enabled).

[image: _images/authentication-authorization-schema.png]
All four authentication providers - Basic, GDB, OpenID and Kerberos - can be combined with both a local and an LDAP database. The only provider that can be combined with OAuth is OpenID, as OAuth is an extension of the latter.

There is also an additional authentication provider, the GDB Signature. It is for internal use only, works with a detached internal cluster user, and is always enabled. This is the built-in cluster security that uses tokens similar to those used for logging in from the Workbench.

The following combinations of authentication provider and user database are possible:

	Authentication provider

	User database

	Basic authentication

	
Local DB

LDAP

	Kerberos

	
Local DB

LDAP

	GDB

	
Local DB

LDAP

	OpenID

	
Local DB

LDAP

OAuth

We will look at each of the above in greater detail in the following sections.

Basic authentication

Basic authentication is a method for an HTTP client to provide a username and password when making a request. The request contains a header in the form of Authorization: Basic <credentials>, where <credentials> is the Base64 encoding of the username and password joined by a single colon, e.g.:

Authorization: Basic YWRtaW46cm9vdA==

Warning

Basic authentication is the least secure authentication method. Anyone who intercepts your requests will be able to reuse your credentials indefinitely until you change them. Since the credentials are merely base-64 encoded, they will also get your username and password. This is why it is very important to always use encryption in transit.

GDB authentication

GDB authentication is a method for an HTTP client to obtain a token in advance by supplying a username and password, and then send the token with every HTTP request that requires authentication. The token must be sent as an HTTP header in the form of Authorization: GDB <token>, where <token> is the actual token.

This authentication method is used by the GraphDB Workbench when a user logs in by typing their username and password in the Workbench.

Note

Anyone who intercepts a GDB token can reuse it until it expires. To prevent this, we recommend to always enable encryption in transit.

It is also possible to obtain a token via the REST API and use the token in your own HTTP client to authenticate with GraphDB, e.g. with cURL:

	Log in and obtain a token:

curl -X POST -I 'http://localhost:7200/rest/login/admin' -H 'X-GraphDB-Password: root'

The token will be returned in the Authorization header. It can be copied as is and used to authenticate other requests.

	Use the returned token to authenticate with GraphDB:

curl -H 'Authorization: GDB eyJ1c2VybmFtZSI6ImFkbWlu...' http://localhost:7200/repositories/myrepo/size

GDB tokens are signed with a private key and the signature is valid for a limited period of time. If the private key changes or the signature expires, the token is no longer valid and the user must obtain a new token. The default validity period is 30 days. It can be configured via the graphdb.auth.token.validity property that takes a single number, optionally suffixed by the letters d (days), h (hours) or m (minutes) to specify the unit. If no letter is provided, then days are assumed. For example, graphdb.auth.token.validity = 2d and graphdb.auth.token.validity = 2 will both set the validity to two days.

Note

During the token validity period, if the password is changed the user will still have access to the server. However, if the user is removed, the token will stop working.

The private key used to sign the GDB tokens is generated randomly when GraphDB starts. This means that after a restart all tokens issued previously will expire immediately and users will be forced to login again. To avoid that, you can set a secret to derive a static private key by setting the following property:

graphdb.auth.token.secret = <my-secret>

Treat the secret as any password, it must be sufficiently long and not easily guessable.

OpenID authentication

Tip

See also the configuration examples for OpenID + Local users, OpenID + LDAP and OpenID + OAuth.

Single sign-on over the OpenID protocol enables you to log in just once and access all internal services. From a security standpoint, it provides a more secure environment, because it minimizes the number of places where a password is processed.

When OpenID is used for authentication, the authorization may come from the local user database, LDAP or OAuth. Direct password authentication with GraphDB is possible only with the local database or LDAP, and can be optionally disabled.

OpenID needs to be configured from the graphdb.properties file. Enable it with the following property:

graphdb.auth.methods = basic, gdb, openid

The default value is basic, gdb.

Provide only openid if password-based login methods (Basic and GDB) are not needed, or if you combine OpenID with the OAuth user database.

When OpenID authentication is enabled, the following property settings can be used to configure it:

	Property

	Example value

	
graphdb.auth.openid.issuer

(required)

OpenID issuer URL used to derive keys, endpoints,
and token validation. No default value.

	
https://accounts.example.com

	
graphdb.auth.openid.client_id

(required)

OpenID client ID used to authenticate
and validate tokens. No default value.

	
<my-client-id>

	
graphdb.auth.openid.username_claim

(required)

OpenID claim to use as the GraphDB username.
No default value.

	
email

	
graphdb.auth.openid.auth_flow

(required)

OpenID authentication flow: code, code_no_pkce, implicit.

The recommended value is code if the OpenID provider

supports it with PKCE without a client secret.

No default value.

	
code

	
graphdb.auth.openid.token_type

(required)

OpenID token type to send to GraphDB.
The available values are access and id.

Use the access token if it is a JWT token,
otherwise use the id token. No default value.

	
access

	
graphdb.auth.openid.token_issuer

OpenID expected issuer URL in tokens,
used to validate tokens. The default is the same as
the actual issuer URL.

	
https://accounts.example.com/custom

	
graphdb.auth.openid.token_audience

OpenID expected audience in tokens,
used to validate tokens. The default is the same as
the client ID.

	
<my-audience>

	
graphdb.auth.openid.authorize_parameters

OpenID extra parameters for the authorize endpoint. Some
OpenID providers require additional parameters sent
to the authorize endpoint (e.g., resource=xxx).
This is a URL-encoded string where each parameter-value
pair is delimited by &. The string will be appended
to the rest of the authorize URL parameters.
The default value is the empty string.

	
param1=value%201¶m2=value%202

	
graphdb.auth.openid.proxy

OpenID uses GraphDB as proxy for the JWKS URL
and token endpoints. This can be used to bypass an
OpenID provider without a proper CORS configuration.
The value is a boolean true/false. False by default.

	
false

Note

Logging out in this mode when using the GraphDB Workbench only deletes the GraphDB session without logging you out from your provider account.

Configuring the OpenID provider

The OpenID provider needs to be configured as well, as the GraphDB Workbench will use its own root browser URL, e.g., https://graphdb.example.com:7200/ (note the terminating slash) as the redirect_uri parameter when it redirects the browser to the authorization endpoint. Once the login is completed at the remote end, OIDC mandates that the identity provider redirects back to the supplied redirect_uri.

Typically, the allowed values for redirect_uri must be registered with the OpenID provider.

Kerberos authentication

Tip

See also the example configurations for Kerberos + Local users and Kerberos + LDAP.

Kerberos [https://web.mit.edu/kerberos/krb5-latest/doc/] is a highly secure single sign-on protocol that uses tickets for authentication, and avoids storing passwords locally or sending them over the Internet. The authentication mechanism involves communication between a trusted third-party connection encrypted with symmetric-key cryptography. Although considered a legacy technology, Kerberos is still the default single sign-on mechanism in big Windows-based enterprises, and is an alternative of OpenID authentication.

The basic support for authentication via Kerberos in GraphDB involves:

	Validation of SPNEGO HTTP Authorization tokens. For example:

Authorization: Negotiate XXXXXXX

	Extraction of the username from the SPNEGO token and matching the username against a user from the local database or a user from LDAP.

SPNEGO is the mechanism that integrates Kerberos with HTTP authentication.

After the token is validated and matched to an existing user, the process continues with authorization (assigning user roles) via the existing mechanism.

Using Kerberos this way is equivalent to authenticating via Basic, GDB, or OpenID.

Configuring Kerberos in GraphDB

In order to validate incoming SPNEGO tokens, the Spring Security Kerberos module needs a Kerberos keytab (a set of keys associated with a particular Kerberos account) and a service principal (the username of the associated Kerberos account). This account is used only to validate and decrypt the incoming SPNEGO tokens and is not associated with any user in GraphDB. See more on how to create a keytab file here [https://web.mit.edu/kerberos/krb5-devel/doc/basic/keytab_def.html].

Enable Kerberos with the following property:

graphdb.auth.methods = basic, gdb, kerberos

The default value is basic, gdb.

Kerberos is configured via several properties:

	Property

	Example value

	
graphdb.auth.kerberos.keytab

(required)

Full or relative (to the GraphDB config directory) path
to where the keys of the Kerberos service principal are stored.
Required if Kerberos is enabled.

	graphdb-http.keytab

	
graphdb.auth.kerberos.principal

(required)

Name of the Kerberos service principal.
Required if Kerberos is enabled.

	HTTP/data.example.com@EXAMPLE.COM

	
graphdb.auth.kerberos.debug

Whether some of the Spring Kerberos classes
print extra messages related to Kerberos.

	false

In addition, you might want to specify a custom krb5.conf file via the java.security.krb5.conf property but Java should be able to pick up the default system file automatically.

User matching

Kerberos principals (usernames) need to be matched to GraphDB usernames. A Kerberos principal consists of a username, followed by @, followed by a realm. The realm looks like a domain name and is usually written out in capital letters. The principals are converted by simply dropping the @ sign and the realm. However, the realm from incoming SPNEGO tokens must match the realm of the service principal. Some examples:

	Service principal

	Principal from SPNEGO token

	Username in GraphDB

	HTTP/data.example.com@EXAMPLE.COM

	john@EXAMPLE.COM

	john

	HTTP/data.example.com@EXAMPLE.COM

	john@FOO.EXAMPLE.COM

	Invalid authentication because of realm mismatch

Using SPNEGO tokens with GraphDB

There are various ways to use SPNEGO when talking to GraphDB as a client. All methods add the Kerberos/SPNEGO authentication in the HTTP client used by the RDF4J libraries.

Native method

The native method does not require any third-party libraries and relies on the built-in Kerberos capabilities of Java and Apache’s HttpClient. However, it is a bit cumbersome to use since it requires wrapping calls into an authentication context. This method supports only non-preemptive authentication, i.e., the GraphDB server must explicitly say it needs Kerberos/SPNEGO by sending a WWW-Authenticate: Negotiate header to the client.

Third-party library method

There is a third-party library called kerb4j, which makes some things easier. It does not require wrapping the execution into an authentication context and supports preemptive authentication, i.e., sending the necessary headers without asking the server if it needs authentication.

Both methods are illustrated in this example project [https://github.com/Ontotext-AD/spnego-example].

Example configurations

This is a list of example configurations for some of the possible combinations of authentication methods (Basic, GDB, OpenID and Kerberos) with the three supported user databases for authorization (Local, LDAP and OAuth).

Hint

The OpenID, Kerberos and LDAP part of the examples is identical in all cases but is repeated for convenience.

Basic/GDB + LDAP

Example configuration of Basic and GDB authentication + LDAP authorization:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ BASIC AUTHENTICATION AND GDB AUTHENTICATION ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The methods basic and gdb are active by default but may be provided explicitly as such:
graphdb.auth.methods = basic, gdb

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ LDAP AUTHORIZATION ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Turn on ldap authentication and configure the server.
graphdb.auth.database = ldap
graphdb.auth.ldap.url = ldap://localhost:10389/dc=example,dc=org

Permit access for all users that are part of the “people” unit of the fictional “example.org” organization.
graphdb.auth.ldap.user.search.base = ou=people
graphdb.auth.ldap.user.search.filter = (cn={0})

Make all users in the Administration group GraphDB administrators as well.
graphdb.auth.ldap.role.search.base = ou=groups
graphdb.auth.ldap.role.search.filter = (member={0})
graphdb.auth.ldap.role.map.administrator = Administration

Make all users in the Management group GraphDB Repository Managers as well.
graphdb.auth.ldap.role.map.repositoryManager = Management

Enable all users in the Readers group to read the my_repo repository.
graphdb.auth.ldap.role.map.repository.read.my_repo = Readers

Enable all users in the Writers group to write and read the my_repo repository.
graphdb.auth.ldap.role.map.repository.write.my_repo = Writers

Required for accessing a LDAP server that does not allow anonymous binds and anonymous access.
graphdb.auth.ldap.bind.userDn = uid=userId,ou=people,dc=example,dc=org
graphdb.auth.ldap.bind.userDn.password = 123456

OpenID + Local users

Example configuration of OpenID authentication + local user database authorization:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ OPENID AUTHENTICATION ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Enable OpenID authentication.
graphdb.auth.methods = openid
or alternatively with enabled Basic and GDB password authentication:
#graphdb.auth.methods = basic, gdb, openid

OpenID issuer URL, used to derive keys endpoints and token validation.
graphdb.auth.openid.issuer = https://accounts.example.com

OpenID client ID used to authenticate and validate tokens.
graphdb.auth.openid.client_id = my-client-id

OpenID claim to use as the GraphDB username.
graphdb.auth.openid.username_claim = email

OpenID authentication flow: code, code_no_pkce or implicit.
graphdb.auth.openid.auth_flow = code

OpenID token type to send to GraphDB.
graphdb.auth.openid.token_type = access

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ LOCAL USER AUTHORIZATION ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The local database is the default setting but it may be set explicitly as such:
graphdb.auth.database = local

OpenID + LDAP

Example configuration for OpenID authentication + LDAP authorization:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ OPENID AUTHENTICATION ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Enable OpenID authentication.
graphdb.auth.methods = openid
or alternatively with enabled Basic and GDB password authentication:
#graphdb.auth.methods = basic, gdb, openid

OpenID issuer URL, used to derive keys endpoints and token validation.
graphdb.auth.openid.issuer = https://accounts.example.com

OpenID client ID used to authenticate and validate tokens.
graphdb.auth.openid.client_id = my-client-id

OpenID claim to use as the GraphDB username.
graphdb.auth.openid.username_claim = email

OpenID authentication flow: code, code_no_pkce or implicit.
graphdb.auth.openid.auth_flow = code

OpenID token type to send to GraphDB.
graphdb.auth.openid.token_type = access

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ LDAP AUTHORIZATION ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Turn on ldap authentication and configure the server.
graphdb.auth.module = ldap
graphdb.auth.ldap.url = ldap://localhost:10389/dc=example,dc=org

Permit access for all users that are part of the “people” unit of the fictional “example.org” organization.
graphdb.auth.ldap.user.search.base = ou=people
graphdb.auth.ldap.user.search.filter = (cn={0})

Make all users in the Administration group GraphDB administrators as well.
graphdb.auth.ldap.role.search.base = ou=groups
graphdb.auth.ldap.role.search.filter = (member={0})
graphdb.auth.ldap.role.map.administrator = Administration

Make all users in the Management group GraphDB Repository Managers as well.
graphdb.auth.ldap.role.map.repositoryManager = Management

Enable all users in the Readers group to read the my_repo repository.
graphdb.auth.ldap.role.map.repository.read.my_repo = Readers

Enable all users in the Writers group to write and read the my_repo repository.
graphdb.auth.ldap.role.map.repository.write.my_repo = Writers

Required for accessing a LDAP server that does not allow anonymous binds and anonymous access.
graphdb.auth.ldap.bind.userDn = uid=userId,ou=people,dc=example,dc=org
graphdb.auth.ldap.bind.userDn.password = 123456

OpenID + OAuth

Example configuration for OpenID authentication + OAuth authorization:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ OPENID AUTHENTICATION ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Enable OpenID authentication.
graphdb.auth.methods = openid

OpenID issuer URL, used to derive keys endpoints and token validation.
graphdb.auth.openid.issuer = https://accounts.example.com

OpenID client ID used to authenticate and validate tokens.
graphdb.auth.openid.client_id = my-client-id

OpenID claim to use as the GraphDB username.
graphdb.auth.openid.username_claim = email

OpenID authentication flow: code, code_no_pkce or implicit.
graphdb.auth.openid.auth_flow = code

OpenID token type to send to GraphDB.
graphdb.auth.openid.token_type = access

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ OAUTH AUTHORIZATION ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

OAuth roles claim. The field from the JWT token that will provide the GraphDB roles.
graphdb.auth.oauth.roles_claim = roles

OAuth roles prefix to strip. The roles claim may provide the GraphDB roles with some prefix, e.g., GDB_ROLE_USER.
The prefix will be stripped when the roles are mapped.
graphdb.auth.oauth.roles_prefix = GDB_

OAuth default roles to assign. It may be convenient to always assign certain roles without listing them in the roles claim.
graphdb.auth.oauth.default_roles = ROLE_USER

Kerberos + Local users

Example configuration for Kerberos authentication + local user database authorization:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ KERBEROS AUTHENTICATION ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Enable Kerberos authentication and keep Basic and GDB authentication enabled.
graphdb.auth.methods = basic, gdb, kerberos

Provides the Kerberos keytab file relative to the GraphDB config directory.
graphdb.auth.kerberos.keytab = graphdb-http.keytab

Provides the Kerberos principal for GraphDB running at data.example.org and Kerberos users from
the realm EXAMPLE.ORG.
graphdb.auth.kerberos.principal = HTTP/data.example.org@EXAMPLE.ORG

Enable Kerberos debug messages (recommended when you first setup Kerberos, can be disabled later).
graphdb.auth.kerberos.debug = true

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ LOCAL USER AUTHORIZATION ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The local database is the default setting but it may be set explicitly as such:
graphdb.auth.database = local

Kerberos + LDAP

Example configuration for Kerberos authentication + LDAP authorization:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ KERBEROS AUTHENTICATION ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Enable Kerberos authentication and keep Basic and GDB authentication enabled.
graphdb.auth.methods = basic, gdb, kerberos

Provides the Kerberos keytab file relative to the GraphDB config directory.
graphdb.auth.kerberos.keytab = graphdb-http.keytab

Provides the Kerberos principal for GraphDB running at data.example.org and Kerberos users from
the realm EXAMPLE.ORG.
graphdb.auth.kerberos.principal = HTTP/data.example.org@EXAMPLE.ORG

Enable Kerberos debug messages (recommended when you first setup Kerberos, can be disabled later).
graphdb.auth.kerberos.debug = true

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ LDAP AUTHORIZATION ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Turn on ldap authentication and configure the server.
graphdb.auth.module = ldap
graphdb.auth.ldap.url = ldap://localhost:10389/dc=example,dc=org

Permit access for all users that are part of the “people” unit of the fictional “example.org” organization.
graphdb.auth.ldap.user.search.base = ou=people
graphdb.auth.ldap.user.search.filter = (cn={0})

Make all users in the Administration group GraphDB administrators as well.
graphdb.auth.ldap.role.search.base = ou=groups
graphdb.auth.ldap.role.search.filter = (member={0})
graphdb.auth.ldap.role.map.administrator = Administration

Make all users in the Management group GraphDB Repository Managers as well.
graphdb.auth.ldap.role.map.repositoryManager = Management

Enable all users in the Readers group to read the my_repo repository.
graphdb.auth.ldap.role.map.repository.read.my_repo = Readers

Enable all users in the Writers group to write and read the my_repo repository.
graphdb.auth.ldap.role.map.repository.write.my_repo = Writers

Required for accessing a LDAP server that does not allow anonymous binds and anonymous access.
graphdb.auth.ldap.bind.userDn = uid=userId,ou=people,dc=example,dc=org
graphdb.auth.ldap.bind.userDn.password = 123456

Encryption

What’s in this document?

	Encryption in transit

	Enable SSL/TLS

	HTTPS in the cluster

	Encryption at rest

Encryption in transit

All network traffic between the clients and GraphDB and between the different GraphDB nodes (in case of a cluster topology) can be performed over either HTTP or HTTPS protocols. It is highly advisable to encrypt the traffic with SSL/TLS because it has numerous security benefits.

Enable SSL/TLS

As GraphDB runs on embedded Tomcat server, the security configuration is standard with a few exceptions. You can find the official Tomcat documentation on how to enable SSL/TLS [https://tomcat.apache.org/tomcat-9.0-doc/ssl-howto.html].
Additional information on how to configure your GraphDB instance to use SSL/TLS could be found in the Configuration part of this document.

HTTPS in the cluster

As there is a lot of traffic between the cluster nodes, it is important that it is encrypted.
In order to do so, a few requirements need to be met:

	SSL/TLS should be enabled on all cluster nodes.

	The nodes’ certificates should be trusted by the other nodes in the cluster.

	The URLs of the remote location (configured in Setup -> Repositories -> Attach Remote Location) should be using the HTTPS schema.

The method of enabling SSL/TLS is already described in the section above. There are no differences when setting up the node to be used as a cluster one.
Certificate trust between the nodes can be enabled in the following ways:

Use certificates signed by a trusted Certification Authority

This way, you will not need any additional configuration and the clients will not get security warning when connecting to the clients. The drawback is that these certificates are usually not free and you need to work with a third-party CA. We will not look at this option in more detail as creating such a certificate is highly dependant on the CA.

Use self-signed certificates

The benefit is that you generate these certificates yourself and they do not need to be signed by anyone else. However, the drawback is that by default, the nodes will not trust the other nodes’ certificates.

If you generate a separate self-signed certificate for each node in the cluster, this certificate would have to be present in the Java Truststores of all other nodes in the cluster. You could do this by either adding the certificate to the default Java Truststore, or specifying an additional Truststore when running GraphDB.
Information on how to generate a certificate, add it to a Truststore, and make the JVM use this Truststore can be found in the official Java documentation [https://docs.oracle.com/cd/E19830-01/819-4712/ablqw/index.html].

However, this method introduces a lot of configuration overhead. Therefore, it is recommended that, instead of separate certificates for each node, you generate a single self-signed certificate and use it on all cluster nodes.
GraphDB extends the standard Java TrustManager, so it will automatically trust its own certificate. This means that if all nodes in the cluster are using a shared certificate, there would be no need to add it to the Truststore.

Another difference with the standard Java TrustManager is that GraphDB has the option to disregard the hostname when validating the certificates. If this option is disabled, it is recommended to add all possible IPs and DNS names of all nodes that will be using the certificate as Subject Alternative Names when generating the certificate (wildcards can be used as well).

Both options to trust your own certificate and to skip the hostname validation are configurable from the graphdb.properties file:

	graphdb.http.client.ssl.ignore.hostname - false by default

	graphdb.http.client.ssl.trust.own.certificate - true by default

Encryption at rest

GraphDB does not provide encryption for its data. All indexes and entities are stored in binary format on the hard drive. It should be noted that the data from them can be easily extracted in case somebody gains access to the data directory.

This is why it is recommended to implement some kind of disk encryption on your GraphDB server. There are multiple third-party solutions that can be used.

GraphDB has been tested on LUKS-encrypted hard drive, and no noticeable performance impact has been observed. However, please keep in mind that such may be present, as it is highly dependent on your specific use case.

Security Auditing

Audit trail enables accountability for actions. The common use cases are to detect unauthorized access to the system, trace changes to the configuration, and prevent inappropriate actions through accountability.

You can enable the detailed audit trail log by using the graphdb.audit.role configuration parameter. Here is an example:

graphdb.audit.role=USER

The hierarchy of audit roles is as follows:

	ANY

	USER

	REPO_MANAGER

	ADMIN

	Logging form (always logged!)

In addition, logging for repository access can be configured by using the graphdb.audit.repository property. For example:

graphdb.audit.repository=WRITE

will lead to all write operations being logged. Read permissions also include write operations.

The detail of the audit trail increases depending on the role that is configured. For example, configuring the audit role for REPO_MANAGER means that access to the repository management resources will be logged, as well as access to the administration resources and the logging form. Configuring the audit role to ADMIN will only log access to the administration resources and the logging form.

The ANY role lists all requests towards resources where that requires authentication.

The following fields are logged for every successful security check:

	Username

	Source IP address

	Response status code

	Type of request method

	Request endpoint

	X-GraphDB-Repository header value or, if missing, which repository is being accessed

	Serialization of the request headers specified in the graphdb.audit.headers parameter

	Serialization of all input HTTP parameters and the message body, limited by the graphdb.audit.request.max.length parameter

By default, no headers are logged. The graphdb.audit.headers parameter configuring this can take multiple values. For instance, if you want to log two headers, you will simply list them with commas:

Graphdb.audit.headers = Referer,User-Agent

The amount of bytes from the message body which get logged defaults to 1,024 if the graphdb.audit.request.max.length parameter is not set.

Note

Logs can be space-intensive, especially if you toggle them to level 1 or 2 as described above.

References

	Introduction to the Semantic Web

	GraphDB Feature Comparison

	Repository Configuration Template - How It Works

	Ontology Mapping with owl:sameAs Property

	Workbench User Interface

	SPARQL Compliance

	Using Math Functions with SPARQL

	OWL Compliance

	Glossary

Introduction to the Semantic Web

What’s in this document?

	Resource Description Framework (RDF)

	Uniform Resource Identifiers (URIs)

	Statements: Subject-Predicate-Object Triples

	Properties

	Named graphs

	RDF Schema (RDFS)

	Describing classes

	Describing properties

	Sharing vocabularies

	Dublin Core Metadata Initiative

	Ontologies and knowledge bases

	Classification of ontologies

	Knowledge bases

	Logic and inference

	Logic programming

	Predicate logic

	Description logic

	The Web Ontology Language (OWL) and its dialects

	OWL DLP

	OWL Horst

	OWL2 RL

	OWL Lite

	OWL DL

	Query languages

	RQL, RDQL

	SPARQL

	SeRQL

	Reasoning strategies

	Total materialization

	Semantic repositories

The Semantic Web represents a broad range of ideas and technologies that attempt to bring meaning to the vast amount of information available via the Web. The intention is to provide information in a structured form so that it can be processed automatically by machines. The combination of structured data and inferencing can yield much information not explicitly stated.

The aim of the Semantic Web is to solve the most problematic issues that come with the growth of the non-semantic (HTML-based or similar) Web that results in a high level of human effort for finding, retrieving and exploiting information. For example, contemporary search engines are extremely fast, but tend to be very poor at producing relevant results. Of the thousands of matches typically returned, only a few point to truly relevant content and some of this content may be buried deep within the identified pages. Such issues dramatically reduce the value of the information discovered as well as the ability to automate the consumption of such data. Other problems related to classification and generalization of identifiers further confuse the landscape.

The Semantic Web solves such issues by adopting unique identifiers for concepts and the relationships between them. These identifiers, called Universal Resource Identifiers (URIs) (a “resource” is any ‘thing’ or ‘concept’) are similar to Web page URLs, but do not necessarily identify documents from the Web. Their sole purpose is to uniquely identify objects or concepts and the relationships between them.

The use of URIs removes much of the ambiguity from information, but the Semantic Web goes further by allowing concepts to be associated with hierarchies of classifications, thus making it possible to infer new information based on an individual’s classification and relationship to other concepts. This is achieved by making use of ontologies – hierarchical structures of concepts – to classify individual concepts.

Resource Description Framework (RDF)

The World-Wide Web has grown rapidly and contains huge amounts of information that cannot be interpreted by machines. Machines cannot understand meaning, therefore they cannot understand Web content. For this reason, most attempts to retrieve some useful pieces of information from the Web require a high degree of user involvement – manually retrieving information from multiple sources (different Web pages), ‘digging’ through multiple search engine results (where useful pieces of data are often buried many pages deep), comparing differently structured result sets (most of them incomplete), and so on.

For the machine interpretation of semantic content to become possible, there are two prerequisites:

	Every concept should be uniquely identified. (For example, if a particular person owns a web site, authors articles on other sites, gives an interview on another site and has profiles in a couple of social media sites such as Facebook and LinkedIn, then the occurrences of his name/identifier in all these places should be related to exact same identifier.)

	There must be a unified system for conveying and interpreting meaning that all automated search agents and data storage applications should use.

One approach for attaching semantic information to Web content is to embed the necessary machine-processable information through the use of special meta-descriptors (meta-tagging) in addition to the existing meta-tags that mainly concern the layout.

Within these meta tags, the resources (the pieces of useful information) can be uniquely identified in the same manner in which Web pages are uniquely identified, i.e., by extending the existing URL system into something more universal – a URI (Uniform Resource Identifier). In addition, conventions can be devised, so that resources can be described in terms of properties and values (resources can have properties and properties have values). The concrete implementations of
these conventions (or vocabularies) can be embedded into Web pages (through meta-descriptors again) thus effectively ‘telling’ the processing machines things like:

[resource] John Doe has a [property] web site which is [value] www.johndoesite.com

The Resource Description Framework (RDF) developed by the World Wide Web Consortium (W3C) makes possible the automated semantic processing of information, by structuring information using individual statements that consist of: Subject, Predicate, Object. Although frequently referred to as a ‘language’, RDF is mainly a data model. It is based on the idea that the things being described have properties, which have values, and that resources can be described by making statements. RDF prescribes how to make statements about resources, in particular, Web resources, in the form of subject-predicate-object expressions. The ‘John Doe’ example above is precisely this kind of statement. The statements are also referred to as triples, because they always have the subject-predicate-object structure.

The basic RDF components include statements, Uniform Resource Identifiers, properties, blank nodes, and literals. RDF-star (formerly RDF*) extends RDF with support for embedded triples. They are discussed in the topics that follow.

Uniform Resource Identifiers (URIs)

A unique Uniform Resource Identifier (URI) is assigned to any resource or thing that needs to be described. Resources can be authors, books, publishers, places, people, hotels, goods, articles, search queries, and so on. In the Semantic Web, every resource has a URI. A URI can be a URL or some other kind of unique identifier. Unlike URLs, URIs do not necessarily enable access to the resource they describe, i.e, in most cases they do not represent actual web pages. For example, the string http://www.johndoesite.com/aboutme.htm, if used as a URL (Web link) is expected to take us to a Web page of the site providing information about the site owner, the person John Doe. The same string can however be used simply to identify that person on the Web (URI) irrespective of whether such a page exists or not.

Thus URI schemes can be used not only for Web locations, but also for such diverse objects as telephone numbers, ISBN numbers, and geographic locations. In general, we assume that a URI is the identifier of a resource and can be used as either the subject or the object of a statement. Once the subject is assigned a URI, it can be treated as a resource and further statements can be made about it.

This idea of using URIs to identify ‘things’ and the relations between them is important. This approach goes some way towards a global, unique naming scheme. The use of such a scheme greatly reduces the homonym problem that has plagued distributed data representation in the past.

Statements: Subject-Predicate-Object Triples

To make the information in the following sentence

“The web site www.johndoesite.com is created by John Doe.”

machine-accessible, it should be expressed in the form of an RDF statement, i.e., a subject-predicate-object triple:

“[subject] the web site www.johndoesite.com [predicate] has a creator [object] called John Doe.”

This statement emphasizes the fact that in order to describe something, there has to be a way to name or identify a number of things:

	the thing the statement describes (Web site “www.johndoesite.com”);

	a specific property (“creator”) of the thing the statement describes;

	the thing the statement says is the value of this property (who the owner is).

The respective RDF terms for the various parts of the statement are:

	the subject is the URL “www.johndoesite.com”;

	the predicate is the expression “has creator”;

	the object is the name of the creator, which has the value “John Doe”.

Next, each member of the subject-predicate-object triple should be identified using its URI, e.g.:

	the subject is http://www.johndoesite.com;

	the predicate is http://purl.org/dc/elements/1.1/creator (this is according to a particular RDF Schema, namely, the Dublin Core Metadata Element Set);

	the object is http://www.johndoesite.com/aboutme (which may not be an actual web page).

Note that in this version of the statement, instead of identifying the creator of the web site by the character string “John Doe”, we used a URI, namely http://www.johndoesite.com/aboutme. An advantage of using a URI is that the identification of the statement’s subject can be more precise, i.e., the creator of the page is neither the character string “John Doe”, nor any of the thousands of other people with that name, but the particular John Doe associated with this URI (whoever created the URI defines the association). Moreover, since there is a URI to refer to John Doe, he is now a full-fledged resource and additional information can be recorded about him simply by adding additional RDF statements with John’s URI as the subject.

What we basically have now is the logical formula \(P(x, y)\), where the binary predicate \(P\) relates the object \(x\) to the object \(y\) – we may also think of this formula as written in the form \(x, P, y\). In fact, RDF offers only binary predicates (properties). If more complex relationships are to be defined, this is done through sets of multiple RDF triples. Therefore, we can describe the statement as:

<http://www.johndoesite.com> <http://purl.org/dc/elements/1.1/creator> <http://www.johndoesite.com/aboutme>

There are several conventions for writing abbreviated RDF statements, as used in the RDF specifications themselves. This shorthand employs an XML qualified name (or QName) without angle brackets as an abbreviation for a full URI reference. A QName contains a prefix that has been assigned to a namespace URI, followed by a colon, and then a local name. The full URI reference is formed from the QName by appending the local name to the namespace URI assigned to the prefix. So, for example, if the QName prefix foo is assigned to the namespace URI http://example.com/somewhere/, then the QName “foo:bar” is a shorthand for the URI http://example.com/somewhere/bar.

In our example, we can define the namespace jds for http://www.johndoesite.com and use the Dublin Core Metadata namespace dc for http://purl.org/dc/elements/1.1/.

So, the shorthand form for the example statement is simply:

jds: dc:creator jds:aboutme

Objects of RDF statements can (and very often do) form the subjects of other statements leading to a graph-like representation of knowledge. Using this notation, a statement is represented by:

	a node for the subject;

	a node for the object;

	an arc for the predicate, directed from the subject node to the object node.

So the RDF statement above could be represented by the following graph:

[image: _images/graphical_triple.png]
This kind of graph is known in the artificial intelligence community as a ‘semantic net’.

In order to represent RDF statements in a machine-processable way, RDF uses mark-up languages, namely (and almost exclusively) the Extensible Mark-up Language (XML). Because an abstract data model needs a concrete syntax in order to be represented and transmitted, RDF has been given a syntax in XML. As a result, it inherits the benefits associated with XML. However, it is important to understand that other syntactic representations of RDF, not based on XML, are also possible. XML-based syntax is not a necessary component of the RDF model. XML was designed to allow anyone to design their own document format and then write a document in that format. RDF defines a specific XML mark-up language, referred to as RDF/XML, for use in representing RDF information and for exchanging it between machines. Written in RDF/XML, our example will look as follows:

<?xml version="1.0" encoding="UTF-16"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:jds="http://www.johndoesite.com/"
 xmlns:dc="http://purl.org/dc/elements/1.1/">
 <rdf:Description rdf:about="http://www.johndoesite.com/">
 <dc:creator rdf:resource="jds:aboutme"/>
 </rdf:Description>
</rdf:RDF>

Note

RDF/XML uses the namespace mechanism of XML, but in an expanded way. In XML, namespaces are only used for disambiguation purposes. In RDF/XML, external namespaces are expected to be RDF documents defining resources, which are then used in the importing RDF document. This mechanism allows the reuse of resources by other people who may decide to insert additional features into these resources. The result is the emergence of large, distributed collections of knowledge.

Also observe that the rdf:about attribute of the element rdf:Description is equivalent in meaning to that of an ID attribute, but it is often used to suggest that the object about which a statement is made has already been ‘defined’ elsewhere. Strictly speaking, a set of RDF statements together simply forms a large graph, relating things to other things through properties, and there is no such concept as ‘defining’ an object in one place and referring to it elsewhere. Nevertheless, in the serialized XML syntax, it is sometimes useful (if only for human readability) to suggest that one location in the XML serialization is the ‘defining’ location, while other locations state ‘additional’ properties about an object that has been ‘defined’ elsewhere.

Properties

Properties are a special kind of resource: they describe relationships between resources, e.g., written by, age, title, and so on. Properties in RDF are also identified by URIs (in most cases, these are actual URLs). Therefore, properties themselves can be used as the subject in other statements, which allows for an expressive ways to describe properties, e.g., by defining property hierarchies.

Named graphs

A named graph (NG) is a set of triples named by a URI. This URI can then be used outside or within the graph to refer to it. The ability to name a graph allows separate graphs to be identified out of a large collection of statements and further allows statements to be made about graphs.

Named graphs represent an extension of the RDF data model, where quadruples <s,p,o,ng> are used to define statements in an RDF multi-graph. This mechanism allows, e.g., the handling of provenance when multiple RDF graphs are integrated into a single repository.

From the perspective of GraphDB, named graphs are important, because comprehensive support for SPARQL requires NG support.

RDF Schema (RDFS)

While being a universal model that lets users describe resources using their own vocabularies, RDF does not make assumptions about any particular application domain, nor does it define the semantics of any domain. It is up to the user to do so using an RDF Schema (RDFS) vocabulary.

RDF Schema is a vocabulary description language for describing properties and classes of RDF resources, with a semantics for generalization hierarchies of such properties and classes. Be aware of the fact that the RDF Schema is conceptually different from the XML Schema, even though the common term schema suggests similarity. The XML Schema constrains the structure of XML documents, whereas the RDF Schema defines the vocabulary used in RDF data models. Thus, RDFS makes semantic information machine-accessible, in accordance with the Semantic Web vision. RDF Schema is a primitive ontology language. It offers certain modelling primitives with fixed meaning.

RDF Schema does not provide a vocabulary of application-specific classes. Instead, it provides the facilities needed to describe such classes and properties, and to indicate which classes and properties are expected to be used together (for example, to say that the property JobTitle will be used in describing a class “Person”). In other words, RDF Schema provides a type system for RDF.

The RDF Schema type system is similar in some respects to the type systems of object-oriented programming languages such as Java. For example, RDFS allows resources to be defined as instances of one or more classes. In addition, it allows classes to be organized in a hierarchical fashion. For example, a class Dog might be defined as a subclass of Mammal, which itself is a subclass of Animal, meaning that any resource that is in class Dog is also implicitly in class Animal as well.

RDF classes and properties, however, are in some respects very different from programming language types. RDF class and property descriptions do not create a straight-jacket into which information must be forced, but instead provide additional information about the RDF resources they describe.

The RDFS facilities are themselves provided in the form of an RDF vocabulary, i.e., as a specialized set of predefined RDF resources with their own special meanings. The resources in the RDFS vocabulary have URIs with the prefix http://www.w3.org/2000/01/rdf-schema# (conventionally associated with the namespace prefix rdfs). Vocabulary descriptions (schemas) written in the RDFS language are legal RDF graphs. Hence, systems processing RDF information that do not understand the additional RDFS vocabulary can still interpret a schema as a legal RDF graph consisting of various resources and properties. However, such a system will be oblivious to the additional built-in meaning of the RDFS terms. To understand these additional meanings, the software that processes RDF information has to be extended to include these language features and to interpret their meanings in the defined way.

Describing classes

A class can be thought of as a set of elements. Individual objects that belong to a class are referred to as instances of that class. A class in RDFS corresponds to the generic concept of a type or category similar to the notion of a class in object-oriented programming languages such as Java. RDF classes can be used to represent any category of objects such as web pages, people, document types, databases or abstract concepts. Classes are described using the RDF Schema resources rdfs:Class and rdfs:Resource, and the properties rdf:type and rdfs:subClassOf. The relationship between instances and classes in RDF is defined using rdf:type.

An important use of classes is to impose restrictions on what can be stated in an RDF document using the schema. In programming languages, typing is used to prevent incorrect use of objects (resources) and the same is true in RDF imposing a restriction on the objects to which the property can be applied. In logical terms, this is a restriction on the domain of the property.

Describing properties

In addition to describing the specific classes of things they want to describe, user communities also need to be able to describe specific properties that characterize these classes of things (such as numberOfBedrooms to describe an apartment). In RDFS, properties are described using the RDF class rdf:Property, and the RDFS properties rdfs:domain, rdfs:range and rdfs:subPropertyOf.

All properties in RDF are described as instances of class rdf:Property. So, a new property, such as exterms:weightInKg, is defined with the following RDF statement:

exterms:weightInKg rdf:type rdf:Property .

RDFS also provides vocabulary for describing how properties and classes are intended to be used together. The most important information of this kind is supplied by using the RDFS properties rdfs:range and rdfs:domain to further describe application-specific properties.

The rdfs:range property is used to indicate that the values of a particular property are members of a designated class. For example, to indicate that the property ex:author has values that are instances of class ex:Person, the following RDF statements are used:

ex:Person rdf:type rdfs:Class .
ex:author rdf:type rdf:Property .
ex:author rdfs:range ex:Person .

These statements indicate that ex:Person is a class, ex:author is a property, and that RDF statements using the ex:author property have instances of ex:Person as objects.

The rdfs:domain property is used to indicate that a particular property is used to describe a specific class of objects. For example, to indicate that the property ex:author applies to instances of class ex:Book, the following RDF statements are used:

ex:Book rdf:type rdfs:Class .
ex:author rdf:type rdf:Property .
ex:author rdfs:domain ex:Book .

These statements indicate that ex:Book is a class, ex:author is a property, and that RDF statements using the ex:author property have instances of ex:Book as subjects.

Sharing vocabularies

RDFS provides the means to create custom vocabularies. However, it is generally easier and better practice to use an existing vocabulary created by someone else who has already been describing a similar conceptual domain. Such publicly available vocabularies, called ‘shared vocabularies’, are not only cost-efficient to use, but they also promote the shared understanding of the described domains.

Considering the earlier example, in the statement:

jds: dc:creator jds:aboutme .

the predicate dc:creator, when fully expanded into a URI, is an unambiguous reference to the creator attribute in the Dublin Core metadata attribute set, a widely used set of attributes (properties) for describing information of this kind. So this triple is effectively saying that the relationship between the website (identified by http://www.johndoesite.com/) and the creator of the site (a distinct person, identified by http://www.johndoesite.com/aboutme) is exactly the property identified by http://purl.org/dc/elements/1.1/creator. This way, anyone familiar with the Dublin Core vocabulary or those who find out what dc:creator means (say, by looking up its definition on the Web) will know what is meant by this relationship. In addition, this shared understanding based upon using unique URIs for identifying concepts is exactly the requirement for creating computer systems that can automatically process structured information.

However, the use of URIs does not solve all identification problems, because different URIs can be created for referring to the same thing. For this reason, it is a good idea to have a preference towards using terms from existing vocabularies (such as the Dublin Core) where possible, rather than making up new terms that might overlap with those of some other vocabulary. Appropriate vocabularies for use in specific application areas are being developed all the time, but even so, the sharing of these vocabularies in a common ‘Web space’ provides the opportunity to identify and deal with any equivalent terminology.

Dublin Core Metadata Initiative

An example of a shared vocabulary that is readily available for reuse is The Dublin Core [http://dublincore.org/], which is a set of elements (properties) for describing documents (and hence, for recording metadata). The element set was originally developed at the March 1995 Metadata Workshop in Dublin, Ohio, USA. Dublin Core has subsequently been modified on the basis of later Dublin Core Metadata workshops and is currently maintained by the Dublin Core Metadata Initiative [http://dublincore.org/].

The goal of Dublin Core is to provide a minimal set of descriptive elements that facilitate the description and the automated indexing of document-like networked objects, in a manner similar to a library card catalogue. The Dublin Core metadata set is suitable for use by resource discovery tools on the Internet, such as Web crawlers employed by search engines. In addition, Dublin Core is meant to be sufficiently simple to be understood and used by the wide range of authors and casual publishers of information to the Internet.

Dublin Core elements have become widely used in documenting Internet resources (the Dublin Core creator element was used in the earlier examples). The current elements of Dublin Core contain definitions for properties such as title (a name given to a resource), creator (an entity primarily responsible for creating the content of the resource), date (a date associated with an event in the life-cycle of the resource) and type (the nature or genre of the content of the resource).

Information using Dublin Core elements may be represented in any suitable language (e.g., in HTML meta elements). However, RDF is an ideal representation for Dublin Core information. The following example uses Dublin Core by itself to describe an audio recording of a guide to growing rose bushes:

<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/">

 <rdf:Description rdf:about="http://media.example.com/audio/guide.ra">
 <dc:creator>Mr. Dan D. Lion</dc:creator>
 <dc:title>A Guide to Growing Roses</dc:title>
 <dc:description>Describes planting and nurturing rose bushes.
 </dc:description>
 <dc:date>2001-01-20</dc:date>
 </rdf:Description>
</rdf:RDF>

The same RDF statements in Notation-3:

@prefix dc: <[http://purl.org/dc/elements/1.1/]> .
@prefix rdf: <[http://www.w3.org/1999/02/22-rdf-syntax-ns#]> .

<http://media.example.com/audio/guide.ra> dc:creator "Mr. Dan D. Lion" ;
 dc:title "A Guide to Growing Roses" ;
 dc:description "Describes planting and nurturing rose bushes." ;
 dc:date "2001-01-20" .

Ontologies and knowledge bases

In general, an ontology formally describes a (usually finite) domain of related concepts (classes of objects) and their relationships. For example, in a company setting, staff members, managers, company products, offices, and departments might be some important concepts. The relationships typically include hierarchies of classes. A hierarchy specifies a class C to be a subclass of another class C' if every object in C is also included in C'. For example, all managers are staff members.

Apart from subclass relationships, ontologies may include information such as:

	properties (X is subordinated Y);

	value restrictions (only managers may head departments);

	disjointness statements (managers and general employees are disjoint);

	specifications of logical relationships between objects (every department must have at least three staff members).

Ontologies are important because semantic repositories use ontologies as semantic schemata. This makes automated reasoning about the data possible (and easy to implement) since the most essential relationships between the concepts are built into the ontology.

Formal knowledge representation (KR) is about building models. The typical modeling paradigm is mathematical logic, but there are also other approaches, rooted in the information and library science. KR is a very broad term; here we only refer to the mainstream meaning of the world (of a particular state of affairs, situation, domain or problem), which allow for automated reasoning and interpretation. Such models consist of ontologies defined in a formal language. Ontologies can be used to provide formal semantics (i.e., machine-interpretable meaning) to any sort of information: databases, catalogues, documents, Web pages, etc. Ontologies can be used as semantic frameworks: the association of information with ontologies makes such information much more amenable to machine processing and interpretation. This is because ontologies are described using logical formalisms, such as OWL, which allow automatic inferencing over these ontologies and datasets that use them, i.e., as a vocabulary.

An important role of ontologies is to serve as schemata or ‘intelligent’ views over information resources. This is also the role of ontologies in the Semantic Web. Thus, they can be used for indexing, querying, and reference purposes over non-ontological datasets and systems such as databases, document and catalogue management systems. Because ontological languages have formal semantics, ontologies allow a wider interpretation of data, i.e., inference of facts, which are not explicitly stated. In this way, they can improve the interoperability and the efficiency of using arbitrary datasets.

An ontology O can be defined as comprising the 4-tuple.

O = <C,R,I,A>

where

	C is a set of classes representing concepts from the domain we wish to describe (e.g., invoices, payments, products, prices, etc);

	R is a set of relations (also referred to as properties or predicates) holding between (instances of) these classes (e.g., Product hasPrice Price);

	I is a set of instances, where each instance can be a member of one or more classes and can be linked to other instances or to literal values (strings, numbers and other data-types) by relations (e.g., product23 compatibleWith product348 or product23 hasPrice €170);

	A is a set of axioms (e.g., if a product has a price greater than €200, then shipping is free).

Classification of ontologies

Ontologies can be classified as light-weight or heavy-weight according to the complexity of the KR language and the extent to which it is used. Light-weight ontologies allow for more efficient and scalable reasoning, but do not possess the highly predictive (or restrictive) power of more powerful KR languages. Ontologies can be further differentiated according to the sort of conceptualization that they formalize: upper-level ontologies model general knowledge, while domain and application ontologies represent knowledge about a specific domain (e.g., medicine or sport) or a type of application, e.g., knowledge management systems.

Finally, ontologies can be distinguished according to the sort of semantics being modeled and their intended usage. The major categories from this perspective are:

	Schema-ontologies: ontologies that are close in purpose and nature to database and object-oriented schemata. They define classes of objects, their properties and relationships to objects of other classes. A typical use of such an ontology involves using it as a vocabulary for defining large sets of instances. In basic terms, a class in a schema ontology corresponds to a table in a relational database; a relation – to a column; an instance – to a row in the table for the corresponding class;

	Topic-ontologies: taxonomies that define hierarchies of topics, subjects, categories, or designators. These have a wide range of applications related to classification of different things (entities, information resources, files, Web-pages, etc). The most popular examples are library classification systems and taxonomies, which are widely used in the knowledge management field. Yahoo [https://www.yahoo.com/] and DMoz [http://www.dmoz.org/] are popular large scale incarnations of this approach. A number of the most popular taxonomies are listed as encoding schemata in Dublin Core [http://dublincore.org/documents/dces/];

	Lexical ontologies: lexicons with formal semantics that define lexical concepts. We use ‘lexical concept’ here as some kind of a formal representation of the meaning of a word or a phrase. In Wordnet, for example, lexical concepts are modeled as synsets (synonym sets), while word-sense is the relation between a word and a synset, word-senses and terms. These can be considered as semantic thesauri or dictionaries. The concepts defined in such ontologies are not instantiated, rather they are directly used for reference, e.g., for annotation of the corresponding terms in text. WordNet [http://wordnet.princeton.edu/] is the most popular general purpose (i.e., upper-level) lexical ontology.

Knowledge bases

Knowledge base (KB) is a broader term than ontology. Similar to an ontology, a KB is represented in a KR formalism, which allows automatic inference. It could include multiple axioms, definitions, rules, facts, statements, and any other primitives. In contrast to ontologies, however, KBs are not intended to represent a shared or consensual conceptualization. Thus, ontologies are a specific sort of a KB. Many KBs can be split into ontology and instance data parts, in a way analogous to the splitting of schemata and concrete data in databases.

Proton

PROTON is a light-weight upper-level schema-ontology developed in the scope of the SEKT project, which we will use for ontology-related examples in this section. PROTON is encoded in OWL Lite and defines about 542 entity classes and 183 properties, providing good coverage of named entity types and concrete domains, i.e., modeling of concepts such as people, organizations, locations, numbers, dates, addresses, etc. A snapshot of the PROTON class hierarchy is shown below.

[image: _images/proton.png]

Logic and inference

The topics that follow take a closer look at the logic that underlies the retrieval and manipulation of semantic data and the kind of programming that supports it.

Logic programming

Logic programming involves the use of logic for computer programming, where the programmer uses a declarative language to assert statements and a reasoner or theorem-prover is used to solve problems. A reasoner can interpret sentences, such as IF A THEN B, as a means to prove B from A. In other words, given a collection of logical sentences, a reasoner will explore the solution space in order to find a path to justify the requested theory. For example, to determine the truth value of C given the following logical sentences:

IF A AND B THEN C
B
IF D THEN A
D

a reasoner will interpret the IF..THEN statements as rules and determine that C is indeed inferred from the KB. This use of rules in logic programming has led to ‘rule-based reasoning’ and ‘logic programming’ becoming synonymous, although this is not strictly the case.

In LP, there are rules of logical inference that allow new (implicit) statements to be inferred from other (explicit) statements, with the guarantee that if the explicit statements are true, so are the implicit statements.

Because these rules of inference can be expressed in purely symbolic terms, applying them is the kind of symbol manipulation that can be carried out by a computer. This is what happens when a computer executes a logical program: it uses the rules of inference to derive new statements from the ones given in the program, until it finds one that expresses the solution to the problem that has been formulated. If the statements in the program are true, then so are the statements that the machine derives from them, and the answers it gives will be correct.

The program can give correct answers only if the following two conditions are met:

	The program must contain only true statements;

	The program must contain enough statements to allow solutions to be derived for all the problems that are of interest.

There must also be a reasonable time frame for the entire inference process. To this end, much research has been carried out to determine the complexity classes of various logical formalisms and reasoning strategies. Generally speaking, to reason with Web-scale quantities of data requires a low-complexity approach. A tractable solution is one whose algorithm requires finite time and space to complete.

Predicate logic

From a more abstract viewpoint, the subject of the previous topic is related to the foundation upon which logical programming resides, which is logic, particularly in the form of predicate logic (also known as ‘first order logic’). Some of the specific features of predicate logic render it very suitable for making inferences over the Semantic Web, namely:

	It provides a high-level language in which knowledge can be expressed in a transparent way and with high expressive power;

	It has a well-understood formal semantics, which assigns unambiguous meaning to logical statements;

	There are proof systems that can automatically derive statements syntactically from a set of premises. These proof systems are both sound (meaning that all derived statements follow semantically from the premises) and complete (all logical consequences of the premises can be derived in the proof system);

	It is possible to trace the proof that leads to a logical consequence. (This is because the proof system is sound and complete.) In this sense, the logic can provide explanations for answers.

The languages of RDF and OWL (Lite and DL) can be viewed as specializations of predicate logic. One reason for such specialized languages to exist is that they provide a syntax that fits well with the intended use (in our case, Web languages based on tags). The other major reason is that they define reasonable subsets of logic. This is important because there is a trade-off between the expressive power and the computational complexity of certain logic: the more expressive the language, the less efficient (in the worst case) the corresponding proof systems. As previously stated, OWL Lite and OWL DL correspond roughly to description logic, a subset of predicate logic for which efficient proof systems exist.

Another subset of predicate logic with efficient proof systems comprises the so-called rule systems (also known as Horn logic or definite logic programs).

A rule has the form:

A1, ... , An → B

where Ai and B are atomic formulas. In fact, there are two intuitive ways of reading such a rule:

	If A1, ... , An are known to be true, then B is also true. Rules with this interpretation are referred to as ‘deductive rules’.

	If the conditions A1, ... , An are true, then carry out the action B. Rules with this interpretation are referred to as ‘reactive rules’.

Both approaches have important applications. The deductive approach, however, is more relevant for the purpose of retrieving and managing structured data. This is because it relates better to the possible queries that one can ask, as well as to the appropriate answers and their proofs.

Description logic

Description Logic (DL) has historically evolved from a combination of frame-based systems and predicate logic. Its main purpose is to overcome some of the problems with frame-based systems and to provide a clean and efficient formalism to represent knowledge. The main idea of DL is to describe the world in terms of ‘properties’ or ‘constraints’ that specific ‘individuals’ must satisfy. DL is based on the following basic entities:

	Objects - Correspond to single ‘objects’ of the real world such as a specific person, a table or a telephone. The main properties of an object are that it can be distinguished from other objects and that it can be referred to by a name. DL objects correspond to the individual constants in predicate logic;

	Concepts - Can be seen as ‘classes of objects’. Concepts have two functions: on one hand, they describe a set of objects and on the other, they determine properties of objects. For example, the class “table” is supposed to describe the set of all table objects in the universe. On the other hand, it also determines some properties of a table such as having legs and a flat horizontal surface that one can lay something on. DL concepts correspond to unary predicates in first order logic and to classes in frame-based systems;

	Roles - Represent relationships between objects. For example, the role ‘lays on’ might define the relationship between a book and a table, where the book lays upon the table. Roles can also be applied to concepts. However, they do not describe the relationship between the classes (concepts), rather they describe the properties of the objects that are members of that classes;

	Rules - In DL, rules take the form of “if condition x (left side), then property y (right side)” and form statements that read as “if an object satisfies the condition on the left side, then it has the properties of the right side”. So, for example, a rule can state something like ‘all objects that are male and have at least one child are fathers’.

The family of DL system consists of many members that differ mainly with respect to the constructs they provide. Not all of the constructs can be found in a single DL system.

The Web Ontology Language (OWL) and its dialects

In order to achieve the goal of a broad range of shared ontologies using vocabularies with expressiveness appropriate for each domain, the Semantic Web requires a scalable high-performance storage and reasoning infrastructure. The major challenge towards building such an infrastructure is the expressivity of the underlying standards: RDF, RDFS, OWL, and OWL 2. Even though RDFS can be considered a simple KR language, it is already a challenging task to implement a repository for it, which provides performance and scalability comparable to those of relational database management systems (RDBMS). Even the simplest dialect of OWL (OWL Lite) is a description logic (DL) that does not scale due to reasoning complexity. Furthermore, the semantics of OWL Lite are incompatible with that of RDF(S).

[image: _images/owl_fragments_map.png]

Figure 1 - OWL Layering Map

OWL DLP

OWL DLP is a non-standard dialect, offering a promising compromise between expressive power, efficient reasoning, and compatibility. It is defined as the intersection of the expressivity of OWL DL and logic programming. In fact, OWL DLP is defined as the most expressive sublanguage of OWL DL, which can be mapped to Datalog. OWL DLP is simpler than OWL Lite. The alignment of its semantics to RDFS is easier, as compared to OWL Lite and OWL DL dialects. Still, this can only be achieved through the enforcement of some additional modeling constraints and transformations.

Horn logic and description logic are orthogonal (in the sense that neither of them is a subset of the other). OWL DLP is the ‘intersection’ of Horn logic and OWL; it is the Horn-definable part of OWL, or stated another way, the OWL-definable part of Horn logic.

DLP has certain advantages:

	From a modeler’s perspective, there is freedom to use either OWL or rules (and associated tools and methodologies) for modeling purposes, depending on the modeler’s experience and preferences.

	From an implementation perspective, either description logic reasoners or deductive rule systems can be used. This feature provides extra flexibility and ensures interoperability with a variety of tools.

Experience with using OWL has shown that existing ontologies frequently use very few constructs outside the DLP language.

OWL Horst

In “Combining RDF and Part of OWL with Rules: Semantics, Decidability, Complexity” ter Horst defines RDFS extensions towards rule support and describes a fragment of OWL, more expressive than DLP. He introduces the notion of R-entailment of one (target) RDF graph from another (source) RDF graph on the basis of a set of entailment rules R. R-entailment is more general than the D-entailment used by Hayes in defining the standard RDFS semantics. Each rule has a set of premises, which conjunctively define the body of the rule. The premises are ‘extended’ RDF statements, where variables can take any of the three positions.

The head of the rule comprises one or more consequences, each of which is, again, an extended RDF statement. The consequences may not contain free variables, i.e., which are not used in the body of the rule. The consequences may contain blank nodes.

The extension of R-entailment (as compared to D-entailment) is that it ‘operates’ on top of so-called generalized RDF graphs, where blank nodes can appear as predicates. R-entailment rules without premises are used to declare axiomatic statements. Rules without consequences are used to detect inconsistencies.

In this document, we refer to this extension of RDFS as “OWL Horst”. This language has a number of important characteristics:

	It is a proper (backward-compatible) extension of RDFS. In contrast to OWL DLP, it puts no constraints on the RDFS semantics. The widely discussed meta-classes (classes as instances of other classes) are not disallowed in OWL Horst. It also does not enforce the unique name assumption;

	Unlike DL-based rule languages such as SWRL, R-entailment provides a formalism for rule extensions without DL-related constraints;

	Its complexity is lower than SWRL and other approaches combining DL ontologies with rules.

In Figure 1, the pink box represents the range of expressivity of GraphDB, i.e., including OWL DLP, OWL Horst, OWL 2 RL, most of OWL Lite. However, none of the rulesets include support for the entailment of typed literals (D-entailment).

OWL Horst is close to what SWAD-Europe has intuitively described as OWL Tiny. The major difference is that OWL Tiny (like the fragment supported by GraphDB) does not support entailment over data types.

OWL2 RL

OWL 2 is a re-work of the OWL language family by the OWL working group. This work includes identifying fragments of the OWL 2 language that have desirable behavior for specific applications/environments.

The OWL 2 RL profile is aimed at applications that require scalable reasoning without sacrificing too much expressive power. It is designed to accommodate both OWL 2 applications that can trade the full expressivity of the language for efficiency, and RDF(S) applications that need some added expressivity from OWL 2. This is achieved by defining a syntactic subset of OWL 2, which is amenable to implementation using rule-based technologies, and presenting a partial axiomatization of the OWL 2 RDF-Based Semantics in the form of first-order implications that can be used as the basis for such an implementation. The design of OWL 2 RL was inspired by Description Logic Programs and pD.

OWL Lite

The original OWL specification, now known as OWL 1, provides two specific subsets of OWL Full designed to be of use to implementers and language users. The OWL Lite subset was designed for easy implementation and to offer users a functional subset that provides an easy way to start using OWL.

OWL Lite is a sub-language of OWL DL that supports only a subset of the OWL language constructs. OWL Lite is particularly targeted at tool builders, who want to support OWL, but who want to start with a relatively simple basic set of language features. OWL Lite abides by the same semantic restrictions as OWL DL, allowing reasoning engines to guarantee certain desirable properties.

OWL DL

The OWL DL (where DL stands for Description Logic) subset was designed to support the existing Description Logic business segment and to provide a language subset that has desirable computational properties for reasoning systems.

OWL Full and OWL DL support the same set of OWL language constructs. Their difference lies in the restrictions on the use of some of these features and on the use of RDF features. OWL Full allows free mixing of OWL with RDF Schema and, like RDF Schema, does not enforce a strict separation of classes, properties, individuals and data values. OWL DL puts constraints on mixing with RDF and requires disjointness of classes, properties, individuals and data values. The main reason for having the OWL DL sub-language is that tool builders have developed powerful reasoning systems that support ontologies constrained by the restrictions required for OWL DL.

Query languages

In this section, we introduce some query languages for RDF. This may beg the question why we need RDF-specific query languages at all instead of using an XML query language. The answer is that XML is located at a lower level of abstraction than RDF. This fact would lead to complications if we were querying RDF documents with an XML-based language. The RDF query languages explicitly capture the RDF semantics in the language itself.

All the query languages discussed below have an SQL-like syntax, but there are also a few non-SQL-like languages like Versa and Adenine.

The query languages supported by RDF4J (which is the Java framework within which GraphDB operates) and therefore by GraphDB, are SPARQL and SeRQL.

RQL, RDQL

RQL (RDF Query Language) was initially developed by the Institute of Computer Science at Heraklion, Greece, in the context of the European IST project MESMUSES.3. RQL adopts the syntax of OQL (a query language standard for object-oriented databases), and, like OQL, is defined by means of a set of core queries, a set of basic filters, and a way to build new queries through functional composition and iterators.

The core queries are the basic building blocks of RQL, which give access to the RDFS-specific contents of an RDF triplestore. RQL allows queries such as Class (retrieving all classes), Property (retrieving all properties) or Employee (returning all instances of the class with name Employee). This last query, of course, also returns all instances of subclasses of Employee, as these are also instances of the class Employee by virtue of the semantics of RDFS.

RDQL (RDF Data Query Language) is a query language for RDF first developed for Jena models. RDQL is an implementation of the SquishQL RDF query language, which itself is derived from rdfDB. This class of query languages regards RDF as triple data, without schema or ontology information unless explicitly included in the RDF source.

Apart from RDF4J, the following systems currently provide RDQL (all these implementations are known to derive from the original grammar): Jena, RDFStore, PHP XML Classes, 3Store and RAP (RDF API for PHP).

SPARQL

SPARQL (pronounced “sparkle”) is currently the most popular RDF query language; its name is a recursive acronym that stands for “SPARQL Protocol and RDF Query Language”. It was standardized by the RDF Data Access Working Group (DAWG) of the World Wide Web Consortium, and is now considered a key Semantic Web technology. On 15 January 2008, SPARQL became an official W3C Recommendation.

SPARQL allows for a query to consist of triple patterns, conjunctions, disjunctions, and optional patterns. Several SPARQL implementations for multiple programming languages exist at present.

SeRQL

SeRQL (Sesame RDF Query Language, pronounced “circle”) is an RDF/RDFS query language developed by Sesame’s developer - Aduna - as part of Sesame (now RDF4J). It selectively combines the best features (considered by its creators) of other query languages (RQL, RDQL, N-Triples, N3) and adds some features of its own. As of this writing, SeRQL provides advanced features not yet available in SPARQL. Some of SeRQL’s most important features are:

	Graph transformation;

	RDF Schema support;

	XML Schema data-type support;

	Expressive path expression syntax;

	Optional path matching.

Reasoning strategies

There are two principle strategies for rule-based inference: Forward-chaining and Backward-chaining:

	Forward-chaining
	to start from the known facts (the explicit statements) and to perform inference in a deductive fashion. Forward-chaining involves applying the inference rules to the known facts (explicit statements) to generate new facts. The rules can then be re-applied to the combination of original facts and inferred facts to produce more new facts. The process is iterative and continues until no new facts can be generated. The goals of such reasoning can have diverse objectives, e.g., to compute the inferred closure, to answer a particular query, to infer a particular sort of knowledge (e.g., the class taxonomy), etc.

Advantages: When all inferences have been computed, query answering can proceed extremely quickly.

Disadvantages: Initialization costs (inference computed at load time) and space/memory usage (especially when the number of inferred facts is very large).

	Backward-chaining
	involves starting with a fact to be proved or a query to be answered. Typically, the reasoner examines the knowledge base to see if the fact to be proved is present and if not it examines the ruleset to see which rules could be used to prove it. For the latter case, a check is made to see what other ‘supporting’ facts would need to be present to ‘fire’ these rules. The reasoner searches for proofs of each of these ‘supporting’ facts in the same way and iteratively maps out a search tree. The process terminates when either all of the leaves of the tree have proofs or no new candidate solutions can be found. Query processing is similar, but only stops when all search paths have been explored. The purpose in query answering is to find not just one but all possible substitutions in the query expression.

Advantages: There are no inferencing costs at start-up and minimal space requirements.

Disadvantages: Inference must be done each and every time a query is answered and for complex search graphs this can be computationally expensive and slow.

As both strategies have advantages and disadvantages, attempts to overcome their weak points have led to the development of various hybrid strategies (involving partial forward- and backward-chaining), which have proven efficient in many contexts.

Total materialization

Imagine a repository that performs total forward-chaining, i.e., it tries to make sure that after each update to the KB, the inferred closure is computed and made available for query evaluation or retrieval. This strategy is generally known as materialization. In order to avoid ambiguity with various partial materialization approaches, let us call such an inference strategy, taken together with the monotonic entailment. When new explicit facts (statements) are added to a KB (repository), new implicit facts will likely be inferred. Under a monotonic logic, adding new explicit statements will never cause previously inferred statements to be retracted. In other words, the addition of new facts can only monotonically extend the inferred closure. Assumption, total materialization.

Advantages and disadvantages of the total materialization:

	Upload/store/addition of new facts is relatively slow, because the repository is extending the inferred closure after each transaction. In fact, all the reasoning is performed during the upload;

	Deletion of facts is also slow, because the repository should remove from the inferred closure all the facts that can no longer be proved;

	The maintenance of the inferred closure usually requires considerable additional space (RAM, disk, or both, depending on the implementation);

	Query and retrieval are fast, because no deduction, satisfiability checking, or other sorts of reasoning are required. The evaluation of queries becomes computationally comparable to the same task for relation database management systems (RDBMS).

Probably the most important advantage of the inductive systems, based on total materialization, is that they can easily benefit from RDBMS-like query optimization techniques, as long as all the data is available at query time. The latter makes it possible for the query evaluation engine to use statistics and other means in order to make ‘educated’ guesses about the ‘cost’ and the ‘selectivity’ of a particular constraint. These optimizations are much more complex in the case of deductive query evaluation.

Total materialization is adopted as the reasoning strategy in a number of popular Semantic Web repositories, including some of the standard configurations of RDF4J and Jena. Based on publicly available evaluation data, it is also the only strategy that allows scalable reasoning in the range of a billion of triples; such results are published by BBN (for DAML DB) and ORACLE (for RDF support in ORACLE 11g).

Semantic repositories

Over the last decade, the Semantic Web has emerged as an area where semantic repositories became as important as HTTP servers are today. This perspective boosted the development, under W3C driven community processes, of a number of robust metadata and ontology standards. These standards play the role, which SQL had for the development and spread of the relational DBMS. Although designed for the Semantic Web, these standards face increasing acceptance in areas such as Enterprise Application Integration and Life Sciences.

In this document, the term ‘semantic repository’ is used to refer to a system for storage, querying, and management of structured data with respect to ontologies. At present, there is no single well-established term for such engines. Weak synonyms are: reasoner, ontology server, metastore, semantic/triple/RDF store, database, repository, knowledge base. The different wording usually reflects a somewhat different approach to implementation, performance, intended application, etc. Introducing the term ‘semantic repository’ is an attempt to convey the core functionality offered by most of these tools.
Semantic repositories can be used as a replacement for database management systems (DBMS), offering easier integration of diverse data and more analytical power. In a nutshell, a semantic repository can dynamically interpret metadata schemata and ontologies, which define the structure and the semantics related to the data and the queries. Compared to the approach taken in a relational DBMS, this allows for easier changing and combining of data schemata and automated interpretation of the data.

GraphDB Feature Comparison

	Feature

	GraphDB Free

	GraphDB SE

	GraphDB EE

	Manage unlimited number of RDF statements

	✅

	✅

	✅

	Full SPARQL 1.1 support

	✅

	✅

	✅

	Deploy anywhere using Java

	✅

	✅

	✅

	100% compatible with RDF4J framework

	✅

	✅

	✅

	Ultra fast forward-chaining reasoning

	✅

	✅

	✅

	Efficient retraction of inferred statements upon update

	✅

	✅

	✅

	Full standard-compliant and optimized rulesets for RDFS, OWL 2 RL and QL

	✅

	✅

	✅

	Custom reasoning and consistency checking rulesets

	✅

	✅

	✅

	Plugin API for engine extension

	✅

	✅

	✅

	Support for Geospatial indexing & querying, plus GeoSPARQL

	✅

	✅

	✅

	Query optimizer allowing effective query execution

	✅

	✅

	✅

	Workbench interface to manage repositories, data, user accounts and access roles

	✅

	✅

	✅

	Lucene connector for full-text search

	✅

	✅

	✅

	Solr connector for full-text search

	❌

	❌

	✅

	Elasticsearch connector for full-text search

	❌

	❌

	✅

	High performance load, query and inference simultaneously

	Limited to two concurrent queries

	✅

	✅

	Automatic failover, synchronization and load balancing to maximize cluster utilisation

	❌

	❌

	✅

	Scale out concurrent query processing allowing query throughput to scale proportionally to the number of cluster nodes

	❌

	❌

	✅

	Cluster elasticity remaining fully functional in the event of failing nodes

	❌

	❌

	✅

	Community support

	✅

	✅

	✅

	Commercial SLA

	❌

	✅

	✅

Repository Configuration Template - How It Works

The diagram below provides an illustration of an RDF graph that
describes a repository configuration:

[image: _images/sesame_owlim_config.png]
Often, it is helpful to ensure that a repository starts with a
predefined set of RDF statements - usually one or more schema graphs.
This is possible by using the owlim:imports property. After start-up,
these files are parsed and their contents are permanently added to the repository.

In short, the configuration is an RDF graph, where the root node is of
rdf:type rep:Repository, and it must be connected through the
rep:RepositoryID property to a Literal that contains the human
readable name of the repository. The root node must be connected via the
rep:repositoryImpl property to a node that describes the
configuration.

The type of the repository is defined via the rep:repositoryType
property and its value must be owlim:MonitorRepository to allow for
custom Sail implementations (such as GraphDB) to be used in RDF4J 2.0.
Then, a node that specifies the Sail implementation to be instantiated
must be connected through the sr:sailImpl property. To instantiate
GraphDB, this last node must have a property sail:sailType with the
value owlim:Sail - the RDF4J framework will locate the correct
SailFactory within the application classpath that will be used
to instantiate the Java implementation class.

The namespaces corresponding to the prefixes used in the above paragraph
are as follows:

rep: <http://www.openrdf.org/config/repository#>
sr: <http://www.openrdf.org/config/repository/sail#>
sail: <http://www.openrdf.org/config/sail#>
owlim: <http://www.ontotext.com/trree/owlim#>

All properties used to specify the GraphDB configuration parameters use the
owlim: prefix and the local names match up with the configuration parameters, e.g., the value of the
ruleset parameter can be specified using the
http://www.ontotext.com/trree/owlim#ruleset property.

Ontology Mapping with owl:sameAs Property

GraphDB’s owl:sameAs optimization is used for mapping the same concepts from two or more datasets, where each of these concepts can have different features and relations to other concepts. In this way, making a union between such datasets provides more complete data. In RDF, concepts are represented with a unique resource name by using a namespace, which is different for every dataset. Therefore, it is more useful to unify all names of a single concept, so that when querying data, you are able to work with concepts rather than names (i.e., IRIs).

For example, when merging 4 different datasets, you can use the following query on DBpedia to select everything about Sofia:

SELECT * {
 {
 <http://dbpedia.org/resource/Sofia> ?p ?o .
 }
 UNION
 {
 <http://data.nytimes.com/nytimes:N82091399958465550531> ?p ?o .
 }
 UNION
 {
 <http://sws.geonames.org/727011/> ?p ?o .
 }
 UNION
 {
 <http://rdf.freebase.com/ns/m/0ftjx> ?p ?o .
 }
}

Or you can even use a shorter one:

SELECT * {
 ?s ?p ?o
 FILTER (?s IN (
 <http://dbpedia.org/resource/Sofia>,
 <http://data.nytimes.com/nytimes:N82091399958465550531>,
 <http://sws.geonames.org/727011/>,
 <http://rdf.freebase.com/ns/m/0ftjx>))
}

As you can see, here Sofia appears with 4 different URIs, although they denote the same concept. Of course, this is a very simple query. Sofia has also relations to other entities in these datasets, such as Plovdiv, i.e., <[http://dbpedia.org/resource/Plovdiv]>, <[http://sws.geonames.org/653987/]>, <[http://rdf.freebase.com/ns/m/1aihge]>.

What’s more, not only the different instances of one concept have multiple names but their properties also appear with many names. Some of them are specific for a given dataset (e.g., GeoNames has longitude and latitude, while DBpedia provides wikilinks) but there are class hierarchies, labels, and other common properties used by most of the datasets.

This means that even for the simplest query, you may have to write the following:

SELECT * {
 ?s ?p1 ?x .
 ?x ?p2 ?o .
 FILTER (?s IN (
 <http://dbpedia.org/resource/Sofia>,
 <http://data.nytimes.com/nytimes:N82091399958465550531>,
 <http://sws.geonames.org/727011/>,
 <http://rdf.freebase.com/ns/m/0ftjx>))
 FILTER (?p1 IN (
 <http://dbpedia.org/property/wikilink>,
 <http://sws.geonames.org/p/relatesTo>))
 FILTER (?p2 IN (
 <http://dbpedia.org/property/wikilink>,
 <http://sws.geonames.org/p/relatesTo>))
 FILTER (?o IN (<http://dbpedia.org/resource/Plovdiv>,
 <http://sws.geonames.org/653987/>,
 <http://rdf.freebase.com/ns/m/1aihge>))
}

But if you can say through rules and assertions that given URIs are the same, then you can simply write:

SELECT * {
 <http://dbpedia.org/resource/Sofia> <http://sws.geonames.org/p/relatesTo> ?x .
 ?x <http://sws.geonames.org/p/relatesTo> <http://dbpedia.org/resource/Plovdiv> .
}

If you link two nodes with owl:sameAs, the statements that appear with the first node’s subject, predicate, and object will be copied, replacing respectively the subject, predicate, and the object that appear with the second node.

For example, given that <[http://dbpedia.org/resource/Sofia]> owl:sameAs <[http://data.nytimes.com/N82091399958465550531]> and also that:

<http://dbpedia.org/resource/Sofia> a <http://dbpedia.org/resource/Populated_place> .
<http://data.nytimes.com/N82091399958465550531> a <http://www.opengis.net/gml/_Feature> .
<http://dbpedia.org/resource/Plovdiv> <http://dbpedia.org/property/wikilink> <http://dbpedia.org/resource/Sofia> .

then you can conclude with the given rules that:

<http://dbpedia.org/resource/Sofia> a <http://www.opengis.net/gml/_Feature> .
<http://data.nytimes.com/N82091399958465550531> a <http://dbpedia.org/resource/Populated_place> .
<http://dbpedia.org/resource/Plovdiv> <http://dbpedia.org/property/wikilink> <http://data.nytimes.com/N82091399958465550531> .

The challenge with owl:sameAs is that when there are many ‘mappings’ of nodes between datasets, and especially when big chains of owl:sameAs appear, it becomes inefficient. owl:sameAs is defined as Symmetric and Transitive, so given that A sameAs B sameAs C, it also follows that A sameAs A, A sameAs C, B sameAs A, B sameAs B, C sameAs A, C sameAs B, C sameAs C. If you have such a chain with N nodes, then N^2 owl:sameAs statements will be produced (including the explicit N-1 owl:sameAs statements that produce the chain). Also, the owl:sameAs rules will copy the statements with these nodes N times, given that each statement contains only one node from the chain and the other nodes are not sameAs anything. But you can also have a statement <S P O> where S sameAs Sx, P sameAs Py, O sameAs Oz, where the owl:sameAs statements for S are K, for P are L and for O are M, yielding K*L*M statement copies overall.

Therefore, instead of using these simple rules and axioms for owl:sameAs (actually 2 axioms that state that it is Symmetric and Transitive), GraphDB offers an effective non-rule implementation, i.e., the owl:sameAs support is hard-coded. The given rules are commented out in the .pie files and are left only as a reference.

Workbench User Interface

What’s in this document?

	Workbench functionalities descriptions

	Workbench configuration properties

The Workbench is the web-based administration interface to GraphDB. It lets you administer GraphDB, as well as load, transform, explore, manage, query, and export data.

The Workbench layout consists of two main areas. The navigation area is on the left-hand side of the screen and it contains dropdown menus to all functionalities - Import, Explore, SPARQL, Monitor, Setup, and Help. The work area shows the tasks associated with the selected functionality. On the home page, it provides easy access to some of the actions in the Workbench such as setting a license, attaching a location, creating a repository, finding a resource, querying your data, etc. On the bottom of the page, you can see the license details, and in the footer - the versions of the various GraphDB components.

[image: _images/workbench-landing-page-se.png]

Workbench functionalities descriptions

	Navigation Tab

	Functionality Description

	Import

	
	RDF => Import data from local files, from files on the server where the Workbench is located, from a remote URL (with a format extension or by specifying the data format), or by pasting the RDF data in the Text area tab. Each import method supports different serialization formats.

	Tabular (OntoRefine) => Convert tabular data into RDF and import it into a GraphDB repository using simple SPARQL queries and a virtual endpoint. The supported formats are TSV, CSV, *SV, Excel (.xls and. xlsx), JSON, XML, RDF as XML, and Google sheet.

	Explore

	
	Graphs overview => See a list of the default graph and all named graphs in GraphDB. Use it to inspect the statements in each graph, export the graph, or clear its data.

	Class hierarchy => Explore the hierarchy of RDF classes by number of instances. The biggest circles are the parent classes and the nested ones are their children. Hover over a given class to see its subclasses or zoom in a nested circle (RDF class) for further exploration.

	Class relationships => Explore the relationships between RDF classes, where a relationship is represented by links between the individual instances of two classes. Each link is an RDF statement where the subject is an instance of one class, the object is an instance of another class, and the link is the predicate. Depending on the number of links between the instances of two classes, the bundle can be thicker or thinner and it gets the color of the class with more incoming links. The links can be in both directions.

	Visual graph => Explore your data graph in a visual way. Start from a single resource and the resources connected to it, or from a graph query result. Click on a resource to expand its connections as well.

	Similarity => Look up semantically similar entities and text.

	SPARQL

	
	SPARQL => Query and update your data. Use any type of SPARQL query and click Run to execute it.

	Monitor

	
	Queries and Updates => Monitor all running queries or updates in GraphDB. Any query or update can be killed by pressing the Abort button.

	Resources => Monitor the usage of various system resources, such as memory and CPU, for the currently active location.

	Setup

	
	Repositories => Manage repositories and connect to remote locations. A location represents a local or remote instance of GraphDB. Only a single location can be active at a given time.

	Users and Access => Manage users and their access to the GraphDB repositories. You can also enable or disable the security of the entire Workbench. When disabled, everyone has full access to the repositories and the admin functionality.

	My Settings => Configure the default behavior of the Workbench.

	Connectors => Create and manage GraphDB Connector instances.

	Cluster => Manage a GraphDB cluster - create or modify a cluster by dragging and dropping the nodes, or use it to monitor the state of a running cluster in near real time. The view shows repositories from the active location and all remote locations.

	Namespaces => View and manipulate the RDF namespaces for the active repository. You need a write permission to add or delete namespaces.

	Autocomplete => Enable/disable the autocomplete index and check its status. It is used for automatic completion of URIs in the SPARQL editor and the View Resource page.

	RDF Rank => Identify the more important or popular entities in your repository by examining their interconnectedness determined by the RDF Rank algorithm. Their popularity can then be used to order query results.

	Help

	
	REST API => REST API documentation of all available public RESTful endpoints together with an interactive interface for executing requests.

	Documentation => Link to the GraphDB public documentation.

	Developer Hub => Link to the GraphDB dev hub - a hands-on compendium to the GraphDB documentation that gives practical advice and tips on accomplishing real-world tasks.

	Support => Link to the GraphDB support page.

	System information => See the configuration values of the JVM running the GraphDB Workbench: Application Info, JVM Arguments, and Workbench Configuration properties. You can also generate a detailed server report file that you can use to hunt down issues.

Workbench configuration properties

In addition to the standard GraphDB command line parameters, the GraphDB
Workbench can be controlled with the following parameters (they should
be of the form -Dparam=value):

	Parameter

	Description

	graphdb.workbench.cors.enable

	Enables cross-origin resource sharing.

Default: false

	graphdb.workbench.cors.origin

	Sets the allowed Origin value for cross-origin resource sharing.

This can be a comma-delimited list or a single value.
The value “*” means “allow all origins” and it works with authentication too.

Default: *

	graphdb.workbench.cors.expose-headers

	As per GraphDB’s compliance with the Access-Control-Expose-Headers [https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Expose-Headers],
when the two parameters above are enabled, this parameter exposes headers other than
the CORS-safelisted request headers. They are exposed in a comma-delimited list.

Example:

graphdb.workbench.cors.enable=true

graphdb.workbench.cors.origin=*

graphdb.workbench.cors.expose-headers="content,location"

Default: If no value is set, only the CORS-safelisted request headers will be exposed.

	graphdb.workbench.maxConnections

	Sets the maximum number of concurrent connections to a remote GraphDB instance.

Default: 200

	graphdb.workbench.datadir

	Sets the directory where the workbench persistence data will be stored.

Default: ${user.home}/.graphdb-workbench/

	graphdb.workbench.importDirectory

	Changes the location of the file import folder.

Default: ${user.home}/graphdb-import/

	graphdb.workbench.maxUploadSize

	Sets the maximum upload size for importing local files. The value must be in bytes.

Default: 200 MB

SPARQL Compliance

What’s in this document?

	SPARQL 1.1 Protocol for RDF

	SPARQL 1.1 Query

	SPARQL 1.1 Update

	Modification operations on the RDF triples:

	Operations for managing graphs:

	SPARQL 1.1 Federation

	Internal SPARQL federation

	Federated query to a remote password protected repository

	SPARQL 1.1 Graph Store HTTP Protocol

	URL patterns for this new functionality are provided at:

	Methods supported by these resources and their effects:

	Request headers:

	Supported parameters for requests on indirectly referenced named graphs:

GraphDB supports the following SPARQL specifications:

SPARQL 1.1 Protocol for RDF

SPARQL 1.1 Protocol for RDF [http://www.w3.org/TR/sparql11-protocol/] defines the means for transmitting SPARQL queries to a SPARQL query processing service, and returning the query results to the entity that requested them.

SPARQL 1.1 Query

SPARQL 1.1 Query [http://www.w3.org/TR/sparql11-query/] provides more powerful query constructions compared to SPARQL 1.0. It adds:

	Aggregates;

	Subqueries;

	Negation;

	Expressions in the SELECT clause;

	Property Paths;

	Assignment;

	An expanded set of functions and operators.

SPARQL 1.1 Update

SPARQL 1.1 Update [http://www.w3.org/TR/sparql11-update/] provides a means to change the state of the database using a query-like syntax. SPARQL Update has similarities to SQL INSERT INTO, UPDATE WHERE, and DELETE FROM behavior. For full details, see the W3C SPARQL Update working group page.

Modification operations on the RDF triples:

	INSERT DATA {...} - inserts RDF statements;

	DELETE DATA {...} - removes RDF statements;

	DELETE {...} INSERT {...} WHERE {...} - for more complex modifications;

	LOAD (SILENT) from_iri - loads an RDF document identified by from_iri;

	LOAD (SILENT) from_iri INTO GRAPH to_iri - loads an RDF document into the local graph called to_iri;

	CLEAR (SILENT) GRAPH iri - removes all triples from the graph identified by iri;

	CLEAR (SILENT) DEFAULT - removes all triples from the default graph;

	CLEAR (SILENT) NAMED - removes all triples from all named graphs;

	CLEAR (SILENT) ALL - removes all triples from all graphs.

Operations for managing graphs:

	CREATE - creates a new graph in stores that support empty graphs;

	DROP - removes a graph and all of its contents;

	COPY - modifies a graph to contain a copy of another;

	MOVE - moves all of the data from one graph into another;

	ADD - reproduces all data from one graph into another.

SPARQL 1.1 Federation

SPARQL 1.1 Federation [http://www.w3.org/TR/sparql11-federated-query/] provides extensions to the query syntax for executing distributed queries over any number of SPARQL endpoints. This feature is very powerful, and allows integration of RDF data from different sources using a single query.

For example, to discover DBpedia resources about people who have the same names as those stored in a local repository, use the following query:

SELECT ?dbpedia_id
WHERE {
 ?person a foaf:Person ;
 foaf:name ?name .
 SERVICE <http://dbpedia.org/sparql> {
 ?dbpedia_id a dbpedia-owl:Person ;
 foaf:name ?name .
 }
}

It matches the first part against the local repository and for each person it finds, it checks the DBpedia SPARQL endpoint to see if a person with the same name exists and, if so, returns the ID.

Note

Federation must be used with caution. First of all, to avoid doing excessive querying of remote (public) SPARQL endpoints, but also because it can lead to inefficient query patterns.

The following example finds resources in the second SPARQL endpoint that have a similar rdfs:label to the rdfs:label of <http://dbpedia.org/resource/Vaccination> in the first SPARQL endpoint:

PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>

SELECT ?endpoint2_id {
 SERVICE <http://faraway_endpoint.org/sparql>
 {
 ?endpoint1_id rdfs:label ?l1 .
 FILTER(langMatches(lang(?l1), "en"))
 }
 SERVICE <http://remote_endpoint.com/sparql>
 {
 ?endpoint2_id rdfs:label ?l2 .
 FILTER(str(?l2) = str(?l1))
 }
}
BINDINGS ?endpoint1_id
{ (<http://dbpedia.org/resource/Vaccination>) }

However, such a query is very inefficient, because no intermediate bindings are passed between endpoints. Instead, both subqueries execute independently, requiring the second subquery to return all X rdfs:label Y statements that it stores. These are then joined locally to the (likely much smaller) results of the first subquery.

Internal SPARQL federation

Since RDF4J repositories are also SPARQL endpoints, it is possible to use the federation mechanism to do distributed querying over several repositories on a local server. You can do it by referring them as a standard SERVICE, with their full path, or, if they are running on the same GraphDB instance, you can use the optimized local repository prefix. The prefix triggers the Internal SPARQL Federation mechanism. Since this approach skips all HTTP communication overheads, it is more efficient.

For example, imagine that you have a GraphDB instance with two repositories - one called my_concepts with triples about concepts and another called my_labels, containing all label information.

To retrieve the corresponding label for each concept, you can execute the following query on the my_concepts repository:

SELECT ?id ?label
WHERE {
 ?id a ex:Concept .
 SERVICE <repository:my_labels> {
 ?id rdfs:label ?label.
 }
}

The approach applied for DBpedia, SERVICE <http://localhost:7200/repositories/my_labels> is also valid, but is less efficient.

The Internal SPARQL Federation page contains more details about it, including query parameters that can be used to control the behavior of the federated query.

Federated query to a remote password protected repository

You can also use federation to query a remote password protected GraphDB repository. There are two ways to do this:

	By editing the repository configuration as follows:

	Download the configuration file.

	In it, edit the repositoryURL (<http://user:password@localhost:7200/repositories/<RepositoryName>) by placing your login details and the remote repository name.

	Stop GraphDB if it is running.

	Create a new directory in $GDB_HOME/data/repositories/ with the same name as repositoryID from the config file.

	Place the edited config file in the newly created folder. Make sure that it is named config.ttl, as otherwise GraphDB will not recognize it and the repository will not be created.

	Start GraphDB again.

	By importing the repository configuration file in the Workbench (does not require stopping GraphDB):

	Download the mentioned configuration file.

	In it, change rep:repositoryID "<RepoName>" to the name of your repository.

	Edit the repositoryURL (<http://user:password@localhost:7200/repositories/<RepositoryName>) by placing your login details and the remote repository name.

	Open GraphDB Workbench and go to Repositories -> Create new repository -> Create from file.

	Upload the file. The newly created repository will have the same name used for <RepoName>.

This will enable you to query the remote repository like in the above example:

SELECT ?id ?label
WHERE {
 ?id a ex:Concept .
 SERVICE <repository:my_labels> {
 ?id rdfs:label ?label.
 }
}

SPARQL 1.1 Graph Store HTTP Protocol

SPARQL 1.1 Graph Store HTTP Protocol [http://www.w3.org/TR/sparql11-http-rdf-update/] provides a means for updating and fetching RDF graph content from a Graph Store over HTTP in the REST style.

URL patterns for this new functionality are provided at:

	<RDF4J_URL>/repositories/<repo_id>/rdf-graphs/service> (for indirectly referenced named graphs);

	<RDF4J_URL>/repositories/<repo_id>/rdf-graphs/<NAME> (for directly referenced named graphs).

Methods supported by these resources and their effects:

	GET - fetches statements in the named graph from the repository in the requested format.

	PUT - updates data in the named graph in the repository, replacing any existing data in the named graph with the supplied data. The data supplied with this request is expected to contain an RDF document in one of the supported RDF formats.

	DELETE - deletes all data in the specified named graph in the repository.

	POST - updates data in the named graph in the repository by adding the supplied data to any existing data in the named graph. The data supplied with this request is expected to contain an RDF document in one of the supported RDF formats.

Request headers:

	Accept: Relevant values for GET requests are the MIME types of supported RDF formats.

	Content-Type: Must specify the encoding of any request data sent to a server. Relevant values are the MIME types of supported RDF formats.

Supported parameters for requests on indirectly referenced named graphs:

	graph (optional): specifies the URI of the named graph to be accessed.

	default (optional): specifies that the default graph to be accessed. This parameter is expected to be present but to have no value.

Note

Each request on an indirectly referenced graph needs to specify precisely one of the above parameters.

Using Math Functions with SPARQL

GraphDB supports standard math functions to be used with SPARQL.

The following query summarizes all implemented math functions:

PREFIX ofn: <http://www.ontotext.com/sparql/functions/>

SELECT * {

 # acos
 # The arccosine function. The input is in the range[-1, +1]. The output is in the range [0, pi] radians.
 BIND (ofn:acos(0.5) AS ?acos)

 # asin
 # The arcsine function. The input is in the range[-1, +1]. The output is in the range [-pi/2, pi/2] radians.
 BIND (ofn:asin(0.5) AS ?asin)

 # atan
 # The arctangent function. The output is in the range (-pi/2, pi/2) radians.
 BIND (ofn:atan(1) AS ?atan)

 # atan2
 # The double-argument arctangent function (the angle component of the conversion from rectangular coordinates
 # to polar coordinates), see Math.atan2().
 # The output is in the range [-pi/2, pi/2] radians.
 BIND (ofn:atan2(1, 0) AS ?atan2)

 # cbrt
 # The cubic root function.
 BIND (ofn:cbrt(2) AS ?cbrt)

 # copySign
 # Returns the first floating-point argument with the sign of the second floating-point argument, see Math.copySign().
 BIND (ofn:copySign(2, -7.5) AS ?copySign)

 # cos
 # The cosine function. The argument is in radians.
 BIND (ofn:cos(1) AS ?cos)

 # cosh
 # The hyperbolic cosine function.
 BIND (ofn:cosh(1) AS ?cosh)

 # e
 # The E constant, the base of the natural logarithm.
 BIND (ofn:e() AS ?e)

 # exp
 # The exponent function, e^x.
 BIND (ofn:exp(2) AS ?exp)

 # expm1
 # The Math.expm1() function. Returns e^x - 1.
 BIND (ofn:expm1(3) AS ?expm1)

 # floorDiv
 # Returns the largest (closest to positive infinity) int value that is less than or equal to the algebraic quotient.
 # The arguments are implicitly cast to long.
 BIND (ofn:floorDiv(5, 2) AS ?floorDiv)

 # floorMod
 # Returns the floor modulus of the int arguments. The arguments are implicitly cast to long.
 BIND (ofn:floorMod(10, 3) AS ?floorMod)

 # getExponent
 # Returns the unbiased exponent used in the representation of a double.
 # This means that we take N from the binary representation of X: X = 1 * 2^N + {1|0} * 2^(N-1) + ... + {1|0} * 2^0,
 # i.e. the power of the highest non-zero bit of the binary form of X.
 BIND (ofn:getExponent(10) AS ?getExponent)

 # hypot
 # Returns sqrt(x^2 +y^2) without intermediate overflow or underflow.
 BIND (ofn:hypot(3, 4) AS ?hypot)

 # IEEEremainder
 # Computes the remainder operation on two arguments as prescribed by the IEEE 754 standard.
 BIND (ofn:IEEEremainder(3, 4) AS ?IEEEremainder)

 # log
 # The natural logarithm function.
 BIND (ofn:log(4) AS ?log)

 # log10
 # The common (decimal) logarithm function.
 BIND (ofn:log10(4) AS ?log10)

 # log1p
 # The Math.log1p() function.
 # Returns the natural logarithm of the sum of the argument and 1.
 BIND (ofn:log1p(4) AS ?log1p)

 # max
 # The greater of two numbers.
 BIND (ofn:max(3, 5) AS ?max)

 # min
 # The smaller of two numbers.
 BIND (ofn:min(3, 5) AS ?min)

 # nextAfter
 # Returns the floating-point number adjacent to the first argument in the direction of the second argument.
 BIND (ofn:nextAfter(2, -7) AS ?nextAfter)

 # nextDown
 # Returns the floating-point value adjacent to d in the direction of negative infinity.
 BIND (ofn:nextDown(2) AS ?nextDown)

 # nextUp
 # Returns the floating-point value adjacent to d in the direction of positive infinity.
 BIND (ofn:nextUp(2) AS ?nextUp)

 # pi
 # The Pi constant.
 BIND (ofn:pi() AS ?pi)

 # pow
 # The power function.
 BIND (ofn:pow(2, 3) AS ?pow)

 # rint
 # Returns the double value that is closest in value to the argument and is equal to a mathematical integer.
 BIND (ofn:rint(2.51) AS ?rint)

 # scalb
 # Returns x × 2^scaleFactor rounded as if performed by a single correctly rounded floating-point multiply
 # to a member of the double value set.
 BIND (ofn:scalb(3, 3) AS ?scalb)

 # signum
 # Returns the signum function of the argument; zero if the argument is zero, 1.0 if the argument is greater than zero,
 # -1.0 if the argument is less than zero.
 BIND (ofn:signum(-5) AS ?signum)

 # sin
 # The sine function. The argument is in radians.
 BIND (ofn:sin(2) AS ?sin)

 # sinh
 # The hyperbolic sine function.
 BIND (ofn:sinh(2) AS ?sinh)

 # sqrt
 # The square root function.
 BIND (ofn:sqrt(2) AS ?sqrt)

 # tan
 # The tangent function. The argument is in radians.
 BIND (ofn:tan(1) AS ?tan)

 # tanh
 # The hyperbolic tangent function.
 BIND (ofn:tanh(1) AS ?tanh)

 # toDegrees
 # Converts an angle measured in radians to an approximately equivalent angle measured in degrees.
 BIND (ofn:toDegrees(1) AS ?toDegrees)

 # toRadians
 # Converts an angle measured in degrees to an approximately equivalent angle measured in radians.
 BIND (ofn:toRadians(1) AS ?toRadians)

 # ulp
 # Returns the size of an ulp of the argument.
 # An ulp, unit in the last place, of a double value is the positive distance between this floating-point value
 # and the double value next larger in magnitude. Note that for non-NaN x, ulp(-x) == ulp(x). See Math.ulp().
 BIND (ofn:ulp(1) AS ?ulp)

}

Note

All function arguments should be bound.

The result of the query evaluation is:

acos="1.0471975511965979"^^<http://www.w3.org/2001/XMLSchema#double>
asin="0.5235987755982989"^^<http://www.w3.org/2001/XMLSchema#double>
atan="0.7853981633974483"^^<http://www.w3.org/2001/XMLSchema#double>
atan2="1.5707963267948966"^^<http://www.w3.org/2001/XMLSchema#double>
cbrt="1.2599210498948732"^^<http://www.w3.org/2001/XMLSchema#double>
copySign="-2.0"^^<http://www.w3.org/2001/XMLSchema#double>
cos="0.5403023058681398"^^<http://www.w3.org/2001/XMLSchema#double>
cosh="1.543080634815244"^^<http://www.w3.org/2001/XMLSchema#double>
e="2.718281828459045"^^<http://www.w3.org/2001/XMLSchema#double>
exp="7.38905609893065"^^<http://www.w3.org/2001/XMLSchema#double>
expm1="19.085536923187668"^^<http://www.w3.org/2001/XMLSchema#double>
floorDiv="2.0"^^<http://www.w3.org/2001/XMLSchema#double>
floorMod="1.0"^^<http://www.w3.org/2001/XMLSchema#double>
getExponent="3.0"^^<http://www.w3.org/2001/XMLSchema#double>
hypot="5.0"^^<http://www.w3.org/2001/XMLSchema#double>
IEEEremainder="-1.0"^^<http://www.w3.org/2001/XMLSchema#double>
log10="0.6020599913279624"^^<http://www.w3.org/2001/XMLSchema#double>
log="1.3862943611198906"^^<http://www.w3.org/2001/XMLSchema#double>
log1p="1.6094379124341003"^^<http://www.w3.org/2001/XMLSchema#double>
max="5.0"^^<http://www.w3.org/2001/XMLSchema#double>
min="3.0"^^<http://www.w3.org/2001/XMLSchema#double>
nextAfter="1.9999999999999998"^^<http://www.w3.org/2001/XMLSchema#double>
nextDown="1.9999999999999998"^^<http://www.w3.org/2001/XMLSchema#double>
nextUp="2.0000000000000004"^^<http://www.w3.org/2001/XMLSchema#double>
pi="3.141592653589793"^^<http://www.w3.org/2001/XMLSchema#double>
pow="8.0"^^<http://www.w3.org/2001/XMLSchema#double>
rint="3.0"^^<http://www.w3.org/2001/XMLSchema#double>
scalb="24.0"^^<http://www.w3.org/2001/XMLSchema#double>
signum="-1.0"^^<http://www.w3.org/2001/XMLSchema#double>
sin="0.9092974268256817"^^<http://www.w3.org/2001/XMLSchema#double>
sinh="3.626860407847019"^^<http://www.w3.org/2001/XMLSchema#double>
sqrt="1.4142135623730951"^^<http://www.w3.org/2001/XMLSchema#double>
tan="1.5574077246549023"^^<http://www.w3.org/2001/XMLSchema#double>
tanh="0.7615941559557649"^^<http://www.w3.org/2001/XMLSchema#double>
toDegrees="57.29577951308232"^^<http://www.w3.org/2001/XMLSchema#double>
toRadians="0.017453292519943295"^^<http://www.w3.org/2001/XMLSchema#double>
ulp="2.220446049250313E-16"^^<http://www.w3.org/2001/XMLSchema#double>

OWL Compliance

GraphDB supports several OWL like dialects: OWL Horst (owl-horst), OWL Max (owl-max), which covers most of OWL Lite and RDFS, OWL2 QL (owl2-ql), and OWL2 RL (owl2-rl).

With the owl-max ruleset, GraphDB supports the following semantics:

	full RDFS semantics without constraints or limitations, apart from the entailment related to typed literals (known as D-entailment). For instance, meta-classes (and any arbitrary mixture of class, property, and individual) can be combined with the supported OWL semantics;

	most of OWL Lite;

	all of OWL DLP.

The differences between OWL Horst and the OWL dialects supported by GraphDB (owl-horst and owl-max) can be summarised as follows:

	GraphDB does not provide the extended support for typed literals, introduced with the D-entailment extension of the RDFS semantics. Although such support is conceptually clear and easy to implement, it is our understanding that the performance penalty is too high for most applications. You can easily implement the rules defined for this purpose by ter Horst and add them to a custom ruleset;

	There are no inconsistency rules by default;

	A few more OWL primitives are supported by GraphDB (ruleset owl-max);

	There is extended support for schema-level (T-Box) reasoning in GraphDB.

Even though the concrete rules pre-defined in GraphDB differ from those defined in OWL Horst, the complexity and decidability results reported for R-entailment are relevant for TRREE and GraphDB. To be more precise, the rules in the owl-horst ruleset do not introduce new B-Nodes, which means that R-entailment with respect to them takes polynomial time. In KR terms, this means that the owl-horst inference within GraphDB is tractable.

Inference using owl-horst is of a lesser complexity compared to other formalisms that combine DL formalisms with rules. In addition, it puts no constraints with respect to meta-modeling.

The correctness of the support for OWL semantics (for these primitives that are supported) is checked against the normative Positive- and Negative-entailment OWL test cases.

Glossary

	Datalog
	A query and rule language for deductive databases that syntactically is a subset of Prolog.

	D-entailment
	A vocabulary entailment of an RDF graph that respects the ‘meaning’ of data types.

	Description Logic
	A family of formal knowledge representation languages that are subsets of first order logic, but have more efficient decision problems.

	Horn Logic
	Broadly means a system of logic whose semantics can be captured by Horn clauses. A Horn clause has at most one positive literal and allows for an IF…THEN interpretation, hence the common term ‘Horn Rule’.

	Knowledge Base
	(In the Semantic Web sense) is a database of both assertions (ground statements) and an inference system for deducing further knowledge based on the structure of the data and a formal vocabulary.

	Knowledge Representation
	An area in artificial intelligence that is concerned with representing knowledge in a formal way such that it permits automated processing (reasoning).

	Load Average
	The load average represents the average system load over a period of time.

	Materialization
	The process of inferring and storing (for later retrieval or use in query answering) every piece of information that can be deduced from a knowledge base’s asserted facts and vocabulary.

	Named Graph
	A group of statements identified by a URI. It allows a subset of statements in a repository to be manipulated or processed separately.

	Ontology
	A shared conceptualisation of a domain, described using a formal (knowledge) representation language.

	OWL
	A family of W3C knowledge representation languages that can be used to create ontologies. See Web Ontology Language [http://www.w3.org/TR/owl-features/].

	OWL Horst
	An entailment system built upon RDF Schema, see R-entailment.

	Predicate Logic
	Generic term for symbolic formal systems like first-order logic, second-order logic, etc. Its formulas may contain variables which can be quantified.

	RDF Graph Model
	The interpretation of a collection of RDF triples as a graph, where resources are nodes in the graph and predicates form the arcs between nodes. Therefore one statement leads to one arc between two nodes (subject and object).

	RDF Schema
	A vocabulary description language for RDF with formal semantics.

	Resource
	An element of the RDF model, which represents a thing that can be described, i.e., a unique name to identify an object or a concept.

	R-entailment
	A more general semantics layered on RDFS, where any set of rules (i.e., rules that extend or even modify RDFS) are permitted. Rules are of the form IF…THEN… and use RDF statement patterns in their premises and consequences, with variables allowed in any position.

	Resource Description Framework (RDF)
	A family of W3C specifications for modeling knowledge with a variety of syntaxes.

	Semantic Repository
	A semantic repository is a software component for storing and manipulating RDF data. It is made up of three distinct components:

	An RDF database for storing, retrieving, updating and deleting RDF
statements (triples);

	An inference engine that uses rules to infer ‘new’ knowledge from
explicit statements;

	A powerful query engine for accessing the explicit and implicit
knowledge.

	Semantic Web
	The concept of attaching machine understandable metadata to all information published on the internet, so that intelligent agents can consume, combine and process information in an automated fashion.

	SPARQL
	The most popular RDF query language.

	Statement or Triple
	A basic unit of information expression in RDF. A triple consists of subject-predicate-object.

	Universal Resource Identifier (URI)
	A string of characters used to (uniquely) identify a resource.

Release Notes

GraphDB release notes provide information about the features and improvements in
each release, as well as various bug fixes. GraphDB’s versioning scheme is based on
semantic versioning [http://semver.org]. The full version is composed of three components:

major.minor.patch

e.g., 9.5.1 where the major version is 9, the minor version is 5 and the patch version is 1.

Note

Releases with the same major and minor versions do not contain any new features.
Releases with different patch versions contain fixes for bugs discovered since
the previous minor. New or significantly changed features
are released with a higher major or minor version.

GraphDB 9 includes the following components with their version numbers:

	RDF4J

	GraphDB Connectors

	GraphDB Workbench

Their versions use the same semantic versioning scheme as the whole product, and their values are provided only as a reference.

GraphDB 9.6.0

Released: 8 February 2021

Component versions

	RDF4J

	Connectors

	Workbench

	Ontop

	3.5.1

	13.0.1

	1.6.0

	4.0.2

Important

	Improved usability of GraphDB data virtualization with preconfigured, ready-to-use configurations for supported RDBMS providers.

	Users no longer need to restart the entire GraphDB instance to restart a single repository.

	Many improvements in GraphDB Workbench UI, such as easy repository creating and RDF resource searching.

	The GraphDB JavaScript Driver [https://github.com/Ontotext-AD/graphdb.js] now supports token-based and basic authentication against a secured server. It also supports repository management operations like create, edit, delete, and shutdown.

	Upgraded to the latest RDF4J version 3.5.1 [https://rdf4j.org/release-notes/3.5.1/].

GraphDB Engine & Cluster

New features and improvements

	GDB-5334 Change the log level to WARN when the available cores are more than the licensed ones

	GDB-3579 JS Driver: Add Repository Management API in GraphDBServerClient

	GDB-5309 JS Driver: As a developer, I want to authenticate against a secured GraphDB server

	GDB-5373 Upgrade RDF4J to 3.5.1

	GDB-5191 Enable the Preload tool to work with repositories other than OwlimSchemaRepository

	GDB-5316 Provide better error message when a node cannot connect to the master when verifying network connectivity for the purpose of connecting cluster nodes

	GDB-5320 No way to connect to remote locations when OpenID + OAuth is used

Bug fixing

	GDB-4225 Import status is not updated after GraphDB restart

	GDB-4990 Explain queries are not using prefixes provided with the query

	GDB-4991 Slower updates after many updates, goes away by index rebuild

	GDB-5160 JDBC Driver: Ontop repository created/added without PSQL .jar blocks JDBC driver

	GDB-5161 Virtual repositories: edit file icon overlaps the filepath for all virtual repository configuration fields

	GDB-5199 Query timeout when using the internal federation

	GDB-5323 Editing Ontop repository file results in two different files in repository’s directory

	GDB-5324 Editing Ontop repository file leaves .tmp file in temporary directory

	GDB-5329 Running a big query causes StackOverflow exception

	GDB-5366 GraphDB deadlock issue

	GDB-5396 Create repository with remote locations: custom ruleset and Ontop configuration unusable

	GDB-5412 Update dependencies to fix security vulnerabilities

GraphDB Workbench

New features and improvements

	GDB-3855 Show worker last error as popup on link if worker state is OFF in Cluster management view

	GDB-4864 As a user of the mapping UI, I want to click on IRIs in the preview so that I can go to resource view to verify that the IRI is the correct one

	GDB-4885 Mapping UI: Preview cells with no value

	GDB-4972 Sort built-in rulesets in order of complexity

	GDB-5404 Style mapping UI disabled buttons consistently with the Workbench

	GDB-2068 Expose the resource search box somewhere so that is always visible

	GDB-5275 Improve the usability of the GraphDB data virtualization feature

	GDB-5276 As a user, I want to select an RDBMS provider when creating an Ontop repo and fill in the config for the selected provider in the relevant form

	GDB-5278 As a user, I want to restart a repository without restarting GraphDB

	GDB-5337 As user, I expect to see the same prefixes in the mapping UI as in the repository namespace page

	GDB-5339 Redesign the “Create Repository” screen in the Workbench

	GDB-5242 Add SHACL Shape Graph to Graphs Overview

	GDB-5280 Add pagination to SPARQL results when count results is OFF or when the count timeouts

	GDB-5338 The OpenRefine to RDF value mapping dialog should disallow inputting new line in all fields

	GDB-5351 Add xml* to download SPARQL results to application/x-sparqlstar-results+xml

Bug fixing

	GDB-3946 Wrong styles in visual graph tags

	GDB-4406 Workbench console errors

	GDB-5027 RDF Mapping: Pasting a valid prefix value in the prefix field will not autoresolve it

	GDB-5029 OntoRefine: Adding a longer prefix name will offset the cell buttons and make them overlap with the next cell

	GDB-5205 RDF mapper UI: Blank mapper page when GraphDB is behind proxy

	GDB-5207 Workbench: JDBC - the Preview button and Keyboard shortcuts buttons are overlapping

	GDB-5237 Unset password status is not updated in the Workbench

	GDB-5260 Workbench displays read-only repositories with read/write access

	GDB-5325 Workbench: UI issue with uploaded file’s info tooltip

GraphDB Connectors & Plugins

Bug fixing

	GDB-5388 Error when creating Elasticsearch connector by importing .ttl file

	

GraphDB 9.5.1

Released: 13 January 2021

Component versions

	RDF4J

	Connectors

	Workbench

	Ontop

	3.4.4

	13.0.0

	1.5.1

	4.0.2

Important

	Several non-critical bug fixes in GraphDB Engine, Workbench, and MongoDB connector

GraphDB Engine

Bug fixing

	GDB-5344 Extra space in OpenID scope prevents Keycloak from working with GraphDB

GraphDB Workbench

Bug fixing

	GDB-4864 RDF Mapping UI: Preview items for IRI cells should be links to the Workbench resource view

	GDB-4912 RDF Mapping UI: Error during column autocomplete

	GDB-5251 Case sensitive autocomplete in RDF Mapping API

	GDB-5321 Better error messages when OpenID token can’t be used with GraphDB

	GDB-5335 The SPARQL autocomplete does not display the hit snippet, which limits its use when applied to non-human readable URIs

	GDB-5336 RDF Mapping UI: Cannot read the autocomplete indexes from the current active repository

	GDB-5357 RDF Mapping UI: Console errors when opening an already created project

GraphDB Connectors

Bug fixing

	GDB-5047 MongoDB connector does not convert “$numberLong” to xsd:long

	

GraphDB 9.5.0

Released: 7 December 2020

Component versions

	RDF4J

	Connectors

	Workbench

	Ontop

	3.4.4

	13.0.0

	1.5.0

	4.0.2

Important

	Data virtualization of a relational database with the Ontop framework [https://github.com/ontop/ontop]. All GraphDB editions now support a new repository type initialized with an R2RML [https://www.w3.org/TR/r2rml/] or OBDA descriptor file to access a relational database like IBM DB2, MySQL, Oracle, PostgreSQL, Microsoft SQL Server, H2, and Denodo as a virtual read-only RDF graph. The new virtual repositories allow both the SPARQL access to RDBMS with highly dynamic or impractical to transform data source, and the batch transformation of relational models into RDF when requiring reasoning or advanced query features like property paths.

	A new user interface simplifies the management of the SQL views mapped to SPARQL queries for JDBC access. The interface guides the user in validating the SPARQL queries’ syntax and their mapping to SQL types. It supports the automatic suggestion of the SQL value mapping after a scan as a bonus feature.

	Improved security and single sign-on support including OpenID authentication and OAuth authorization.

Important bug fixes and improvements:

	Performance optimization boosting the performance of short-lived requests

	Upgraded Connectors to Lucene 8.6.3, Solr 8.6.3, Elasticsearch 7.9.2

	Added support for comparison operators and regex in Connector entity filter and fixes in the mapping of nested fields and field values

	Important fixes in SHACL validation and the cluster support

	Multiple fixes in the SPARQL support, such as: arbitrary-length path within OPTIONAL clause; the STRUUID() function now works in the cluster; the UUID() function now returns deterministic results

	Upgraded to the latest RDF4J version 3.4.4 [https://rdf4j.org/release-notes/#3-4-4]

GraphDB Engine & Cluster

New features and improvements

	GDB-4493 Optimize the remote join in federated queries by batching the value

	GDB-4995 Enable virtual read-only SPARQL endpoint over RDBMS with Ontop framework

	GDB-4497 Fix latest vulnerabilities found in GraphDB Engine & Workbench

	GDB-4999 Single sign-on authentication over OpenID Connect protocol

	GDB-5006 As an operation manager I need a mechanism to control the amount of memory when dealing with many repositories

	GDB-5067 Upgrade RDF4J to the latest version (3.4.4)

	GDB-5069 Improve SHACL reporting in cluster mode to obtain the SHACL schema

	GDB-5072 As a user I want to configure OIDC authentication

	GDB-5073 As a user I want to configure OAuth2 authorization

	GDB-5163 Upgrade various libraries to newer versions

	GDB-5195 Optimize queries with generation of many short-lived connections

	GDB-5206 Expand SHACL transaction settings to work in cluster

Bug fixing

	GDB-3043 Weird interaction of VALUES and federated query

	GDB-4095 SHACL logging is duplicated upon clear all

	GDB-4490 Runaway federated query cannot be stopped

	GDB-4918 SHACL: the SHACL extension constraint dash:hasValueIn behaves differently for expanded and prefixed IRIs

	GDB-4920 Support SPARQLStar updates

	GDB-4979 ConcurrentModificationException in GraphDB cluster master node

	GDB-5026 NPE when trying to use INSERT WHERE clause with nested triples

	GDB-5053 UUID() sometimes yields same result over different query solutions

	GDB-5054 Explain plan does not show SERVICE expressions

	GDB-5066 STRUUID() in cluster returns non-deterministic results

	GDB-5068 Trying to list rulesets returns only selected one for the current repository twice

	GDB-5152 SPARQL Federation fails when GraphDB uses HTTP proxy

	GDB-5177 ‘Alias has already been used’ exception with GraphDB in a cluster

	GDB-5197 Inconsistency in the return results when using internal federation

	GDB-5198 SHACL: invalid regexes lead to inability to insert any data in the repository

	GDB-5209 Incorrect results returned by an arbitrary length property (ALB) path nested in optional clause

	GDB-5221 NTLM authentication to a proxy does not work because of an old workaround

	GDB-5223 Cluster client creates multiple instances of RDF4JProtocolSession and does not close them, which makes the heap grow until OOM error

	GDB-5233 N-Quad parser does not handle base64-encoded RDF-star triples

	GDB-5262 ArrayIndexOutOfBoundsException after trying to compute RDFRank with filtering and without data in the repository

GraphDB Workbench

New features and improvements

	GDB-4997 As a user I want to create, configure, and delete virtual repositories with GraphDB Workbench

	GDB-5012 As a user I need a graphical UI and API to configure SPARQL to SQL views

Bug fixing

	GDB-4143 OntoRefine creates files at a late point, which may cause them to stay on disk after Windows installation removal

	GDB-4525 Searching for a deleted embedded triple will result in “no results” displayed in Raw Response tab

	GDB-4749 OpenRefine does not save created projects properly when GraphDB is stopped

	GDB-4753 OntoRefine memory leak

	GDB-5028 RDF Mapping: Adding an unknown prefix in the prefix field will corrupt the mapper interface

	GDB-5046 FreeAccess user should not be able to access OntoRefine functionality

	GDB-5057 OntoRefine login is required for users/repository admins/admins when security is ON

	GDB-5058 User login form is required when accessing OntoRefine with a free access user via URL redirection

	GDB-5176 RDF Mapping interface does not work with “naked” prefix

	GDB-5180 RDF-Mapping interface: Impossible to create blank nodes

	GDB-5258 RDF Mapping: Cannot set a prefix through the edit window when property is ‘a’

GraphDB Connectors & Plugins

New features and improvements

	GDB-5167 Upgrade Lucene, Solr (8.6.3) and Elasticsearch (7.9.2) in the connectors

	GDB-5188 Introduce a flag in the Elasticsearch connector that makes field values always use arrays

	GDB-5194 Add support for comparison operators and REGEX in plugin/connector expressions

Bug fixing

	GDB-5178 Wrong mapping with more than one level of nested fields in Elasticsearch connectors

GraphDB Distributions

Bug fixing

	GDB-5166 Refine’s Jython extension packaged by mistake into the distribution

	GDB-5169 GraphDB Free on MacOS ignores the JVM properties

	

GraphDB 9.4.1

Released: 28 September 2020

Component versions

	RDF4J

	Connectors

	Workbench

	3.3.1

	12.1.1

	1.4.1

Important

	Several non-critical bug fixes in GraphDB Engine and Workbench

GraphDB Engine

Bug fixing

	GDB-4964 Incorrect result from MINUS over solutions from SERVICE

	GDB-4977 The process cannot access the file error when creating a second server report on Windows

	GDB-4979 ConcurrentModificationException in GraphDB cluster master node

	GDB-5013 Simultaneous requests for add user/edit user may lead to changes not being applied

GraphDB Workbench

Bug fixing

	GDB-4497 Fix latest vulnerabilities found in GraphDB Workbench

	GDB-4876 RDF Mapping: Namespace set as constant disappears

	GDB-4946 RDF Mapping: Preview will not be generated for cells that have data if there is an empty cell before them in the mapping definition

	GDB-4965 Login form not showing up

	GDB-4982 Errors in the browser’s console using Class Relationship Diagram and Similarity Index pages

	GDB-4983 My settings: count total results checkbox is not working properly

GraphDB Distributions

Bug fixing

	GDB-4984 Mac native app displays incorrect encoding of the license agreement text

	

GraphDB 9.4.0

Released: 02 September 2020

Component versions

	RDF4J

	Connectors

	Workbench

	3.3.1

	12.1.1

	1.4.0

Important

	Visual interface to generate structured to RDF data mappings in OntoRefine. The new interface enables the users to quickly map structured data to common RDF vocabularies and the ontologies stored in the current repository. The mapping interface also preserves the support of cleaning with GREL transformations, reconciling data against external services and exporting the transformation for automating the updates.

	RDF mapping API. The new RDF Mapping API allows fast and easy automation of data to RDF transformations. It supports data providers like an OpenRefine project or posted CSV stream over which the user can apply mappings developed with the visual interface or SPARQL.

	SQL access to GraphDB over JDBC driver. GraphDB features fully functional SQL-based access. Users can register SQL views over SPARQL queries and the new SQL query engine will optimize their execution by pushing some of the complexity down into the SPARQL query.

	Usability improvements. Users can monitor and abort their own queries without the admin role; share saved visual graphs with other or anonymous access users; RDF parsers load the repository default prefixes;

	Important fixes. SHACL validation is also functional in the cluster and includes multiple extensions introduced by RDF4J 3.3.0 [https://rdf4j.org/release-notes/3.3.0/]; Improved cluster scalability when consuming large results.

GraphDB Engine & Cluster

New features and improvements

	GDB-3150 SQL access over JDBC driver to GraphDB

	GDB-4462 Visual interface to generate tabular to RDF data mappings in OntoRefine

	GDB-4088 Upgrade to the latest OpenRefine 3.3 version

	GDB-4773 Advertise HTTP Basic as supported authentication when security is enabled

	GDB-4806 RDF mapping API with streaming support to transform tabular data into RDF

	GDB-4838 Upgrade RDF4J to 3.3.1 version

	GDB-4862 OntoRefine: Update the default list of reconciliation services

	GDB-4899 SHACL Validation: Extend the supported transaction settings in GraphDB

Bug fixing

	GDB-3944 DuplicateAliasException when evaluation a query with an internal federation request to the same repository

	GDB-4304 RDF parsers fail to load the repository default prefixes instead of RDF4J’s hardcoded one

	GDB-4692 Incorrect evaluation of queries with ALP and wildcards

	GDB-4849 Cluster worker is blocked from reads when a query result is being consumed

	GDB-4870 Cannot create a cluster with SHACL repositories

	GDB-4874 Track read operations on the master instead of relying only on track records from workers

	GDB-4881 SHACL Validation: Some configuration parameters are not parsed

	GDB-4890 Interrupted queries with orderBy do not propagate QueryInterruptedException

GraphDB Workbench

New features and improvements

	GDB-2088 As a user I want to select graph when I explore class hierarchy and dependencies

	GDB-2179 As a user I want to share a visual graph with other users

	GDB-4705 Users can manage their own queries in Query Monitoring

	GDB-4950 Add SHACL transaction settings in the repository creation page

Bug fixing

	GDB-3937 Error in Workbench trying to list JVM settings if changed

GraphDB Plugins & Connectors

New features and improvements

	GDB-4115 Semantic Search: Expose semantic similarity threshold flag to users

	GDB-4648 MongoDB: Expose collation feature to users

	

GraphDB 9.3.4

Released: 12 November 2020

Component versions

	RDF4J

	Connectors

	Workbench

	3.2.0

	12.1.0

	1.3.2

Important

	Several non-critical bug fixes in GraphDB Engine

GraphDB Engine

Bug fixing

	GDB-4890 Interrupted queries with order by do not propagate QueryInterruptedException

	GDB-5195 Optimize the memory allocation and the query execution of short lived getStatement and hasStatement API requests

	GDB-5197 Inconsistency in the return results when using internal federation

	GDB-5209 Incorrect results returned by an arbitrary length property path nested in optional clause

	

GraphDB 9.3.3

Released: 03 August 2020

Component versions

	RDF4J

	Connectors

	Workbench

	3.2.0

	12.1.1

	1.3.2

Important

	Several non-critical bug fixes in GraphDB Engine and Connectors

GraphDB Engine

Bug fixing

	GDB-4791 FROM onto:implicit and another named graph fails to return results

	GDB-4828 Slow evaluation of a query with property path due to a wrong estimate of ALP

GraphDB Connectors

Bug fixing

	GDB-4813 Lucene advance filtering: Mislabeling of fields as containing IRIs when the parent is used in a filter

	

GraphDB 9.3.2

Released: 21 July 2020

Component versions

	RDF4J

	Connectors

	Workbench

	3.2.0

	12.1.0

	1.3.2

Important

	Several non-critical bug fixes in GraphDB Engine, Cluster and Plugins

GraphDB Engine

Bug fixing

	GDB-4679 Wrong results returned from queries when two OPTIONAL patterns bind the same variable or OPTIONALs used in a singleton groups

	GDB-4680 Filter with OR not handled correctly when literal constants came from BIND

	GDB-4726 Slow query with OPTIONALs with multiple nesting

	GDB-4735 Issue with evaluating queries with OPTIONAL-s in UNION-s and MINUS

	GDB-4763 Incorrect handling of more than two alternatives in ALP

GraphDB Cluster

Bug fixing

	GDB-4305 Unable to connect workers when creating a GraphDB cluster with proxy or docker

GraphDB Plugins

Bug fixing

	GDB-4702 Cannot enable history plugin if disabled by migration

	GDB-4757 The error that a plugin has been already started is not propagated to the user

	GDB-4756 Missing space in the message when enabling/disabling the plugin

GraphDB Distributions

Bug fixing

	GDB-4721 Curl is missing from the automatically built docker images

	

GraphDB 9.3.1

Released: 18 June 2020

Component versions

	RDF4J

	Connectors

	Workbench

	3.2.0

	12.1.0

	1.3.2

Important

	Several non-critical bug fixes in GraphDB Engine

GraphDB Engine

Bug fixing

	GDB-4593 RDF/XML file format with .xml extension is not properly detected when file is imported in Serial mode

	GDB-4609 Slow execution time of a query with language filter

	GDB-4614 Statements patters with zero estimation are not placed on top of the evaluation

	GDB-4617 Spring content negotiation interferes with GraphDB REST API when the URL ends in .com

	GDB-4625 Incorrect evaluation of ALP that contains alternatives or is placed in UNION

	GDB-4636 Health checks do not work when SHACL validation repository is ON

	

GraphDB 9.3.0

Released: 1 June 2020

Component versions

	RDF4J

	Connectors

	Workbench

	3.2.0

	12.1.0

	1.3.1

Important

	Substantial performance improvement of SPARQL property paths with new native support in GraphDB

	Enabled configuration of an LDAP bind user to query directories without anonymous access

	Upgraded Connectors to latest versions of Elasticsearch, Solr, and Lucene without known security vulnerabilities

	Several non-critical bug fixes in GraphDB Engine, Plugins, and Connectors

GraphDB Engine

New features

	GDB-4120 Enable the configuration of an LDAP bind user to query directories without anonymous access

	GDB-4503 Optimized the performance of SPARQL property paths by implementing their support into the GraphDB query model

	GDB-4521 Measure the performance of a query per TupleExpression and print the collected query’s execution time like ExplainPlan with added Measurement statistics

	GDB-4567 Upgrade to RDF4J 3.2.0 version

Bug fixing

	GDB-3912 “+” over property paths may returns nothing

	GDB-4107 Audit log does not respect Request ID header within the cluster

	GDB-4519 “Cannot visit sub-query’s vars” error during processing of FILTER EXISTS operators with either SERVICE, sub-select or property path

	GDB-4532 Literals index may rebuild after a GraphDB restart

	GDB-4561 External applications cannot obtain the transaction ID using RDF4J transactions API

	GDB-4573 Filters may fail to correctly eliminate RDF-star statements

GraphDB Plugins & Connectors

New features

	GDB-4494 Allow the change tracking plugin to pause changes collection

	GDB-4568 Upgrade Connectors to latest versions of ES (7.7), Solr (8.5.1), and Lucene (8.5.1)

	

GraphDB 9.2.1

Released: 11 May 2020

Component versions

	RDF4J

	Connectors

	Workbench

	3.2.0-M1

	12.0.3

	1.3.1

Important

	Several non-critical bug fixes in GraphDB Engine, Workbench, Plugins & Connectors

GraphDB Engine

Bug fixing

	GDB-4483 FROM is much slower than the GRAPH clause because of an inefficient context index existence check

	GDB-4501 Cached class hierarchy is not removed from cache on reload if new one is empty

	GDB-4507 Storage tool cannot initialize some of the collections with 40 bits entity size

GraphDB Plugins & Connectors

Bug fixing

	GDB-4444 Allow multiple fields per connector instance to define the property chain as a single property $self

	GDB-4448 Similarity plugin fails when indexing small data repositories

GraphDB Workbench

Bug fixing

	GDB-4403 Uncaught TypeError when loading swagger

	GDB-4400 Resource view: Reduce the font of embedded triples in the resource view

	

GraphDB 9.2.0

Released: 23 April 2020

Component versions

	RDF4J

	Connectors

	Workbench

	3.2.0-M1

	12.0.2

	1.3.0

Important

	GraphDB 9.2 now supports statement level annotations with RDF-star/SPARQL-star (formerly RDF*/SPARQL*). They enable a more efficient representation of scores, weights, temporal restrictions, and provenance information. It also allows the implementation of all use cases native for the property graph model by fully supporting all its modeling primitives. GraphDB and the new RDF type reduce by over 40% the number of RDF statements, the loading time, and the required disk space to model complex graphs like Wikidata.

	The semantic similarity indexes remain online during refresh. All clients will continue to hit the old similarity index version until the new one is fully functional and published.

	The GraphDB Proof plugin can trace back the rules fired to derive a particular implicit statement.

	Improved performance in the history log searches and diffs with the current state.

	All third party open-source libraries are upgraded to the newer version to avoid publicly known vulnerabilities.

	RDF4J is upgraded to 3.2.0-M1 version, which includes the embedded triple type and new RDF-star parsers and serializers.

GraphDB Engine & Cluster

New features

	GDB-4244 As a database user I want to upgrade all GraphDB APIs to support RDF-star formats

	GDB-4245 As a database user I want to upgrade all GraphDB APIs to support SPARQL-star queries

	GDB-4390 Update the RDF4J to version 3.2.0-M1 with RDF-star/SPARQL-star support

Bug fixing

	GDB-4352 Local codes of the language tags follow ISO 639/3166, where “en-US” is case insensitive but returned in this format

	GDB-3586 Notification listener fails to notify listeners for transactionStarted and transactionCompleted events

	GDB-3836 Fixed the default path to the .keystore in graphdb.properties file

	GDB-4092 Batching multiple updates with internal federation generates causes an NPE and HTTP error 500

	GDB-4222 Fixed a potential deadlock in the GlobalPageCache during the predicate statistics update

	GDB-4369 Storage tool may not replace IRI consistently in all database collections

GraphDB Workbench

New features

	GDB-4246 As a database user I want the Workbench to support RDF-star/SPARQL-star syntax highlighting and rendering

	GDB-4248 Extend YASR table view to render SPARQL-star results

	GDB-4287 As a database user I need the Workbench to support the new MIME types so I can import and export RDF-star data

	GDB-4375 Upgrade graphdb.js [https://github.com/Ontotext-AD/graphdb.js/] library to support RDF-star/SPARQL-star

Bug fixing

	GDB-4386 Fix the minimist reported security vulnerability in Workbench

	GDB-4401 Missing status when creating a Connector in Workbench

	GDB-4402 JS error when disconnecting cluster node in Workbench

	GDB-4409 YASR: Cached custom styles leads to bad SPARQL results presentation

GraphDB Plugins & Connectors

New features

	GDB-4136 Similarity plugin: The similarity index remains online during refresh

	GDB-4165 Proof plugin: Release a new plugin to trace back the rules fired to derive a particular implicit statement

	GDB-4173 Data versioning plugin: Improve the efficiency of queries like “All that is changed for a subject in a date interval”

	GDB-4444 Allow multiple fields per connector instance to define the property chain as a single property $self

Bug fixing

	GDB-4318 Querying the history log for the same subject twice returns fewer results than expected

GraphDB Distributions

New features

	GDB-4373 Upgrade the GraphDB docker to AdoptJDK 11 built on top of Alpine 3.11

	

GDB 9.1.1

Released: 21 January 2020

Component versions

	RDF4J

	Connectors

	Workbench

	3.0.1

	12.0.2

	1.2.2

Important

	Several non-critical bug fixes in GraphDB Engine, Plugins & Connectors

GraphDB Engine

Bug fixing

	GDB-4161 Adding invalid pie file may corrupt repository

GraphDB Workbench

Bug fixing

	GDB-4171 Product info JSON should not be visible in create similarity index page parameters

GraphDB Plugins & Connectors

Bug fixing

	GDB-3030 Predication Similarity: OOM exception is thrown when trying to rebuild a failed index

	GDB-4163 MongoDB plugin queries may hang

	GDB-4172 Problem with score retrieval when ordering by a field in Lucene or Elasticsearch

	GDB-4177 History plugin memory optimizations

	

GDB 9.1.0

Released: 19 January 2020

Component versions

	RDF4J

	Connectors

	Workbench

	3.0.1

	12.0.1

	1.2.0

Important

	GraphDB 9.2 now supports statement level annotations with RDF-star/SPARQL-star. They enable a more efficient representation of scores, weights, temporal restrictions, and provenance information. It also allows the implementation of all use cases native for the property graph model by fully supporting all its modeling primitives. GraphDB and the new RDF type reduce by over 40% the number of RDF statements, the loading time, and the required disk space to model complex graphs like Wikidata.

	The semantic similarity indexes remain online during refresh. All clients will continue to hit the old similarity index version until the new one is fully functional and published.

	The GraphDB Proof plugin can trace back the rules fired to derive a particular implicit statement.

	Improved performance in the history log searches and diffs with the current state.

	All third party open-source libraries are upgraded to the newer version to avoid publicly known vulnerabilities.

	RDF4J is upgraded to 3.2.0-M1 version, which includes the embedded triple type and new RDF-star parsers and serializers.

GraphDB Engine & Cluster

New features

	GDB-4017 Extend the supported authentication protocols with Kerberos

	GDB-4026 As a solution architect, I want to use SHACL validation with GraphDB

	GDB-4101 Upgrade to RDF4J 3.0.1

Bug fixing

	GDB-3043 Weird interaction of VALUES and Federated

	GDB-3480 Creating a backup without providing the trailing slash of the path fails

	GDB-3774 Variables bound in Filter leak outside the Filter block

	GDB-3800 Peering password protected masters with incorrect token does not generate any error messages

	GDB-3804 DuplicateAliasException when using internal federation

	GDB-3902 Abnormal behavior when a single OPTIONAL is an argument of a UNION

	GDB-3911 Suboptimal owl2-rl rule implementation that handles owl:hasKey

	GDB-3921 Nested OPTIONALs cause strange query results

	GDB-3941 xsd:time queries with a timezone produce wrong results when running against a DB with no timezones

	GDB-3943 Deadlock when evaluating a query with two SERVICE operators

	GDB-3944 DuplicateAliasException when evaluating a query with internal federation request to same repository

	GDB-3955 GraphDB Cluster stopped working because of dropped worker’s repository

	GDB-4033 Federated query for single property fails

	GDB-4071 Problem with newline in string literal when importing data using cURL

	GDB-4084 Unbound variables in the SELECT cause performance degradation

	GDB-4117 Removing owl:sameAs does not remove inferred statements

	GDB-4141 Calling an unknown function in SPARQL does not throw an error and returns an empty binding

	GDB-4150 Inconsistent behavior of backup between GraphDB editions

	GDB-4154 OntoRefine Movies dataset cannot be inserted in GraphDB

GraphDB Workbench

New features and improvements

	GDB-3694 Replace static libraries with their NPM versions

	GDB-3864 Remove VersionUrlRewriteFilter as Workbench packages come with their own version hash

	GDB-3874 Replace requires modules with standard es6 modules import/export

	GDB-3885 Remove unused or empty stylesheets

	GDB-3887 Implement and integrate rest clients

	GDB-3888 Make use of utility classes/services

	GDB-3890 Split Workbench bundle in more fine-grained pieces

	GDB-3891 Optimize D3 library loading

	GDB-3947 Invert module and component dependencies in Workbench

	GDB-4053 Ask for and accept Kerberos authentication when using GraphDB Workbench

	GDB-4153 Update Workbench libraries due to security risk reported by GitHub

Bug fixing

	GDB-3699 Similarity index config is appended in the URL after cloning an existing index

	GDB-3693 Resolve reported code quality issues in the Workbench

	GDB-3810 Visual graph: advanced search is displayed in situations where Easy graph search should be used.

	GDB-3898 Sending parallel queries to GDB Workbench links controller in GDB free results in a deadlock

	GDB-3913 Graphs overview: cannot export graph’s contents from within the graph itself

	GDB-3923 Missing remove icon in the cluster view

	GDB-3924 Visual graph reports a strange 404 error when opening resource details

	GDB-3939 Resource page is not loaded properly in Workbench

	GDB-4050 Workbench: various overlaps in some sections of the Workbench

	GDB-4085 Disabling sameAs from UI does not affect exported result set

GraphDB Connectors & Plugins

New features

	GDB-3931 Implement change tracking plugin - a plugin that tracks data updates

	GDB-3969 Implement GraphDB Plugin data for history and versioning

Bug fixing

	GDB-3662 Improve the Connector error message when sorting over an empty index

	GDB-3740 Similarity search query should be configurable without building similarity index

	GDB-3904 Similarity search index does not preform special predicate validation properly, leading to “stuck” create index operations

	GDB-3926 GeoSPARQL plugin displays wrong “current configuration” properties

	GDB-3928 Propagate all ES connection errors to the Workbench

	GDB-4079 Semantic vectors logs are left “open” when rebuilding a semantic vector, leading to a memory leak

	GDB-4155 MongoDB connector raises Cannot cast org.bson.Document to java.util.List

	

GDB 9.0.0

Released: 30 September 2019

Component versions

	RDF4J

	Connectors

	Workbench

	3.0.0

	12.0.0

	1.1.2

Important

	The new release features a major redesign of the database Plugin API that simplifies the way to implement complex software logic next to the core database engine. Ontotext releases multiple plugins to the community as open source, demonstrating how to solve common tasks such as data virtualization (see MongoDB Plugin [https://github.com/Ontotext-AD/graphdb-mongodb-plugin]), a complex ranking of search results (see Autocomplete Plugin [https://github.com/Ontotext-AD/graphdb-autocomplete-plugin]), new types of indexing (see GeoSPARQL plugin [https://github.com/Ontotext-AD/graphdb-geosparql-plugin]) and advanced graph analytics (see RDF Rank plugin [https://github.com/Ontotext-AD/graphdb-rdfrank-plugin]).

	GraphDB Workbench [https://github.com/Ontotext-AD/graphdb-workbench] now becomes a separate open-source project enabling the fast development of knowledge graph prototypes starting from the default AngularJS administrative interface. Furthermore, the product includes an open source graphdb.js [https://github.com/Ontotext-AD/graphdb.js] driver optimized for Node.js and other rapid development frameworks.

	GraphDB 9.0 supports OpenJDK 11. The product continues to support OpenJDK 8 for its existing clients, as well as every new Oracle Java Long Term Support (LTS) version.

	The product continues to support the RDF open-source community, and is now upgraded to RDF4J version 3.0 [https://rdf4j.org/release-notes/#3-0-0].

GraphDB Engine

New features

	GDB-3607 Move to OpenJDK and support for newer Java versions. Make OpenJDK 8 and 11 the officially tested and recommended Java versions

	GDB-3649 Upgrade to RDF4J 3.0

Bug fixing

	GDB-1416 Exceptions in query evaluation do not result in error messages

	GDB-3494 GraphDB is trying to rollback non-existing transaction

	GDB-3506 Concurrent requests for storage health checks may produce an error

	GDB-3531 Exception executing simple query after PUT statements in a repo

	GDB-3585 Suboptimal execution plan for construct with FILTER

	GDB-3592 Deadlock when notification listeners are to be notified but they were garbage collected before that

	GDB-3596 LiteralIndex failures within RepositoryRule

	GDB-3643 Join of subqueries does not work correctly

	GDB-3646 Error “Could not convert the query to our optimized model” reported during query evaluation containing MINUS

	GDB-3703 Graph Replacement Optimization does not work with the Java API

	GDB-3720 Compound transactions do not reflect change in size()

	GDB-3830 OPTIONAL and Alt-prop-path causes mix-up of bindings

	GDB-3843 Bulk update “getRealId() must be called in exclusive transaction or after precommit()”

GraphDB Workbench

New features

	GDB-3619 Split Workbench code base from GraphDB and open-source the UI code

	GDB-3728 Extend Cypress tests to cover all functionalities of the Workbench

Bug fixing

	GDB-3248 Visual graph: expanding nodes “over owl:sameAs” not working properly

	GDB-3642 Visual graph UI missing buttons

GraphDB Plugins

New features

	GDB-1801 Open-source plugin API and plugins with developer examples

	GDB-3308 Implement a way for plugins to know if they are in a cluster

	GDB-3631 Plugin API: Redesign the plugin notification interfaces to handle the notifications about transactions

	GDB-3633 Plugin API: Extend system info object passed at plugin initialization

	GDB-3635 Plugin API: Add mechanism to access the fingerprint in plugins

	GDB-3636 Plugin API: Cleanup unused parts of the Plugin API like GlobalViewOnData and MemoryConfigurable

	GDB-3730 Update Plugin API, plugin location, and the Javadoc

	GDB-3803 Open-source the GeoSPARQL plugin

	GDB-3806 Open-source the RDF Rank plugin

	GDB-3807 Open-source the Autocomplete plugin

	GDB-3808 Open-source the Lucene FTS plugin

	GDB-3813 Open-source the GeoSpatial plugin

	GDB-3814 Open-source the Notifications Logger plugin

	GDB-3815 Open-source the MongoDB plugin

Bug fixing

	GDB-3309 Asynchronous RDFRank build through SPARQL in cluster breaks the cluster

	GDB-3453 Explain the slow performance for rebuilding GeoSPARQL on Kadaster repository

	GDB-3511 GeoSPARQL: Creating a quad plugin with precision >24 will result in an error when trying to create a geohash plugin

	GDB-3554 Similarity indices with training cycles use vector values from first iteration on search

	GDB-3556 Cannot build predication similarity index over PubMed authors data

	GDB-3584 Similarity text index -porterstemmer flag does not work

	GDB-3599 Stopwords do not work with default analyzer in text similarity indices

GraphDB Connectors

New features

	GDB-3582 Upgrade connectors to latest major releases of Lucene/Solr (8.x) and Elasticsearch (7.x)

Bug fixing

	GDB-3816 Wrong exporting of ‘elasticsearchClusterSniff’ setting from Connectors view

	GDB-3819 Viewing existing connectors does not show the values of options that were set by default value and not explicitly

	GDB-3905 Repair does not work when repairing a connector marked as “incompatible” by being created by an older version

GraphDB Cluster

Bug fixing

	GDB-3766 Cluster incorrectly indicates IsWritable=false when one of its workers is down

FAQ

What’s in this document?

	General

	What is OWLIM?

	Why a solid-state drive and not a hard-disk one?

	Is GraphDB Jena-compatible?

	Configuration

	How do I find out the exact version number of GraphDB?

	What is a repository?

	How do I create a repository?

	How do I retrieve repository configurations?

	What is a location?

	How do I attach a location?

	How do I create a GraphDB EE cluster without knowing JMX?

	RDF & SPARQL

	How is GraphDB related to RDF4J?

	What does it mean when an IRI starts with urn:rdf4j:triple:?

	What kind of SPARQL compliance is supported?

	Troubleshooting

	Why can’t I use custom rule file (.pie) - an exception occurred?

	Why can’t I open GraphDB in MacOS?

General

What is OWLIM?

OWLIM is the former name of GraphDB, which originally came from the term “OWL In Memory” and was fitting for what later became OWLIM-Lite. However, OWLIM-SE used a transactional, index-based file-storage layer where “In Memory” was no longer appropriate. Nevertheless, the name stuck and it was rarely asked where it came from.

Why a solid-state drive and not a hard-disk one?

We recommend using enterprise-grade SSDs whenever possible as they provide a significantly faster database performance compared to hard-disk drives.

Unlike relational databases, a semantic database needs to compute the inferred closure for inserted and deleted statements. This involves making highly unpredictable joins using statements anywhere in its indices. Despite utilizing paging structures as best as possible, a large number of disk seeks can be expected and SSDs perform far better than HDDs in such a task.

Is GraphDB Jena-compatible?

Yes, GraphDB is compatible with Jena [http://jena.apache.org/] 2.7.3 with a built-in adapter. For more information, see Using GraphDB with Jena.

Configuration

How do I find out the exact version number of GraphDB?

The major/minor version and patch number are part of the GraphDB distribution .zip file name. They can also be seen at the bottom of the GraphDB Workbench home page, together with the RDF4J, Connectors, and Plugin API’s versions.

A second option is to run the graphdb -v startup script command if you are running GraphDB as a standalone server (without Workbench). It will also return the build number of the distribution.

Another option is to run the following DESCRIBE query in the Workbench SPARQL editor:

DESCRIBE <http://www.ontotext.com/SYSINFO> FROM <http://www.ontotext.com/SYSINFO>

It returns pseudo-triples providing information on various GraphDB states, including the number of triples (total and explicit), storage space (used and free), commits (total and whether there are any active ones), the repository signature, and the build number of the software.

What is a repository?

A repository is essentially a single GraphDB database. Multiple repositories
can be active at the same time and they are isolated from each other.

How do I create a repository?

Go to Setup -> Repositories, and follow the instructions.

How do I retrieve repository configurations?

To see what configuration data is stored in a GraphDB repository, go to Repositories and use the Download repository configuration as Turtle icon.

[image: _images/Repository_configuration.png]
Then open the result file named repositoryname-config.ttl, which contains this information.

What is a location?

A location is either a local (to the Workbench installation) directory
where your repositories will be stored or a remote instance of GraphDB.
You can have multiple attached locations but only a single location can be
active at a given time.

How do I attach a location?

Go to Setup -> Repositories. Click Attach remote location.
For a location on the same machine, provide the absolute path name to a directory,
and for a remote location, provide a URL through which the server
running the Workbench can see the remote GraphDB instance.

How do I create a GraphDB EE cluster without knowing JMX?

Create some master and worker repositories first (in a production cluster
each master and worker should be in a separate GraphDB instance).
Go to Setup -> Cluster management, where you will see a visual representation
of repositories and each cluster. Drag and drop workers onto masters to connect them.

RDF & SPARQL

How is GraphDB related to RDF4J?

GraphDB is a semantic repository, packaged as a Storage and Inference Layer (Sail) for the RDF4J framework [http://rdf4j.org/about/] and it makes extensive use of the features and infrastructure of RDF4J, especially the RDF model, RDF parsers, and query engines.

For more details, see the GraphDB RDF4J.

What does it mean when an IRI starts with urn:rdf4j:triple:?

When RDF-star (formerly RDF*) embedded triples are serialized in formats (both RDF and query results) that do not support RDF-star,
they are serialized as special IRIs starting with urn:rdf4j:triple: followed by
Base64 URL-safe encoding [https://tools.ietf.org/html/rfc4648#section-5] of the N-Triples serialization of the triple.
This is controlled by a boolean writer setting, and is ON by default.
The setting is ignored by writers that support RDF-star natively.

Such special IRIs are converted back to triples on parsing. This is controlled by a boolean parser setting,
and is ON by default. It is respected by all parsers, including those with native RDF-star support.

See RDF-star and SPARQL-star.

What kind of SPARQL compliance is supported?

All GraphDB editions support:

	SPARQL 1.1 Protocol for RDF [http://www.w3.org/TR/sparql11-protocol/]

	SPARQL 1.1 Query [http://www.w3.org/TR/sparql11-query/]

	SPARQL 1.1 Update [http://www.w3.org/TR/sparql11-update/]

	SPARQL 1.1 Federation [http://www.w3.org/TR/sparql11-federated-query/]

	SPARQL 1.1 Graph Store HTTP Protocol [http://www.w3.org/TR/sparql11-http-rdf-update/]

See also SPARQL Compliance.

Troubleshooting

Why can’t I use custom rule file (.pie) - an exception occurred?

To use custom rule files, GraphDB must be running in a JVM that has access to the Java compiler. The easiest way to do this is to use the Java runtime from a Java Development Kit (JDK).

Why can’t I open GraphDB in MacOS?

If you receive an error message saying that MacOS cannot open GraphDB since it cannot be checked for malicious software, this is because the security settings of your Mac are configured to only allow apps from the App Store.

GraphDB is a developer-signed software, so in order to install it, you need to modify these settings to allow apps from both the App Store and identified developers.

You can find detailed assistance on how to configure them in the Apple support pages [https://support.apple.com/en-us/HT202491].

Support

	email: graphdb-support@ontotext.com

	Twitter: @OntotextGraphDB [https://twitter.com/OntotextGraphDB]

	GraphDB tag on Stack Overflow at
http://stackoverflow.com/questions/tagged/graphdb

Previous versions

This is the documentation for GraphDB versions 6.1 and older. To read the documentation for a previous version, please click the corresponding link below.

The documentation for versions of GraphDB from 6.0 to 6.5 is in a unified format
that applies to all GraphDB editions. It is available on Ontotext’s Confluence:

	GraphDB 6.0 and 6.1 [https://confluence.ontotext.com/display/GraphDB6/Home]

Documentation for versions 4.x and 5.x

Prior to version 6.0, GraphDB was called OWLIM, whose documentation is in the same
unified format on Ontotext’s Confluence:

	OWLIM 5.6 [https://confluence.ontotext.com/display/OWLIM56/Home]

	OWLIM 5.5 [https://confluence.ontotext.com/display/OWLIM55/Home]

	OWLIM 5.4 [https://confluence.ontotext.com/display/OWLIMv54/Home]

	OWLIM 5.3 [https://confluence.ontotext.com/display/OWLIMv53/Home]

	OWLIM 5.2 [https://confluence.ontotext.com/display/OWLIMv52/Home]

	OWLIM 5.1 [https://confluence.ontotext.com/display/OWLIMv51/Home]

	OWLIM 5.0 [https://confluence.ontotext.com/display/OWLIMv50/Home]

	OWLIM 4.4 [https://confluence.ontotext.com/display/OWLIMv44/Home]

	OWLIM 4.3 [https://confluence.ontotext.com/display/OWLIMv43/Home]

	OWLIM 4.2 [https://confluence.ontotext.com/display/OWLIMv42/Home]

	OWLIM 4.1 [https://confluence.ontotext.com/display/OWLIMv41/Home]

	OWLIM 4.0 [https://confluence.ontotext.com/display/OWLIMv40/Home]

Using GraphDB with Jena

What’s in this document?

	Installing GraphDB with Jena

GraphDB can also be used with the Jena [http://jena.apache.org/]
framework, which is achieved with a customized Jena/RDF4J/GraphDB
adapter component.

Jena [http://jena.apache.org//] is a Java framework for building
Semantic Web applications. It provides a programmatic environment for
RDF, RDFS, OWL and SPARQL and includes a rule-based inference engine.
Access to GraphDB via the Jena framework is achieved with a special
adapter, which is essentially an implementation of the Jena
ARQ [https://jena.apache.org/documentation/query/] interface that provides
access to individual triples managed by a GraphDB repository through the
RDF4J API interfaces.

Note

The GraphDB-specific Jena adapter can only be used with ‘local’
repositories, i.e., not ‘remote’ repositories that are accessed using
the RDF4J HTTP protocol. If you want to use GraphDB remotely,
consider using the Joseki server as
described below.

Installing GraphDB with Jena

Required software

	Jena [https://repository.apache.org/content/repositories/releases/org/apache/jena/jena-core/]
version 2.7 (tested with version 2.7.3)

	ARQ [https://repository.apache.org/content/repositories/releases/org/apache/jena/jena-arq/]
(tested with version 2.9.3)

Description of the GraphDB Jena adapter

The GraphDB Jena adapter is essentially an implementation of the Jena [http://jena.apache.org/] DatasetGraph interface that provides access to individual triples managed by a GraphDB repository through the RDF4J API interfaces.

It is not a general purpose RDF4J adapter and cannot be used to access any RDF4J compatible repository, because it utilizes an internal GraphDB API to provide more efficient methods for processing RDF data and evaluating queries.

The adapter comes with its own implementation of the Jena ‘assembler’ factory to make it easier to instantiate and use with those related parts of the Jena framework, although you can instantiate an adapter directly by providing an instance of a RDF4J SailRepository (a GraphDB GraphDBRepository implementation). Query evaluation is controlled by the ARQ engine, but specific parts of a query (mostly batches of statement patterns) are evaluated natively through a modified StageGenerator plugged into the Jena runtime framework for efficiency. This also avoids unnecessary cross-api data transformations during query evaluation.

Instantiate Jena adapter using a SailRepository

In this approach, a GraphDB repository is first created and wrapped in a
RDF4J SailRespository. Then a connection to it is used to
instantiate the adapter class SesameDataset. The following example
helps to clarify:

import com.ontotext.trree.OwlimSchemaRepository;
import org.eclipse.rdf4j.repository.sail.SailRepository;
import org.eclipse.rdf4j.repository.RepositoryConnection;
import com.ontotext.jena.SesameDataset;

...

OwlimSchemaRepository schema = new OwlimSchemaRepository();

// set the data folder where GraphDB will persist its data
schema.setDataDir(new File("./local-sotrage"));

// configure GraphDB with some parameters
schema.setParameter("storage-folder", "./");
schema.setParameter("repository-type", "file-repository");
schema.setParameter("ruleset", "rdfs");

// wrap it into a RDF4J SailRepository
SailRepository repository = new SailRepository(schema);

// initialize
repository.initialize();
RepositoryConnection connection = repository.getConnection();

// finally, create the DatasetGraph instance
SesameDataset dataset = new SesameDataset(connection);

From now on the SesameDataset object can be used through the Jena
API as a regular dataset, e.g., to add some data to it, you could do
something like the following:

Model model = ModelFactory.createModelForGraph(dataset.getDefaultGraph());
Resource r1 = model.createResource("http://example.org/book#1") ;
Resource r2 = model.createResource("http://example.org/book#2") ;

r1.addProperty(DC.title, "SPARQL - the book")
 .addProperty(DC.description, "A book about SPARQL") ;

r2.addProperty(DC.title, "Advanced techniques for SPARQL") ;

It can also be used to evaluate queries through the ARQ engine:

// Query string.
String queryString = "PREFIX dc: <" + DC.getURI() + "> " +
 "SELECT ?title WHERE {?x dc:title ?title . }";

Query query = QueryFactory.create(queryString);

// Create a single execution of this query, apply to a model
// which is wrapped up as a QueryExecution and then fetch the results
QueryExecution qexec = QueryExecutionFactory.create(query, dataset.asDataset());
try {
 // Assumption: it's a SELECT query.
 ResultSet rs = qexec.execSelect();
 // The order of results is undefined.
 for (; rs.hasNext();) {
 QuerySolution rb = rs.nextSolution();
 for (Iterator<String> iter = rb.varNames(); iter.hasNext();) {
 String name = iter.next();
 RDFNode x = rb.get(name);
 if (x.isLiteral()) {
 Literal titleStr = (Literal) x;
 System.out.print(name + "=" + titleStr + "\t");
 } else if (x.isURIResource()) {
 Resource res = (Resource) x;
 System.out.print(name + "=" + res.getURI() + "\t");
 }
 else
 System.out.print(name + "=" + x.toString() + "\t");
 }
 System.out.println();
 }
}
catch(Exception e) {
 System.out.println("Exception occurred: " + e);
}
finally {
 // QueryExecution objects should be closed to free any system resources
 qexec.close();
}

Instantiate GraphDB adapter using the provided Assembler

Another approach is to use the Jena assemblers infrastructure to
instantiate a GraphDB Jena adapter. For this purpose, the required
configuration must be stored in some valid RDF serialisation format and
its contents read in a Jena model. Then, the assembler can be invoked
to get an instance of the Jena adapter. The following example specifies
an adapter instance in N3 format.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix ja: <http://jena.hpl.hp.com/2005/11/Assembler#> .
@prefix otjena: <http://www.ontotext.com/jena/> .

@prefix : <#> .

[] ja:loadClass "com.ontotext.jena.SesameVocab" .
otjena:SesameDataset rdfs:subClassOf ja:Object .
otjena:SesameDataset ja:assembler "com.ontotext.jena.SesameAssembler" .
<#dataset> rdf:type otjena:SesameDataset ;
 otjena:datasetParam "./location" .

The ja:loadClass statements ensure that the GraphDB Jena adapter
factory class file(s) are initialized and plugged in the Jena
framework prior to being invoked. Then, the \\#dataset description
tells the Jena framework to expect instances of otjena:SesameDataset
to be created by this factory. The following example uses such a
description stored in the file owlimbridge.n3 to get an instance of
the Jena adapter:

Model spec = FileManager.get().loadModel("owlimbridge.n3");
Resource root = spec.createResource(spec.expandPrefix(":dataset"));
DataSource datasource = (DataSource)Assembler.general.open(root);
DatasetGraph dataset = datasource.asDatasetGraph();

After this, the adapter is ready to be used, for example, to evaluate
some queries through the ARQ engine using the same approach.

Using GraphDB with the Joseki server

To use a GraphDB repository with the Joseki server, you only need to configure it as a dataset, so that the Jena assembler framework
is able to instantiate it. An example Joseki configuration file that
makes use of such a dataset description could look like the following.
First, a service that hosts the dataset is described:

<#service1>
 rdf:type joseki:Service ;
 rdfs:label "service point" ;
 joseki:dataset otjena:bridge ;
 joseki:serviceRef "sparql" ;
 joseki:processor joseki:ProcessorSPARQL ;
 .

Then, the dataset is described:

[] ja:loadClass "com.ontotext.jena.SesameVocab" .
otjena:DatasetSesame rdfs:subClassOf ja:RDFDataset .
otjena:bridge rdf:type otjena:DatasetSesame ;
 rdfs:label "GraphDB repository" ;
 otjena:datasetParam "./location" .

If a repositoryConnection is obtained (as in the example in the RDF4J section above), the Jena adapter can be used as follows:

import com.ontotext.jena.SesameDataset;

// Create the DatasetGraph instance
SesameDataset dataset = new SesameDataset(repositoryConnection);

From now on the SesameDataset object can be used through the Jena API as
a regular dataset, e.g., to add some data to it, you could do something like
the following:

Model model = ModelFactory.createModelForGraph(dataset.getDefaultGraph());
Resource r1 = model.createResource("http://example.org/book#1");
Resource r2 = model.createResource("http://example.org/book#2");
r1.addProperty(DC.title, "SPARQL - the book")
 .addProperty(DC.description, "A book about SPARQL");
r2.addProperty(DC.title, "Advanced techniques for SPARQL");

When GraphDB is used through Jena, its performance is quite similar to
using it through the RDF4J APIs. For most of the scenarios and tasks,
GraphDB can deliver considerable performance improvements when used as a
replacement for Jena’s own native RDF backend TDB.

 _images/Free_access_configuration.png

_images/Create-new-user2.png
@ news - ®) admin v

Create new user

Login User role
©User (Repository manager () Administrator
User name
Password
Repository rights
Confirm password Repository 1) Va
Any data repository @ -
news v -
wine v

SPARQL editor settings

Expand results over owl:SameAs is [[I] @) by default

Inference is [EI] @) by default

Count total results

~|Ignore shared saved queries

_images/Autocomplete.png
Q @B news
Autocomplete index o
Autocomplete for repository news is (X1 @) with status

_images/FactForgeSPARQL.png
.’. FactForge
o g
@ Explore

SPARQL

SPARQL Query & Update o

oy | resusony (1)

<http://ontology .ontotext. con/publishing#>

PREFIX dbr: <http://dbpedia.org/resource/>

PREFIX pub: <http://ontology.ontotext.com/taxonomy/> =

PREFIX xsd: <http://ww.w3.org/2801/XHLSchemat>
PREFIX ff-map: <http://factforge.net/Ff2016-napping/>

Unnamed ®
© 1 PREFIX pubo
2
3
2
5
6
-+ 7 CONSTRUCT {
8 2document
9 2document
16 2document
©11) WHERE {
-12 {
13 2document
14] 2document
15 2document
Table RawResponse

query results

»

£f-map:mentionsEntity Yentity . &
pubo:content 2content .
pubo:creationdate date .

a pubo:Document .

Ff-map:mentionsEntity Jentity . m

pubo: content 2content .
Press AltiEnter to autocomple v

Feottae Gocale crart

Showing results from 101,000 of at least 1.000. Query took 0.1s, minutes ago.

_images/Edit_User.png
@ news - ®) admin v

Edit user: admin

Login User role

X User Repository manager ¢ Administrator
admin P Y g

New password
Repository rights

Confirm password

Repository o 'f
Any data repository ® v v
news v v
wine v v

SPARQL editor settings

Expand results over owl:SameAs is [[I] @) by default

Inference is [EI] @) by default

Count total results

Ignore shared saved queries

